Дисперсионный анализ данных. Многофакторный дисперсионный анализ. Выше в основном использовались графические средства дисперсионного анализа. Рассмотрим некоторые другие полезные результаты, которые можно получить

Дисперсионный анализ (от латинского Dispersio – рассеивание / на английском Analysis Of Variance - ANOVA) применяется для исследования влияния одной или нескольких качественных переменных (факторов) на одну зависимую количественную переменную (отклик).

В основе дисперсионного анализа лежит предположение о том, что одни переменные могут рассматриваться как причины (факторы, независимые переменные): , а другие как следствия (зависимые переменные). Независимые переменные называют иногда регулируемыми факторами именно потому, что в эксперименте исследователь имеет возможность варьировать ими и анализировать получающийся результат.

Основной целью дисперсионного анализа (ANOVA) является исследование значимости различия между средними с помощью сравнения (анализа) дисперсий. Разделение общей дисперсии на несколько источников, позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. Если вы просто сравниваете средние в двух выборках , дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений).

Сущность дисперсионного анализа заключается в расчленении общей дисперсии изучаемого признака на отдельные компо­ненты, обусловленные влиянием конкретных факторов, и проверке гипотез о значимости влияния этих факторов на исследуемый признак. Сравнивая компоненты дисперсии друг с другом посредством F-критерия Фишера , можно определить, какая доля общей вариативности результативного признака обусловлена действием регулируемых факторов.

Исходным материалом для дисперсионного анализа служат данные исследования трех и более выборок : , которые могут быть как равными, так и неравными по численности, как связными, так и несвязными. По количеству выявляемых регулируемых факторов дисперсионный анализ может быть однофакторным (при этом изучается влияние одного фактора на результаты эксперимента), двухфакторным (при изучении влияния двух факторов) и многофакторным (позволяет оценить не только влияние каждого из факторов в отдельности, но и их взаимодействие).

Дисперсионный анализ относится к группе параметрических методов и поэтому его следует применять только тогда, когда доказано, что распределение является нормальным .

Дисперсионный анализ используют, если зависимая переменная измеряется в шкале отношений, интервалов или порядка, а влияющие переменные имеют нечисловую природу (шкала наименований).

Примеры задач

В задачах, которые решаются дисперсионным анализом, присутствует отклик числовой природы, на который воздействует несколько переменных, имеющих номинальную природу. Например, несколько видов рационов откорма скота или два способа их содержания и т.п.

Пример 1: В течение недели в трех разных местах работало несколько аптечных киосков. В дальнейшем мы можем оставить только один. Необходимо определить, существует ли статистически значимое отличие между объемами реализации препаратов в киосках. Если да, мы выберем киоск с наибольшим среднесуточным объемом реализации. Если же разница объема реализации окажется статистически незначимой, то основанием для выбора киоска должны быть другие показатели.

Пример 2: Cравнение контрастов групповых средних. Семь политических пристрастий упорядочены от крайне либеральные до крайне консервативные, и линейный контраст используется для проверки того, есть ли отличная от нуля тенденция к возрастанию средних значений по группам - т. е. есть ли значимое линейное увеличение среднего возраста при рассмотрении групп, упорядоченных в направлении от либеральных до консервативных.

Пример 3: Двухфакторный дисперсионный анализ. На количество продаж товара, помимо размеров магазина, часто влияет расположение полок с товаром. Данный пример содержит показатели недельных продаж, характеризуемые четырьмя типами расположения полок и тремя размерами магазинов. Результаты анализа показывают, что оба фактора - расположение полок с товаром и размер магазина -влияют на количество продаж, однако их взаимодействие значимым не является.

Пример 4: Одномерный ANOVA: Рандомизированный полноблочный план с двумя обработками. Исследуется влияние на припек хлеба всех возможных комбинаций трех жиров и трех рыхлителей теста. Четыре образца муки, взятые из четырех разных источников, служили в качестве блоковых факторов.Необходимо выявить значимость взаимодействия жир-рыхлитель. После этого определить различные возможности выбора контрастов, позволяющих выяснить, какие именно комбинации уровней факторов различаются.

Пример 5: Модель иерархического (гнездового) плана с смешанными эффектами. Изучается влияние четырех случайно выбранных головок, вмонтированных в станок, на деформацию производимых стеклянных держателей катодов. (Головки вмонтированы в станок, так что одна и та же головка не может использоваться на разных станках). Эффект головки обрабатывается как случайный фактор. Статистики ANOVA показывают, что между станками нет значимых различий, но есть признаки того, что головки могут различаться. Различие между всеми станками не значимо, но для двух из них различие между типами головок значимо.

Пример 6: Одномерный анализ повторных измерений с использованием плана расщепленных делянок. Этот эксперимент проводился для определения влияния индивидуального рейтинга тревожности на сдачу экзамена в четырех последовательных попытках. Данные организованы так, чтобы их можно было рассматривать как группы подмножеств всего множества данных ("всей делянки"). Эффект тревожности оказался незначимым, а эффект попытки - значим.

Перечень методов

  • Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач ; факторы, влияющие на объёмы продаж .

Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности:

  • Однофакторная параметрическая модель : метод Шеффе .
  • Однофакторная непараметрическая модель [Лагутин М.Б., 237]: критерий Краскела-Уоллиса [Холлендер М., Вульф Д.А., 131], критерий Джонкхиера [Лагутин М.Б., 245].
  • Общий случай модели с постоянными факторами, теорема Кокрена [Афифи А., Эйзен С., 234].

Данные представляют собой двухкратные повторные наблюдения:

  • Двухфакторная непараметрическая модель : критерий Фридмана [Лапач, 203], критерий Пейджа [Лагутин М.Б., 263]. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
  • Двухфакторная непараметрическая модель для неполных данных

История

Откуда произошло название дисперсионный анализ ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ. Первоначально дисперсионный анализ был разработан для обработки данных, полученных в ходе специально поставленных экспериментов, и считался единственным методом, корректно исследующим причинные связи. Метод применялся для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Литература

  1. Шеффе Г. Дисперсионный анализ. - М., 1980.
  2. Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
  3. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006.
  4. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. - Киев: Морион, 2002.
  5. Лагутин М. Б. Наглядная математическая статистика. В двух томах. - М.: П-центр, 2003.
  6. Афифи А., Эйзен С. Статистический анализ: Подход с использованием ЭВМ.
  7. Холлендер М., Вульф Д.А. Непараметрические методы статистики.

Ссылки

Дисперсионный анализ

1. Понятие дисперсионного анализа

Дисперсионный анализ -это анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов. В зарубежной литературе дисперсионный анализ часто обозначается как ANOVA, что переводится как анализ вариативности (Analysis of Variance).

Задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака вычленить вариативность иного рода:

а) вариативность обусловленную действием каждой из исследуемых независимых переменных;

б) вариативность, обусловленную взаимодействием исследуемых независимых переменных;

в) случайную вариативность, обусловленную всеми другими неизвестными переменными.

Вариативность, обусловленная действием исследуемых переменных и их взаимодействием, соотносится со случайной вариативностью. Показателем этого соотношения является критерий F Фишера.

В формулу расчета критерия F входят оценки дисперсий, то есть параметров распределения признака, поэтому критерий F является параметрическим критерием.

Чем в большей степени вариативность признака обусловлена исследуемыми переменными (факторами) или их взаимодействием, тем выше эмпирические значения критерия .

Нулевая гипотеза в дисперсионном анализе будет гласить, что средние величины исследуемого результативного признака во всех гра­дациях одинаковы.

Альтернативная гипотеза будет утверждать, что средние вели­чины результативного признака в разных градациях исследуемого фак­тора различны.

Дисперсионный анализ позволяет нам констатировать изменение признака, но при этом не указывает направление этих изменений.

начнем рассмотрение дисперсионного анализа с простей­шего случая, когда исследуется действие только одной переменной (одного фактора).

2. Однофакторный дисперсионный анализ для несвязан­ных выборок

2.1. Назначение метода

Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака под влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвер­гаются разные выборки испытуемых. Градаций фактора должно быть не менее трех. (Градаций может быть и две, но в этом случае мы не сможем установить нели­нейных зависимостей и более разумным представляется использование более про­стых).

Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.

Гипотезы

H 0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.

2.2. Ограничения метода однофакторного дисперсионного анали­за для несвязанных выборок

1. Однофакторный дисперсионный анализ требует не менее трех града­ций фактора и не менее двух испытуемых в каждой градации.

2. Результативный признак должен быть нормально распределен в ис­следуемой выборке.

Правда, обычно не указывается, идет ли речь о распределении признака во всей обследованной выборке или в той ее части, которая составляет дисперсионный комплекс.

3. Пример решения задачи методом однофакторного дисперсионного анализа для несвязанных выборок на примере:

Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 1.

Количество воспроизведенных слов Таблица 1

№ испытуемого

низкая скорость

средняя скорость

высокая скорость

Общая сумма

H 0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы. Используя экспериментальные значения, представленные в Табл. 1, установим некоторые величины, которые будут необходимы для расчета критерия F.

Расчет основных величин для однофакторного дисперсионного анализа представим в таблице:

Таблица 2

Таблица 3

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок

Часто встречающееся в этой и последующих таблицах обозначе­ние SS - сокращение от "суммы квадратов" (sum of squares). Это со­кращение чаще всего используется в переводных источниках.

SS факт означает вариативность признака, обусловленную действи­ем исследуемого фактора;

SS общ - общую вариативность признака;

S CA -вариативность, обусловленную неучтенными факторами, "случайную" или "остаточную" вариативность.

MS - "средний квадрат", или математическое ожидание суммы квадратов, усредненная величина соответствующих SS.

df - число степеней свободы, которое при рассмотрении непара­метрических критериев мы обозначили греческой буквой v .

Вывод: H 0 отклоняется. Принимается H 1 . Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (α=0,05). Итак, скорость предъявления слов влияет на объем их воспроизведения.

Пример решения задачи в Excel представлен ниже:

Исходные данные:

Используя команду: Сервис->Анализ данных->Однофакторный дисперсионный анализ, получим следующие результаты:

ДИСПЕРСИОННЫЙ АНАЛИЗ

в математической статистике - статистический метод, предназначенный для выявления влияния отдельных факторов на результат эксперимента, а также для последующего планирования аналогичных экспериментов. Первоначально Д. а. был предложен Р. Фишером для обработки результатов агрономич. опытов по выявлению условий, при к-рых испытываемый сорт сельскохозяйственной культуры дает максимальный урожай. Современные приложения Д. а. охватывают широкий задач экономики, социологии, биологии и техники и трактуются обычно в терминах статистич. теории выявления систематич. различий между результатами непосредственных измерений, выполненных при тех пли иных меняющихся условиях.

Если значения неизвестных постоянных a 1 , ... , a I могут быть измерены с помощью различных методов или измерительных средств М 1 ,. .., M J , и в каждом случае систематич. ошибка b ij может, вообще говоря, зависеть как от выбранного метода Mj, так и от неизвестного измеряемого значения а i , то результаты таких измерений представляют собой суммы вида

где К- количество независимых измерений неизвестной величины а i методом M j , a у ijk - случайная ошибка k-го измерения величины а i методом M j (предполагается, что все y ijk - независимые одинаково распределенные случайные величины, имеющие нулевое математич. ожидание: Е у ijk =0). Такая линейная наз. двухфакторной схемой Д. а.; первый - истинное значение измеряемой величины, второй - метод измерения, причем в данном случае для каждой возможной комбинации значений первого и второго факторов осуществляется одинаковое количество Кнезависимых измерений (это допущение для целей Д. а. не является существенным и введено здесь лишь ради простоты изложения).

Примером подобной ситуации могут служить спортивные соревнования I спортсменов, мастерство к-рых оценивается J судьями, причем каждый участник соревнований выступает Краз (имеет К"попыток"). В этом случае а i - истинное значение показателя мастерства спортсмена с номером i, b ij - систематич. ошибка, вносимая в оценку мастерства i -го спортсмена судьей с номером j, x ijk - оценка, выставленная j -м судьей г-му спортсмену после выполнений последним k-й попытки, а y ijk - соответствующая случайная . Подобная типична для так наз. субъективной экспертизы качества нескольких объектов, осуществляемой группой независимых экспертов. Другой пример - статистич. исследование урожайности сельскохозяйственной культуры в зависимости от одного из J сортов почвы и J методов ее обработки, причем для каждого сорта г почвы и каждого метода обработки с номером J осуществляется kнезависимых экспериментов (в этом примере b ij - истинное значение урожайности для г-го сорта почвы при j-м способе обработки, x ijk - соответствующая экспериментально наблюдаемая урожайность в k-м опыте, а y ijk - ее случайная ошибка, возникающая из-за тех или иных случайных причин; что же касается величин а i , то в агрономич. опытах их разумно считать равными нулю).

Положим c ij =a i +b ij , и пусть с i *, с *j и с ** - результаты осреднений с ij по соответствующим индексам, т. е.

Пусть, кроме того, a=c ** , b i = с i* - с ** , g j = с *j -с ** и d ij = с ij - с i* - с *j +c ** . Идея Д. а. основана на очевидном тождестве

Если символом (c ij )обозначить размерности IJ , получаемый из матрицы ||с ij || порядка IXJ с помощью какого-либо заранее фиксированного способа упорядочивания ее элементов, то (1) можно записать в виде равенства где все векторы имеют IJ , причем a ij =a, b ij =b i , g ij =g j . Так как четыре вектора в правой части (2) ортогональны, то a ij =a - наилучшее приближение функции c ij от аргументов i и j постоянной величиной [в смысле минимальности суммы квадратов отклонений ]. В том же смысле a ij +b ij =a+b i - наилучшее c ij функцией, зависящей лишь от i, a ij +g ij =a+g j - наилучшее приближение c ij функцией, зависящей лишь от j, a a ij +b ij +g ij =a+b i +g j - наилучшее приближение c ij суммой функций, из к-рых одна (напр., a+b i ) зависит лишь от г, а другая - лишь от j. Этот факт, установленный Р. Фишером (см. ) в 1918, позднее послужил основой теории квадратичных приближений функций.

В примере, связанном со спортивными соревнованиями, d ij выражает "взаимодействие" г-го спортсмена и j-го судьи (положительное значение б/у означает "подсуживание", т. с. систематич. завышение /-м судьей оценки мастерства i-го спортсмена, а отрицательное значение б/у означает "засуживание", т. е. систематич. снижение оценки). Равенство всех б/у нулю - необходимое требование, к-рое надлежит предъявлять к работе группы экспертов. В случае же агрономич. опытов такое равенство рассматривается как гипотеза, подлежащая проверке по результатам экспериментов, поскольку основная цель здесь - отыскание таких значений i и j, при к-рых функция (1) достигает максимального значения. Если эта гипотеза верна, то

и значит, выявление наилучших "почвы" и "обработки" может быть осуществлено раздельно, что приводит к существенному сокращению числа экспериментов (напр., можно при каком-либо одном способе обработки испытать все Iсортов "почвы" и определить наилучший сорт, а затем на этом сорте опробовать все J способов "обработки" и найти наилучший способ; общее количество экспериментов с повторениями будет равно (I+J) К). Если же гипотеза {все d ij =0} неверна, то для определения max c ij необходим описанный выше "полный план", требующий при Кповторениях IJК экспериментов.

В ситуации спортивных соревнований функция g ij =g j может трактоваться как систематич. ошибка, допускаемая j-м судьей по отношению ко всем спортсменам. В конечном счете g j - характеристика "строгости" или "либеральности" j-го судьи. В идеале хотелось бы, чтобы все g j были нулевыми, но в реальных условиях приходится мириться с наличием ненулевых значений g j и учитывать это обстоятельство при подведении итогов экспертизы (напр., за основу сравнения мастерства спортсменов можно принять не последовательности истинных значений a+b 1 +g j , ..., a+b I +g j , a лишь результаты упорядочиваний этих чисел по их величине, поскольку при всех j=1, . . . , J такие упорядочивания будут одинаковыми). Наконец, сумма двух оставшихся функций a ij +b ij =a+b i зависит лишь от iи поэтому может быть использована для характеризации мастерства г-го спортсмена. Однако здесь нужно помнить, что Поэтому упорядочивание всех спортсменов по значениям a+b i (или по a+ + b i +g j при каждом фиксированном j) может не совпадать с упорядочиванием по значениям a i . При практической обработке экспертных оценок этим обстоятельством приходится пренебрегать, так как Упомянутый полный план экспериментов не позволяет оценивать отдельно a i и b i* . Таким образом, a+b i =a i + b i* характеризует не только мастерство i -го спортсмена, но и в той или иной мере экспертов к этому мастерству. Поэтому, напр., результаты субъективных экспертных оценок, осуществленных в разное время (в частности, на нескольких Олимпийских играх), едва ли можно считать сопоставимыми. В случае же агрономич. опытов подобные трудности не возникают, поскольку все a i =0 и значит, a+b i =b i* .

Истинные значения функций a, b i , g i и d ij неизвестны и выражаются в терминах неизвестных функций c ij . Поэтому первый этап Д. а. заключается в отыскании статистич. оценок для c ij по результатам наблюдений x ijk .Несмещенная и имеющая минимальную дисперсию для c ij выражается формулой

Так как a, b i , g j и d ij - линейные функции от элементов матрицы ||c ij ||, то несмещенные линейные оценки для этих функций, имеющие минимальную дисперсию, получаются в результате замены аргументов c ij соответствующими оценками, c ij , т. е. причем случайные векторы и определенные так же, как введенные выше (a ij ), (b ij ), (g ij ). и (d ij ), обладают свойством ортогональности, и значит, они представляют собой некоррелированные случайные векторы (иными словами, любые две компоненты, принадлежащие разным векторам, имеют нулевой корреляции). Кроме того, любая вида

некоррелирована с любой из компонент этих четырех векторов. Рассмотрим пять совокупностей случайных величин {x ijk }, {x ijk -x ij* }, Так как

то дисперсии эмпирич. распределений, соответствующих указанным совокупностям, выражаются формулами

Эти эмпирич. дисперсии представляют собой суммы квадратов случайных величин, любые две из к-рых некоррелированы, если только они принадлежат разным суммам; при этом относительно всех y ijk справедливо тождество

объясняющее происхождение термина "Д. а."" Пусть и пусть

в таком случае

где s 2 - дисперсия случайных ошибок y ijk .

На основе этих формул и строится второй этап Д. а., посвященный выявлению влияния первого и второго факторов на результаты эксперимента (в агрономич. опытах первый фактор - сорт "почвы", второй - способ "обработки"). Напр., если требуется проверить гипотезу отсутствия "взаимодействия" факторов, к-рая выражается равенствомто разумно вычислить дисперсионное отношение s 2 3 /s 2 0 = F 3 . Если это отношение значимо отличается от единицы, то проверяемая гипотеза отвергается. Точно так же для проверки гипотезы полезно отношение s 2 2 /s 2 0 = F 2 , к-рое надлежит также сравнить с единицей; если при этом известно, чтото вместо F 2 целесообразно сравнить с единицей отношение

Аналогичным образом можно построить статистику, позволяющую дать заключение о справедливости или ложности гипотезы

Точный смысл понятия значимого отличия указанных отношений от единицы может быть определен лишь с учетом закона распределения случайных ошибок y ijk . В Д. а. наиболее обстоятельно изучена ситуация, в к-рой все y ijk распределены нормально. В этом случае - независимые случайные векторы, а - независимые случайные величины, причем

отношения подчиняются нецентральным распределениям хи-квадрат с f m степенями свободы и параметрами нецентральности l т, m =0, 1, 2, 3, где

Если параметр нецентральности равен нулю, то нецентральное хи-квадрат совпадает с обычным распределением хи-квадрат. Поэтому в случае справедливости гипотезы l 3 =0 отношение подчиняется F-распре делению (распределению дисперсионного отношения) с параметрами f 3 и f 0 . Пусть х- такое число, для к-рого события {F 3 >x} равна заданному значению е, называемому уровнем значимости (таблицы функции х= х (e; f 3 , f 0) имеются в большинстве пособий по математич. статистике). Критерием для проверки гипотезы l 3 =0 служит правило, согласно к-рому эта гипотеза отвергается, если наблюдаемое значение F 3 превышает х;в противном случае гипотеза считается не противоречащей результатам наблюдений. Аналогичным образом конструируются критерии, основанные на статистиках F 2 и F* 2 .

Дальнейшие этапы Д. а. существенно зависят не только от реального содержания конкретной задачи, но также и от результатов статистич. проверки гипотез на втором этапе. Напр., в условиях агрономич. опытов справедливость гипотезы l 3 =0, как указано выше, позволяет более экономно спланировать аналогичные дальнейшие эксперименты (если помимо гипотезы l 3 =0 справедлива также и гипотеза l 2 =0, то это означает, что урожайность зависит лишь от сорта "почвы", и поэтому в дальнейших опытах можно воспользоваться схемой однофакторного Д. а.); если же гипотеза l 3 =0 отвергается, то разумно проверить, нет ли в данной задаче неучтенного третьего фактора? Если сорта "почвы" и способы ее "обработки" варьировались не в одном и том же месте, а в различных географич. зонах, то таким фактором могут быть климатич. или географич. условия, и "обработка" наблюдений потребует применения трехфакторного Д. а.

В случае экспертных оценок статистически подтвержденная справедливость гипотезы l 3 = 0 дает основание для упорядочивания сравниваемых объектов (напр., спортсменов) по значениям величин i=l, . .. , I.

Если же гипотеза l 3 =0 отвергается (в задаче о спортивных соревнованиях это означает статистич. обнаружение "взаимодействия" нек-рых спортсменов и судей), то естественно попытаться перевычнслить все результаты заново, предварительно исключив из рассмотрения x ijk с такими парами индексов (i, j ), для к-рых абсолютные значения статистич. оценок d ij превышают нек-рый заранее установленный допустимый уровень. Это означает, что из матрицы ||x ij* || вычеркиваются нек-рые элементы, и значит, план Д. а. становится неполным.

Модели современного Д. а. охватывают широкий круг реальных экспериментальных схем (напр., схемы неполных планов, со случайно или неслучайно отобранными элементами x ij* ). Соответствующие этим схемам статистич. выводы во многих случаях находятся в стадии разработки. В частности, еще (к 1978) далеки от окончательного решения те задачи, в к-рых результаты наблюдений x ijk =c ij +y ijk не являются одинаково распределенными случайными величинами; еще более трудная задача возникает в случае зависимости величин x ijk . Неизвестно проблемы выбора факторов (даже в линейном случае). Суть этой проблемы заключается в следующем: пусть с=с ( и, v )- и пусть u=u (z, w u=u (z, w )- какие-либо линейные функции от переменных г и w. Фиксируя значения z 1 , . .., z I и w 1 , . . ., w J , можно при каждом заданном выборе линейных функций ии u. определить c ij формулой и построить Д. а. этих величин по результатам соответствующих наблюдений x ijk . Проблема заключается в отыскании таких линейных функций u и u, к-рым соответствует минимальное значение суммы квадратов

где (предполагается, что функция с( и, v )неизвестна). В терминах Д. а. эта проблема сводится к статистич. отысканию таких факторов z=z (u, v w-w (u, v ), к-рым соответствует "наименьшее взаимодействие".

Лит. : Fisher R. A., Statistical methods for research workers, Edinburgh, 1925; Шеффе Г., Дисперсионный анализ, пер. с англ., М., 1963; Xальд А., Математическая с техническими приложениями, пер. с англ., М., 1956; Снедекор Д ж. У., Статистические методы в применении к исследованиям в сельском хозяйстве и биологии, пер. с англ., М., 1961.

Л. Н. Большее.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ДИСПЕРСИОННЫЙ АНАЛИЗ" в других словарях:

    Метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of… … Википедия

    - (analysis of variance) Статистический метод, основанный на разложении общей дисперсии (variance) какой либо характеристики населения на составные части, коррелирующие с другими характеристиками, и остаточную вариацию (residual variation). В… … Экономический словарь

    Один из методов математической статистики, применяемый для анализа результатов наблюдений, зависящих от различных, одновременно действующих факторов, к рые не поддаются, как правило, количеств. описанию. Рассмотрим простейшую из задач Д. а. Пусть … Физическая энциклопедия

    Дисперсионный анализ - раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного, экономического эксперимента). Д.а. возник как средство обработки результатов… … Экономико-математический словарь

    дисперсионный анализ - — дисперсионный анализ Раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного,… … Справочник технического переводчика

Как было уже отмечено, дисперсионный метод тесно связан со статистическими группировками и предполагает, что изучаемая совокупность подразделена на группы по факторным признакам, влияние которых должно быть изучено.

На основе дисперсионного анализа производится:

1. оценка достоверности различий в групповых средних по одному факторному признаку или нескольким;

2. оценка достоверности взаимодействий факторов;

3. оценка частных различий между парами средних.

В основе применения дисперсионного анализа лежит закон разложения дисперсий (вариаций) признака на составляющие.

Общая вариация D о результативного признака при группировке может быть разложена на следующие составные части:

1. на межгрупповую D м связанную с группировочным признаком;

2. на остаточную (внутригрупповую) D B , не связанную с группировочным признаком.

Соотношение между этими показателями выражается следующим образом:

D о = D м + D в. (1.30)

Рассмотрим применение дисперсионного анализа на примере.

Допустим, требуется доказать, влияют ли сроки посева на урожайность пшеницы. Исходные опытные данные для дисперсионного анализа представлены в табл. 8.

Таблица 8

В данном примере N = 32, K = 4, l = 8.

Определим общую суммарную вариацию урожайности, которая представляет собой сумму квадратов отклонений индивидуальных значений признака от общей средней:

где N – число единиц совокупности; Y i – индивидуальные значения урожайности; Y o – общая средняя урожайности по всей совокупности.

Для определения межгрупповой суммарной вариации, определяющей вариацию результативного признака за счет изучаемого фактора, необходимо знать средние значения результативного признака по каждой группе. Эта суммарная вариация равна сумме квадратов отклонений групповых средних величин от общей средней величины признака, взвешенной на число единиц совокупности в каждой из групп:

Внутригрупповая суммарная вариация равна сумме квадратов отклонений индивидуальных значений признака от групповых средних по каждой группе, суммированной по всем группам совокупности.

Влияние фактора на результативный признак проявляется в соотношении между D м и D в: чем сильнее влияние фактора на величину изучаемого признака, тем больше D м и меньше D в.

Для проведения дисперсионного анализа нужно установить источники варьирования признака, объем вариации по источникам, определить число степеней свободы для каждой компоненты вариации.

Объем вариации уже установлен, теперь необходимо определить число степеней свободы вариации. Число степеней свободы – это число независимых отклонений индивидуальных значений признака от его среднего значения. Общее число степеней свободы, соответствующее общей сумме квадратов отклонений в дисперсионном анализе, разлагается по составляющим вариации. Так, общей сумме квадратов отклонений D о соответствует число степеней свободы вариации, равное N – 1 = 31. Групповой вариации D м соответствует число степеней свободы вариации, равное K – 1 = 3. Внутригрупповой остаточной вариации соответствует число степеней свободы вариации, равное N – K = 28.


Теперь, зная суммы квадратов отклонений и число степеней свободы, можно определить дисперсии для каждой составляющей. Обозначим эти дисперсии: d м – групповые и d в – внутригрупповые.

После вычисления этих дисперсий приступим к установлению значимости влияния фактора на результативный признак. Для этого находим отношение: d M /d B = F ф,

Величина F ф, называемая критерием Фишера , сравнивается с табличным, F табл. Как уже было отмечено, если F ф > F табл, то влияние фактора на результативный признак доказано. Если F ф < F табл то можно утверждать, что различие между дисперсиями находится в пределах возможных случайных колебаний и, следовательно, не доказывает с достаточной вероятностью влияние изучаемого фактора.

Теоретическая величина связана с вероятностью, и в таблице ее значение приводится при определенном уровне вероятности суждения. В приложении имеется таблица, позволяющая установить возможную величину F при вероятности суждения, наиболее часто используемой: уровень вероятности «нулевой гипотезы» – 0,05. Вместо вероятностей «нулевой гипотезы» таблица может быть названа таблицей для вероятности 0,95 существенности влияния фактора. Повышение уровня вероятности требует для сравнения более высокого значения F табл.

Величина F табл зависит также от числа степеней свободы двух сравниваемых дисперсий. Если число степеней свободы стремится к бесконечности, то F табл стремится к единице.

Таблица значений F табл построена следующим образом: в столбцах таблицы указаны степени свободы вариации для большей дисперсии, а в строках – степени свободы для меньшей (внутригрупповой) дисперсии. Величина F находится на пересечении столбца и строки соответствующих степеней свободы вариации.

Так, в нашем примере F ф = 21,3/3,8 = 5,6. Табличное же значение F табл для вероятности 0,95 и степеней свободы, соответственно равных 3 и 28, F табл = 2,95.

Значение F ф полученное в опыте, превышает теоретическое значение даже для вероятности 0,99. Следовательно, опыт с вероятностью более 0,99 доказывает влияние изучаемого фактора на урожайность, т. е. опыт можно считать надежным, доказанным, а значит, сроки посева оказывают существенное влияние на урожайность пшеницы. Оптимальным сроком посева следует считать период с 10 по 15 мая, так как именно при этом сроке посева получены наилучшие результаты урожайности.

Нами рассмотрена методика дисперсионного анализа при группировке по одному признаку и случайному распределению повторностей внутри группы. Однако часто бывает так, что опытный участок имеет какие-то различия в плодородии почвы и т. д. Поэтому может возникнуть такая ситуация, что большее число делянок одного из вариантов попадет на лучшую часть, и его показатели будут завышены, а другого варианта – на худшую часть, и результаты в этом случае, естественно, будут хуже, т. е. занижены.

Чтобы исключить варьирование, которое вызывается не относящимися к опыту причинами, надо из внутригрупповой (остаточной) дисперсии вычленить дисперсию, рассчитанную по повторностям (блокам).

Общая сумма квадратов отклонений подразделяется в этом случае уже на 3 составляющие:

D о = D м + D повт + D ост. (1.33)

Для нашего примера сумма квадратов отклонений, вызванная повторностями, будет равна:

Стало быть, собственно случайная сумма квадратов отклонений будет равна:

D ост = D в – D повт; D ост = 106 – 44 = 62.

Для остаточной дисперсии число степеней свободы будет равно 28 – 7 = 21. Результаты дисперсионного анализа представлены в табл. 9.

Таблица 9

Поскольку фактические значения F-критерия для вероятности 0,95 превышают табличные, то влияние сроков посева и повторностей на урожайность пшеницы следует считать существенным. Рассмотренный способ построения опыта, когда участок предварительно делится на блоки с относительно выровненными условиями, а проверяемые варианты распределяются внутри блока в случайном порядке, называется способом рендомизированных блоков.

С помощью анализа дисперсионным методом можно изучить влияние не только одного фактора на результат, а двух и более. Дисперсионный анализ в этом случае будет называться многофакторным дисперсионным анализом .

Двухфакторный дисперсионный анализ отличается от двух однофакторных тем, что он может ответить на следующие вопросы:

1. 1каково влияние обоих факторов вместе?

2. какова роль сочетания этих факторов?

Рассмотрим дисперсионный анализ опыта, в котором следует выявить влияние не только сроков посева, но и сортов на урожайность пшеницы (табл. 10).

Таблица 10. Данные опыта по влиянию сроков посева и сортов на урожайность пшеницы

– это сумма квадратов отклонений индивидуальных значений от общей средней.

Вариация по совместному влиянию сроков посева и сорта

– это сумма квадратов отклонений средних по подгруппам от общей средней, взвешенных на число повторностей, т. е. на 4.

Вычисление вариации по влиянию только сроков посева:

Остаточная вариация определяется как разность между общей вариацией и вариацией по совместному влиянию изучаемых факторов:

D ост = D о – D пс = 170 – 96 = 74.

Все расчеты можно оформить в виде таблицы (табл. 11).

Таблица 11. Результаты дисперсионного анализа

Результаты дисперсионного анализа показывают, что влияние изучаемых факторов, т. е. сроков посева и сорта, на урожайность пшеницы существенно, так как F-критерии фактические по каждому из факторов значительно превышают табличные, найденные для соответствующих степеней свободы, и при этом с достаточно высокой вероятностью (р = 0,99). Влияние же сочетания факторов в данном случае отсутствует, так как факторы независимы друг от друга.

Анализ влияния трех факторов на результат ведется по такому же принципу, что и для двух факторов, только в этом случае будет три дисперсии по факторам и четыре дисперсии по сочетанию факторов. С увеличением числа факторов резко увеличивается объем расчетных работ и, кроме того, становится затруднительно оформлять исходную информацию в комбинационную таблицу. Поэтому вряд ли целесообразно изучать влияние многих факторов на результат с использованием дисперсионного анализа; лучше взять меньшее их число, но выбрать наиболее существенные факторы с точки зрения экономического анализа.

Нередко исследователю приходится иметь дело с так называемыми непропорциональными дисперсионными комплексами, т. е. такими, в которых не соблюдается пропорциональность численностей вариантов.

В таких комплексах вариация суммарного действия факторов не равна сумме вариации по факторам и вариации сочетания факторов. Она отличается на величину, зависящую от степени связей между отдельными факторами, возникающих вследствие нарушения пропорциональности.

В этом случае возникают трудности при определении степени влияния каждого фактора, так как сумма частных влияний не равна суммарному влиянию.

Одним из способов приведения непропорционального комплекса к единой структуре является способ его замены пропорциональным комплексом, в котором частоты усреднены по группам. Когда такая замена произведена, задача решается по принципам пропорциональных комплексов.

Результаты проведения опытов и испытаний могут зависеть от некоторых факторов, влияющих на изменчивость средних значений случайной величины . Значения факторов называют уровнями факторов, а величину называют результативным признаком. Например, объем выполненных на стройке работ может зависеть от работающей бригады. В этом случае номер бригады является уровнем фактора, а объем работ за смену - результативным признаком.

Метод дисперсионного анализа , или ANOVA (Analysis of Variance - дисперсионный анализ), служит для исследования статистической значимости различия между средними при трех и более выборках (уровнях фактора). Для сравнения средних в двух выборках используется t -критерий .

Процедура сравнения средних называется дисперсионным анализом, так как при исследовании статистической значимости различия между средними нескольких групп наблюдений проводится анализ выборочных дисперсий. Фундаментальная концепция дисперсионного анализа была предложена Фишером .

Сущность метода состоит в разделении общей дисперсии на две части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо, нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Переменные, значения которых определяется с помощью измерений в ходе эксперимента (например, экономическая эффективность, урожайность, результат тестирования), называются зависимыми переменными или признаками. Переменные, которыми можно управлять при проведении эксперимента (например, уровень управления, тип почвы, методы обучения) называются факторами или независимыми переменными.

В классическом дисперсионном анализе полагается, что исследуемые величины имеют нормальное распределение с постоянной дисперсией и средними значениями, которые могут отличаться для разных выборочных совокупностей. В качестве критерия проверки нулевых гипотез используется отношение дисперсии групповых средних и остаточной дисперсии. Однако было показано, что дисперсионный анализ справедлив и для негауссовских случайных величин, причем при объеме выборок для каждого уровня фактора n > 4 погрешность невысока. Если требуется высокая точность выводов, а распределение неизвестно, то следует использовать непараметрические критерии, например, использовать ранговый дисперсионный анализ.

Однофакторный дисперсионный анализ

Пусть проводится m групп измерений значений случайной величины Y при различных уровнях значения некоторого фактора, и a 1 , a 2 , a m - математическое ожидание результативного признака при уровнях фактора A (1) , A (2) , A (m) (i =1, 2, m ) соответственно.


Предположение о независимости результативного признака от фактора сводится к проверке нулевой гипотезы о равенстве групповых математических ожиданий

H 0: a 1 = a 2 = a m (6.12)

Проверка гипотезы возможна при соблюдении следующих требований для каждого уровня фактора:

1) наблюдения независимы и проводятся в одинаковых условиях;

2) измеряемая случайная величина имеет нормальный закон распределения с постоянной для различных уровней фактора генеральной дисперсией σ 2 . То есть справедлива гипотеза

H 0: σ 1 2 = σ 2 2 = σ m 2 .

Для проверки гипотезы о равенстве дисперсий трех и более нормальных распределений применяется критерий Бартлета.

Если гипотеза H 0: σ 1 2 = σ 2 2 = σ m 2 подтверждается, то приступают к проверке гипотезы о равенстве групповых математических ожиданий H 0: a 1 = a 2 = a m , то есть собственно к дисперсионному анализу. В основе дисперсионного анализа лежит положение, что изменчивость результативного признака вызвана как изменением уровней фактора А, так и изменчивостью значений случайных неконтролируемых факторов. Случайные факторы называются остаточными.

Можно доказать, что общая выборочная дисперсия может быть представлена в виде суммы дисперсии групповых средних и средней из групповых дисперсий

, где

Общая дисперсия выборки;

Дисперсия групповых средних (), рассчитанных для каждого уровня фактора;

Средняя по групповым дисперсиям (), рассчитанным для каждого уровня фактора. связана с влиянием на Y остаточных (случайных) факторов.

Перейдя от разложения для генеральной дисперсии к выборочным значениям, получим

, (6.13)

Представляет собой взвешенную сумму квадратов отклонений выборочных средних по каждому уровню A (i) от общего выборочного среднего,

Среднее значение квадратов отклонений внутри уровней.

Случайные величины , , имеют следующие значения для степеней свобод соответственно: n - 1, m - 1, n - m . Здесь n - общее число выборочных значений, m - число уровней фактора.

В математической статистике доказывается, что если нулевая гипотеза о равенстве средних (10.8) верна, то величина

имеет F -распределение с числом степеней свободы k = m - 1 и l = n- m , то есть

(6.14)

При выполнении нулевой гипотезы внутригрупповая дисперсия будет практически совпадать с общей дисперсией, подсчитанной без учета групповой принадлежности. В дисперсионном анализе, как правило, числитель в больше знаменателя. В противном случае считается, что наблюдения не подтверждают влияние фактора на результирующий признак и дальнейший анализ не проводится. Полученные внутригрупповые дисперсии можно сравнить с помощью F -критерия, проверяющего, действительно ли отношение дисперсий значимо больше 1.

В связи с этим для проверки гипотезы (6.12) с помощью F -критерия анализируется правосторонняя критическая область .

Если рассчитанное значение F попадает в указанный интервал, то нулевая гипотеза отвергается, и считается установленным влияние фактора А на результативный признак Y .

Приведем пример расчета сумм квадратов и выборочных дисперсий. Рассмотрим набор данных, представленный в таблице 6.2. В данном примере требуется определить, есть ли значимое различие в производительности бригад.

Таблица 6.2. Пример расчета сумм квадратов