Правила необратимого протекания обменных реакций в растворах. I. реакции в растворах электролитов. Реакции ионного обмена в растворах электролитов

Необходимым условием протекания обменных реакций в растворах электролитов является удаление из раствора тех или иных ионов вследствие образования малодиссоциирующих (слабые электролиты и комплексные ионы) или малорастворимых веществ (осадки и газы) .

Реакции обмена в растворах электролитов записывают в виде трех уравнений: молекулярного, полного ионно-молекулярного и сокращенного ионно-молекулярного. Для составления этих уравнений необходимо знать характер электролитической диссоциации участников реакции.

Малодиссоциирующие и малорастворимые вещества в ионно-молекулярных уравнениях записываются в молекулярном виде. Реакции, в которых слабые электролиты или малорастворимые вещества входят в состав только продуктов реакции, протекают, как правило, необратимо, т.е. до конца.

Примеры реакций, протекающих практически необратимо:

  1. с образованием малодиссоциирующих соединений:

а) HCl + NaOH = NaCl + H 2 O - молекулярное уравнение,

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионно-молекулярное уравнение,

H + + OH - = H 2 O - сокращенное ионно-молекулярное уравнение,

б) NaF + HCl = NaCl + HF,

F - + H + = HF - сокращенное ионно-молекулярное уравнение,

в) NH 4 Cl + NaOH = NH 3 · H 2 O + NaCl,

NH 4 + + OH - = NH 3 ·H 2 O - сокращенное ионно-молекулярное уравнение,

Таким образом, сильные кислоты (основания) вытесняют слабые кислоты (основания) из растворов их солей.

  1. с образованием малорастворимых веществ:

а) NaCl + AgNO 3 = NaNO 3 + AgCl¯

Cl - + Ag + = AgCl¯ - сокращенное ионно-молекулярное уравнение.

Реакции, в которых слабые электролиты или малорастворимые вещества входят в состав как продуктов, так и исходных веществ, протекают, как правило, не до конца, т.е. являются обратимыми. Равновесие обратимого процесса в этих случаях смещено в сторону образования наименее диссоциированных или наименее растворимых частиц . Примеры обратимых реакций, равновесие которых смещено вправо:

  1. HF + NaOH « NaF + H 2 O,

HF + OH - « F - + H 2 O - сокращенное ионно-молекулярное уравнение.

Вода более слабый электролит, чем HF: K д (H 2 O) = 1,8·10 -16 ; K д (HF) = 6,6·10 -4 , поэтому равновесие обратимого процесса смещено в сторону образования H 2 O.

  1. NH 3 ·H 2 O + HCl « NH 4 Cl + H 2 O,

NH 3 ·H 2 O + H + « NH 4 + + H 2 O - сокращенное ионно-молекулярное уравнение

K д (NH 3 ·H 2 O) = 1,78·10 -5 ; K д (H 2 O) = 1,8·10 -16

  1. HF + NH 3 ·H 2 O « NH 4 F + H 2 O,

HF + NH 3 ·H 2 O « NH 4 + + F - + H 2 O - сокращенное ионно-молекулярное уравнение

Реакции нейтрализации слабых кислот (оснований) сильными основаниями (кислотами) или слабых кислот слабыми основаниями не доходят до конца (т.е. точка эквивалентности находится, соответственно, в основной или кислой области значений рН).

  1. AgCl¯ + NaI « NaCl + AgI¯ ,

AgCl¯ + I - « Cl - + AgI¯ - сокращенное ионно-молекулярное уравнение

ПР(AgCl) = 1,78· 10 -10 ПР(AgI) = 8,3· 10 -17

ПР(AgI) меньше ПР(AgCl), равновесие обратимого процесса смещено в сторону образования AgI.

  1. MnS¯ + 2HCl « H 2 S­ + MnCl 2 ,

MnS¯ + 2H + « H 2 S­ + Mn 2+ - сокращенное ионно-молекулярное уравнение

  1. Be(OH) 2 ¯ + 2KOH « K 2 ,

Be(OH) 2 ¯ + 2OH - « 2- - сокращенное ионно-молекулярное уравнение

ГИДРОЛИЗ СОЛЕЙ

Обменную реакцию между водой и соединением называют гидролизом. Гидролизом соли называют реакцию поляризационного взаимодействия ионов соли с молекулами воды, сопровождающуюся образованием малодиссоциирующщих веществ и изменением рН среды .

K y+ + HOH « KOH (y-1) + H +

A x- + HOH « HA (x-1) + OH -

Гидролиз обусловлен образованием малодиссоциирующих частиц KOH (y-1) и HA (x-1) . Чем больше заряд и меньше радиус ионов соли, тем сильнее их поляризационное взаимодействие с водой, слабее диссоциация образующихся частиц KOH (y-1) и HA (x-1) и тем в большей степени происходит гидролиз .

Поляризующее влияние на молекулы воды невелико у катионов s-элементов (исключение составляют Be 2+ и Mg 2+), у анионов сильных кислот, например, Cl - , Br - , I - , NO 3 - , SO 4 2- , т.е. соли, образованные анионом сильной кислоты и катионом сильного основания, гидролизу не подвергаются (рН = 7) .

Возможны следующие случаи гидролиза солей: гидролиз по аниону, по катиону, по катиону и аниону одновременно.

Гидролиз по катиону . Ему подвергаются соли, образованные катионом слабого основания и анионом сильной кислоты (ZnSO 4 , FeCl 2 , Co(NO 3) 2 и др.). При гидролизе создается кислая среда (рН < 7). Характер продуктов гидролиза зависит от природы катиона.

Например:

  1. катион однозарядный .

NH 4 Cl ® NH 4 + + Cl -

NH 4 + + HOH « NH 3· H 2 O + H +

NH 4 Cl + H 2 O « NH 3· H 2 O + HCl.

Продуктами гидролиза в данном случае являются слабое основание и сильная кислота . Процесс обратим, равновесие гидролиза сильно смещено влево (K(H 2 O) << K(NH 3· H 2 O)).

  1. катион многозарядный . Гидролиз многозарядного катиона протекает ступенчато , в связи со ступенчатой диссоциацией многокислотных оснований. Например:

CuCl 2 ® Cu 2+ + Cl -

Cu 2+ + HOH « CuOH + + H + (1 ступень)

CuOH + + HOH « Cu(OH) 2 + H + (2 ступень)

Молекулярные уравнения, соответственно, имеют вид:

CuCl 2 + H 2 O « CuOHCl + HCl (1 ступень)

CuOHCl + H 2 O « Cu(OH) 2 + HCl (2 ступень)

Вследствие накопления в смеси ионов H гидролиз (при обычных условиях) протекает, главным образом, по первой ступени . Следовательно, продуктами гидролиза будут основная соль и сильная кислота .

Гидролиз по аниону . Он характерен для солей, образованных катионом сильного основания и анионом слабой кислоты (NaF, K 2 S, K 3 PO 4 , CH 3 COONa и др.). При гидролизе создается основная среда (рН > 7) Вид продуктов гидролиза зависит от величины заряда и природы аниона. Например:

  1. анион однозарядный .

KCN ® K + + CN -

CN - + HOH « HCN + OH -

Молекулярное уравнение гидролиза:

KCN + H 2 O « HCN + KOH

Продуктами гидролиза в данном случае являются слабая кислота и сильное основание .

  1. анион многозарядный .

K 2 CO 3 ® 2K + + CO 3 2- ,

CO 3 2- + HOH « HCO 3 - + OH -

Молекулярное уравнение 1 ступени гидролиза:

K 2 CO 3 + H 2 O « KHCO 3 + KOH

В связи с накоплением в реакционной системе ионов OH гидролизом по второй ступени можно пренебречь. Продуктами гидролиза в этом случае будут кислая соль и сильное основание .

Гидролиз по катиону и аниону . Этот случай имеет место для солей, образованных катионом слабого основания и анионом слабой кислоты . Причем, чаще всего независимо от величины заряда катиона и аниона, продуктами гидролиза являются слабое основание и слабая кислота . Характер среды определяется соотношением величины констант диссоциации образующихся кислот и оснований, т.е. их силой. Например:

NH 4 CN ® NH 4 + + CN -

NH 4 + + HOH « NH 3 · H 2 O + H +

CN - + HOH « HCN + OH -

NH 4 + + CN - + 2H 2 O « NH 3 · H 2 O + HCN + H + + OH -

Молекулярное уравнение гидролиза:

NH 4 CN + 2H 2 O « NH 3 · H 2 O + HCN

Гидролиз в данном случае протекает довольно интенсивно. Образующиеся при гидролизе ионы H + и OH - связываются в молекулы H 2 O, что усиливает гидролиз и по катиону и по аниону. Реакция среды в данном случае слабоосновная (рН несколько больше 7) (K(NH 3 · H 2 O) >K(HCN)).

Если кислота и основание, образующие соль, не только являются слабыми электролитами, но и малорастворимы или неустойчивы и разлагаются с образованием газообразных продуктов, гидролиз таких солей в ряде случаев протекает практически необратимо . По этой причине сульфиды и карбонаты алюминия, хрома и др. нельзя получить в водном растворе:

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 ¯ + 3CO 2 ­ + 6NaCl

2CrCl 3 + 3Na 2 S + 6H 2 O = 2Cr(OH) 3 ¯ + 3H 2 S­ + 6NaCl

Ионно-молекулярные уравнения гидролиза, соответственно:

2Al 3+ + 3CO 3 2- + 3HOH = 2Al(OH) 3 ¯ + 3CO 2 ­

2Cr 3+ + 3S 2- + 6HOH = 2Cr(OH) 3 ¯ + 3H 2 S­

ДИСПЕРСНЫЕ СИСТЕМЫ , гетерог. системы из двух или большего числа фаз с сильно развитой пов-стъю раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме к-рой распределена дисперсная фаза (или неск. дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Д. с. могут иметь и более сложное строение, напр., представлять собой двухфазное образование, каждая из фаз к-рого, будучи непрерывной, проникает в объем др. фазы. К таким системам относятся твердые тела, пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью, нек-рые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда "вырождается" до тончайших слоев (пленок), разделяющих частицы дисперсной фазы.
Основные типы дисперсных систем. По дисперсности, т. е. размеру частиц дисперсной фазы или отношению общей площади межфазной пов-сти к объему (или массе) дисперсной фазы (уд. поверхности), Д. с. условно делят на грубодисперсные и тонко(высоко)дисперсные. Последние, по традиции, наз. коллоидно-дисперсными или просто коллоидными системами. В грубодисперсных системах частицы имеют размеры от 1 мкм и выше (уд. пов-сть не более 1 м 2 /г), в коллоидных - от 1 нм до 1 мкм (уд. пов-сть достигает сотен м 2 /г). Дисперсность оценивают по усредненному показателю (среднему размеру частиц, уд. пов-сти) или дисперсному составу (см. Дисперсионный анализ ).Тонкопористые тела характеризуют пористостью -понятием, аналогичным дисперсности. В свободнодисперсных системах сцепление между частицами дисперсной фазы отсутствует, каждая частица кинетически независима и при достаточно малых размерах участвует в интенсивном броуновском движении. Для структурированных (связнодисперсных) систем характерно наличие неупорядоченной пространств. сетки (каркаса), образованной частицами дисперсной фазы (см. Структурообразование в дисперсных системах). Особую группу составляют высококонцентрированные Д. с., в к-рых частицы находятся в "стесненных" условиях как, напр., в периодич. коллоидных структурах. Мех. св-ва свободнодисперсных систем определяются гл. обр. св-вами дисперсионной среды, а связнодисперсных систем - также св-вами и числом контактов между частицами дисперсной фазы (см. Реология ). По агрегатному состоянию дисперсионной среды и дисперсной фазы выделяют след. осн. виды Д. с.: 1) аэродисперсные (газодисперсные) системы с газовой дисперсионной средой: аэрозоли (дымы, пыли, туманы), порошки, волокнистые материалы типа войлока. 2) Системы с жидкой дисперсионной средой; дисперсная фаза м. б. твердой (грубодисперсные суспензии и пасты, высокодисперсные золи и гели ),жидкой (грубодисперсные эмульсии, высокодисперсные микроэмульсии и латексы) или газовой (грубодисперсные газовые эмульсии и пены ). 3) Системы с твердой дисперсионной средой: стеклообразные или кристаллич. тела с включениями мелких твердых частиц, капель жидкости или пузырьков газа, напр., рубиновые стекла, минералы типа опала, разнообразные микропористые материалы. Отдельные группы Д. с. составляют мн. металлич. сплавы, горные породы, сложные композиционные и др. многофазные системы. Лиофильные и лиофобные Д. с. с жидкой дисперсионной средой различаются в зависимости от того, насколько близки или различны по своим св-вам дисперсная фаза и дисперсионная среда (см. Лиофильность и лиофобность ).В лиофильных Д. с. межмолекулярные взаимод. по обе стороны разделяющей фазы пов-сти различаются незначительно, поэтому уд. своб. поверхностная энергия (для жидкости - поверхностное натяжение) чрезвычайно мала (обычно сотые доли мДж/м 2), межфазная граница (поверхностный слой) м. б. размыта и по толщине нередко соизмерима с размером частиц дисперсной фазы. Лиофильные Д. с. термодинамически равновесны, они всегда высокодисперсны, образуются самопроизвольно и при сохранении условий их возникновения могут существовать сколь угодно долго. Типичные лиофильные Д. с. - микроэмульсии, нек-рые полимер-полимерные смеси, мицеллярные системы ПАВ, Д. с. с жидкокристаллич. дисперсными фазами. К лиофильным Д. с. часто относят также набухающие и самопроизвольно диспергирующиеся в водной среде минералы группы монтмориллонита, напр., бентонитовые глины. Следует отметить, что в прошлом "лиофильными коллоидами" наз. р-ры полимеров, т. е. принципиально гомог. системы. Однако в совр. терминологии понятие "коллоид" относится только к микрогетерогенным системам; по отношению к гомогенным (однофазным) системам его не употребляют. В лиофобных Д. с. межмолекулярное взаимод. в дисперсионной среде и в дисперсной фазе существенно различно; уд. своб. поверхностная энергия (поверхностное натяжение) велика - от неск. единиц до неск. сотен (и тысяч) мДж/м 2 ; граница фаз выражена достаточно четко. Лиофобные Д. с. термодинамически неравновесны; большой избыток своб. поверхностной энергии обусловливает протекание в них процессов перехода в более энергетически выгодное состояние. В изотермич. условиях возможна коагуляция - сближение и объединение частиц, сохраняющих первоначальные форму и размеры, в плотные агрегаты, а также укрупнение первичных частиц вследствие коалесценции - слияния капель или пузырьков газа, собирательной рекристаллизации (в случае кристаллич. дисперсной фазы) или изотермич. перегонки (мол. переноса) в-ва дисперсной фазы от мелких частиц к крупным (в случае Д. с. с жидкой дисперсионной средой - последний процесс наз. переконденсацией). Нестабилизованные и, следовательно, неустойчивые лиофобные Д. с. непрерывно изменяют свой дисперсный состав в сторону укрупнения частиц вплоть до полного расслоения на макрофазы. Однако стабилизованные лиофобные Д. с. могут сохранять дисперсность в течение длит. времени.
Образование дисперсных систем. Возможно двумя путями: диспергационным и конденсационным. Диспергирование макрофаз с образованием лиофильных Д. с. происходит самопроизвольно - для этого достаточно энергии теплового движения. Такой процесс осуществляется при значениях поверхностного натяжения s ниже нек-рого критич. значения s кр = bkТ/d 2 , где d - размер частиц дисперсной фазы, Т - абс. т-ра, k - постоянная Больцмана, b - безразмерный коэф., принимающий значения примерно 10-30. Образование лиофобных Д. с. путем диспергирования стабильной макрофазы требует значительных энергетич. затрат, определяемых суммарной площадью пов-сти частиц дисперсной фазы. В реальных условиях на образование пов-сти при измельчении твердых тел или при распылении и эмульгировании жидкостей приходится лишь небольшая часть (доли процента) подводимой к системе энергии; остальное расходуется на побочные процессы и рассеивается в окружающем пространстве (см. Диспергирование ). Конденсационный путь образования Д. с. связан с зарождением новой фазы (или новых фаз) в пересыщенной метастабильной исходной фазе - будущей дисперсионной среде. Для возникновения высокодисперсной системы необходимо, чтобы число зародышей новой фазы было достаточно большим, а скорость их роста не слишком велика. Кроме того, требуется наличие факторов, ограничивающих возможности чрезмерного разрастания и сцепления частиц дисперсной фазы. Переход первоначально стабильной гомог. системы в метастабилъное состояние может произойти в результате изменения термодинамич. параметров состояния (давления, т-ры, состава). Так образуются, напр., природные и искусственные аэрозоли (туман - из переохлажденных водяных паров, дымы - из парогазовых смесей, выделяемых при неполном сгорании топлива), нек-рые полимерные системы - из р-ров при ухудшении "термодинамич. качества" р-рителя, органозоли металлов путем конденсации паров металла совместно с парами орг. жидкости или при пропускании первых через слой орг. жидкости, коллоидно-дисперсные поликристаллич. тела (металлич. сплавы, нек-рые виды горных пород и искусств. неорг. материалов). Возможно также образование Д. с. в результате хим. р-ции в гомог. среде, если продукт р-ции при данных условиях находится в агрегатном состоянии, отличном от "материнской" фазы, или практически не растворяется в ней. Примерами подобных систем могут служить аэрозоли с твердыми частицами NH 4 Cl (образуются при взаимод. газообразных NH 3 и НСl), аэрозоли с капелъно-жидкими частицами H 2 SO 4 (при взаимод. SO 3 и водяного пара). В природе и технол. процессах часто образуются гидрозоли разного состава при гидролизе солей и др. соед., неустойчивых к действию воды. Окислит.-восстановит. р-ции используют для получения золей Аu и Ag, разложение Na 2 S 2 O 3 разб. серной или соляной к-той - для получения гидрозоля элементарной серы. Хим. или термохим. разложения карбонатов, орг. порофоров (порообразователей, вспенивающих агентов) и др. соед. с выделением газообразных в-в в первоначально жидких средах лежит в основе пром. произ-ва мн. пеноматериалов.
Устойчивость дисперсных систем характеризуется постоянством дисперсности (распределения частиц по размерам) и концентрации дисперсной фазы (числом частиц в единице объема). Наиб. сложна в теоретич. аспекте и важна в практич. отношении проблема устойчивости аэрозолей и жидких лиофобных Д. с. Различают седиментационную устойчивость и устойчивость к коагуляции (агрегативную устойчивость). Седиментационно устойчивы коллоидные системы с газовой и жидкой дисперсионной средой, в к-рых броуновское движение частиц препятствует оседанию; грубодисперсные системы с одинаковой плотностью составляющих их фаз; системы, скоростью седиментации в к-рых можно пренебречь из-за высокой вязкости среды. В агрегативно устойчивых Д. с. непосредств. контакты между частицами не возникают, частицы сохраняют свою индивидуальность. При нарушении агрегативной устойчивости Д. с. частицы, сближаясь в процессе броуновского движения, соединяются необратимо или скорость агрегации становится значительно больше скорости дезагрегации. Между твердыми частицами возникают непосредственные точечные ("атомные") контакты, к-рые затем могут превратиться в фазовые (когезионные) контакты, а соприкосновение капель и пузырьков сопровождается их коалесценцией и быстрым сокращением суммарной площади межфазной пов-сти. Для таких систем потеря агрегативной устойчивости означает также потерю седимeнтационной устойчивости. В агрегативно устойчивых системах дисперсный состав может изменяться вследствие изотермич. перегонки - мол. переноса в-ва дисперсной фазы от мелких частиц к более крупным. Этот процесс обусловлен зависимостью давления насыщенного пара (или концентрации насыщенного р-ра) от кривизны пов-сти раздела фаз (см. Капиллярные явления ). Агрегативная устойчивость и длительное существование лиофобных Д. с. с сохранением их св-в обеспечивается стабилизацией. Для высокодисперсных систем с жидкой дисперсионной средой используют введение в-в - стабилизаторов (электролитов, ПАВ, полимеров). В теории устойчивости Дерягина-Ландау-Фервея-Овербека (теории ДЛФО) осн. роль отводится ионно-электростатич. фактору стабилизации. Стабилизация обеспечивается электростатич. отталкиванием диффузных частей двойного электрич. слоя, к-рый образуется при адсорбции ионов электролита на пов-сти частиц. При нек-ром расстоянии между частицами отталкивание диффузных слоев обусловливает наличие минимума на потенц. кривой (дальний, или вторичный, минимум; см. рис.). Хотя этот минимум относительно неглубок, он может препятствовать дальнейшему сближению частиц, притягиваемых силами межмолекулярного взаимодействия. Ближний, или первичный, минимум соответствует прочному сцеплению частиц, при к-ром энергии теплового движения недостаточно для их разъединения. Сближаясь на расстояние, отвечающее этому минимуму, частицы объединяются в агрегаты, образование к-рых ведет к потере системой агрегативной устойчивости. При этом устойчивость системы к коагуляции определяется высотой энергетич. барьера.

Зависимость энергии взаимодействия Е между частицами от расстояния R: 1и 2 - ближний и дальний минимумы соответственно.

При введении в Д. с. в качестве стабилизатора ПАВ фактором стабилизации м. б. "термодинамич. упругость" пленок среды, разделяющей частицы. Стабилизация обеспечивается тем, что при сближении частиц, напр., капель или газовых пузырей, происходит растяжение и утоньшение разделяющей их прослойки, содержащей ПАВ, и, как следствие, нарушение адсорбц. равновесия. Восстановление этого равновесия и приводит к повышению устойчивости прослойки среды, разделяющей частицы. Гидродинамич. сопротивление вытеснению жидкой дисперсионной среды из прослойки между сближающимися частицами - один из кинетич. факторов стабилизации Д. с. Он особенно эффективен в системах с высоковязкой дисперсионной средой, а при застекловывании последней делает систему неограниченно устойчивой к агрегации частиц и коалесценции. Структурно-мех. фактор стабилизации, по П. А. Ребиндеру, возникает при образовании на межфазной границе полимолекулярных защитных слоев из мицеллообразующих ПАВ, высокомолекулярных соед., а иногда и тонких сплошных или дискретных фазовых пленок. Межфазный защитный слой должен обладать способностью сопротивляться деформациям и разрушению, достаточной подвижностью для "залечивания" возникших в нем дефектов и, что особенно важно, быть лиофилизованным с внеш. стороны, обращенной в сторону дисперсионной среды. Если защитный слой недостаточно лиофилен, он, предохраняя частицы от коалесценции, не сможет предотвратить коагуляции. Структурно-мех. барьер является, по существу, комплексным фактором стабилизации, к-рый включает термодинамич., кинетич. и структурные составляющие. Он универсален и способен обеспечить высокую агрегативную устойчивость любых Д.с. с жидкой дисперсионной средой, в т. ч. высококонцентрированных, наиб. важных в практич. отношении. Осн. св-ва Д. с. определяются поверхностными явлениями: адсорбцией, образованием двойного электрического слоя и обусловленных им электрокинетических явлений, контактными взаимодействиями частиц дисперсной фазы. Размер частиц определяет оптич. (светорассеяние и др.) и молекулярно-кинетич. св-ва (диффузия, термофорез, осмос и др.). Д. с. повсеместно распространены в природе. Это - горные породы, грунты, почвы, атм. и гидросферные осадки, растит. и животные ткани. Д. с. широко используют в технол. процессах; в виде Д. с. выпускается большинство пром. продуктов и предметов бытового потребления. Высокодисперсные техн. материалы (наполненные пластики, дисперсноупрочненные композиц. материалы) отличаются чрезвычайно большой прочностью. На высокоразвитых пов-стях интенсивно протекают гетерог. и гетерог.-каталитич. хим. процессы. Учение о Д. с. и поверхностных явлениях в них составляет сущность коллоидной химии. Самостоят. раздел коллоидной химии - физико-химическая механика - изучаeтзакономерности структурообразования и мех. св-ва структурированных Д. с. и материалов в их связи с физ.-хим. явлениями на межфазных границах.
===
Исп. литература для статьи «ДИСПЕРСНЫЕ СИСТЕМЫ» :
Ребиндер П. А., Поверхностные явления в дисперсных системах. Коллоидная химия, Избр. труды, М., 1978; Дерягин Б. В., "Успехи химии", 1979, т. 48, в. 4, с. 675-721; Урьев Н. Б., Высококонцентрированные дисперсные системы, М., 1980; Коагуляционные контакты в дисперсных системах, М., 1982; Капиллярная химия, под ред. К. Тамару, пер. с япон., М., 1983; Щукин Е. Д., Перцов А. В., Амелина Е. А., Коллоидная химия, М., 1982; См. также лит. при статьях Коллоидная химия. Поверхностные явления. Физико-химическая механика. Л. А. Шиц. Е. Д. Щукин.

Страница «ДИСПЕРСНЫЕ СИСТЕМЫ» подготовлена по материалам химической энциклопедии.

Ионно-молекулярные уравнения химических реакций

Как вы уже изучали в 8 классе, реакции обмена между солями, кислотами и основаниями в растворах происходят при условии, если в результате реакции:

Образуется вода;

Выпадает осадок (нерастворимое в воде вещество);

Выделяется газ.

Рассмотрим, как проходят реакции обмена между растворами электролитов с позиций теории электролитической диссоциации. Для этого составляют ионно-молекулярные уравнения: в молекулярном уравнении реакции формулы сильных электролитов заменяют формулами ионов, на которые диссоциируют эти электролиты, а другие вещества (осадки, газы, слабые электролиты, оксиды и т. п.) оставляют в молекулярной форме.

Составим ионно-молекулярное уравнение реакции нейтрализации хлоридной кислоты натрий гидроксидом. Сначала записываем молекулярное уравнение этой реакции:

Реагенты и один из продуктов реакции — это сильные электролиты. В водном растворе они находятся исключительно в виде ионов, а вода на ионы почти не распадается. Учитывая это, заменяем формулы сильных электролитов формулами ионов:

Такую запись называют полным ионно-молекулярным уравнением реакции. В нем записаны все частицы, реально присутствующие в растворе. Из этого уравнения видно, что ионы Cl - и Na+ не принимают участия в реакции — они записаны и в левой, и в правой частях уравнения, поэтому их можно удалить (сократить):

Мы получили сокращенное ионно-молекулярное уравнение реакции. Оно показывает химическую суть этой реакции: если в растворе одновременно присутствуют ионы H+ и OH - , то они взаимодействуют друг с другом, образуя слабый электролит — воду.

Таким способом можно составить ионно-молекулярное уравнение для любой реакции в растворе. Такие уравнения отражают реальный процесс, протекающий в растворе, поскольку часть ионов не принимает участия в реакции.

Реакции обмена с образованием воды

Составим ионно-молекулярное уравнение реакции серной кислоты с калий гидроксидом. Обратите внимание, что необходимо учитывать стехиометрические коэффициенты:

Как видно, полное ионно-молекулярное уравнение этой реакции отличается от уравнения, составленного в предыдущем разделе. Но сокращенное ионно-молекулярное уравнение такое же, как и для реакции хлоридной кислоты с натрий гидроксидом. Обе эти реакции являются реакциями нейтрализации. Значит, химическая суть реакций нейтрализации заключается в соединении ионов H+ и OH - в молекулу слабого электролита — воды.


Рассмотрим еще примеры взаимодействия гидроксидов с кислотами.

Реакция между сульфатной кислотой и нерастворимым купрум(П) гидроксидом:


Взаимодействие между слабой сульфидной кислотой и калий гидроксидом:

Обратите внимание, что в этих уравнениях формулы слабых электролитов (Cu(OH) 2 и H 2 S) мы оставили в молекулярной форме, поскольку они почти не диссоциируют на ионы в растворе.

Реакции обмена с образованием осадка

Рассмотрим реакцию обмена между растворимыми солями:

Оба реагента и натрий хлорид — сильные электролиты, при растворении в воде они полностью диссоциируют, а барий сульфат нерастворим:

Сокращенное ионно-молекулярное уравнения получаем после сокращения одинаковых ионов в левой и правой частях:

Таким образом, суть процесса заключается во взаимодействии ионов Бария и сульфат-ионов с образованием осадка барий сульфата. Если при смешивании растворов двух растворимых солей осадка не образуется, то реакция не происходит. Например, при сливании растворов калий хлорида и магний сульфата никаких видимых изменений не наблюдается. Запишем уравнение этой реакции обмена:

Все вещества — сильные электролиты:

Видим, что левая и правая части уравнения одинаковы, т. е. образовавшийся раствор содержит все ионы, которые были в растворах реагентов. Очевидно, что в этом случае никакие ионы друг с другом не соединяются, изменений в растворе не происходит. Это означает, что реакция невозможна:

Реакции обмена с выделением газа

Газообразные вещества, выделяющиеся в реакциях обмена, обычно неэлектролиты или слабые электролиты. Поэтому при составлении ионно-молекулярных уравнений их формулы оставляют в молекулярной форме.

Рассмотрим реакцию натрий сульфида с хлоридной кислотой:

Гидроген сульфид хотя и является кислотой, но очень слабой. К тому же гидроген сульфид плохо растворяется в воде, поэтому при образовании выделяется из раствора в виде газа, о чем свидетельствует появление специфического запаха гидроген сульфида — запаха тухлых яиц. Ионно-молекулярное уравнение этой реакции:

Реакции обмена могут протекать даже при участии нерастворимых в воде солей, если они образованы слабыми кислотами: карбонатов, сульфитов и некоторых сульфидов. Это возможно потому, что сильная кислота вытесняет слабую из ее соли, даже из осадка.

Составим уравнение взаимодействия кальций карбоната с хло-ридной кислотой:

Во всех рассмотренных случаях в результате реакции обмена некоторые ионы соединяются между собой, при этом образуются неэлектролиты (газы) и слабые электролиты (вода или нерастворимые вещества).

Реакции ионного обмена в растворах происходят, если в результате реакции образуется слабый электролит или неэлектролит.

Восстановление молекулярных уравнений по сокращенному ионно-молекулярному уравнению

Нередки случаи, когда известно только сокращенное ионно-молекулярное уравнение, а необходимо определить реагенты и составить уравнение реакции в молекулярной форме.

Например, нам необходимо провести химическую реакцию, которой соответствует следующее сокращенное ионно-молекулярное уравнение:

Для воспроизведения молекулярного уравнения необходимо определить вещества, при диссоциации которых образуются ионы из приведенного сокращенного уравнения. Сульфид-ионы S 2- образуются при диссоциации растворимых сульфидов: Na 2 S, K 2 S и BaS.

Второй реагент должен диссоциировать с образованием ионов H+. Этому условию соответствует любая сильная кислота. Таким образом, одним из вариантов молекулярного уравнения является:

Конечно, это не единственный возможный вариант. Поэтому одному сокращенному ионно-молекулярному уравнению может соответствовать несколько молекулярных. Такое умение определять реагенты пригодится вам при проведении лабораторных экспериментов.

Реакции ионного обмена в растворах протекают до конца в сторону соединения ионов, если один из продуктов реакции выводится из реакционной среды. Рассмотрим реакцию между растворами натрий хлорида и сульфатной кислоты:

Поскольку все реагенты и продукты реакции хорошо растворимы и являются сильными электролитами, то в разбавленных растворах эта реакция происходить не будет. Но если реакцию проводить в условиях недостатка растворителя, т. е. натрий хлорид взять не в виде раствора, а в сухом виде, и сульфатную кислоту взять в виде концентрированного раствора, то реакция возможна. Гидроген хлорид, хотя и хорошо растворяется в воде, но ограниченно:

ЛАБОРАТОРНЫЕ ОПЫТЫ № 4-6

Оборудование: штатив с пробирками, пипетки, шпатель. Реактивы: растворы CaCl 2 , Ca(NO 3) 2 , Na 2 CO 3 , NaCl, KNO 3 , NaOH, фенолфталеин, HCl, порошок CaCO 3 .

Правила безопасности:

Остерегайтесь попадания реактивов на кожу, в глаза; при попадании едкого вещества смойте его большим количеством воды.

Реакции обмена между электролитами в водных растворах, сопровождающиеся выпадением осадка

1. В первую пробирку налейте раствор кальций хлорида объемом 1 мл, во вторую — такое же количество раствора кальций нитрата. В обе пробирки добавьте по 1 мл раствора натрий карбоната. Что вы наблюдаете?

2. К раствору натрий хлорида объемом 1 мл прилейте такое же количество раствора калий нитрата. Наблюдаете ли вы какие-либо изменения? Почему в этом случае реакция невозможна? Как это можно доказать при помощи полного ионно-молекулярного уравнения реакции? Какие ионы присутствуют в образованном растворе?

Реакции обмена между электролитами в водных растворах, сопровождающиеся выделением газа

В первую пробирку налейте раствор натрий карбоната объемом 1 мл, во вторую пробирку насыпьте небольшое количество кальций карбоната (на кончике шпателя). К обеим пробиркам осторожно прилейте хлоридную кислоту объемом 1 мл. Что происходит?

Составьте молекулярные и ионно-молекулярные уравнения реакций. Можно ли утверждать, что в обоих случаях протекает одна и та же реакция?

Реакции обмена между электролитами в водных растворах, сопровождающиеся образованием воды

Налейте в пробирку 1 мл раствора натрий гидроксида, добавьте несколько капель фенолфталеина. Какова окраска раствора? Добавляйте хлоридную кислоту по капле до полного исчезновения окраски раствора. Составьте молекулярное и ионно-молекулярное уравнения реакции.

Ключевая идея

Реакции обмена между растворами электролитов происходят, если в результате реакции образуется слабый электролит (вода или нерастворимое вещество) или неэлектролит (газ).

Контрольные вопросы

146. При каких условиях происходят реакции ионного обмена в растворе? Приведите по одному примеру для каждого случая.

147. Какие реакции называют реакциями нейтрализации?

Задания для усвоения материала

148. Составьте молекулярные и ионно-молекулярные уравнения для схем:

149. Приведите по два молекулярных уравнения реакций, соответствующих следующим сокращенным ионно-молекулярным уравнениям:

150. Приведите по одному уравнению реакции, соответствующему каждой схеме превращений. Составьте молекулярные и ионно-молекулярные уравнения.

151. Приведите пример растворимой в воде соли, при взаимодействии которой как с сульфатом калия, так и с аргентумО) нитратом образуется осадок. Составьте уравнения этих реакций в молекулярной и ионномолекулярной формах.

152. Назовите две растворимые в воде соли разных кислот, при взаимодействии которых с сильной кислотой выделяются газообразные продукты.

153. Дополните уравнения, составьте ионно-молекулярные уравнения:

154. Из перечня веществ выпишите те, с которыми взаимодействует калий гидроксид в водном растворе. Составьте молекулярные и ионно-молекулярные уравнения реакций. HCl, NaNO 3 , Ca(OH) 2 , MgCl 2 .

155. Из приведенного перечня выпишите формулы солей, которые взаимодействуют с хлоридной кислотой. Составьте молекулярные и ионномолекулярные уравнения реакций.

K8r, AgNO 3 , CaCO 3 , MgSO 4 .

156. К раствору аргентумО) нитрата массой 200 г с массовой долей соли 0,85 % добавляли хлоридную кислоту до прекращения выделения осадка. Вычислите массу образовавшегося осадка.

157. К раствору, содержащему смесь калий сульфита и натрий хлорида, вначале добавили раствор хлоридной кислоты до прекращения выделения газа, а потом — раствор аргентумО) нитрата. Какие ионы остались в растворе? Ответ подтвердите уравнениями реакций.

158. К хлоридной кислоте добавляли кальций карбонат до прекращения выделения газа. В результате образовался раствор кальций хлорида массой 500 г с массовой долей соли 0,333 %. Вычислите массу гидроген хлорида в начальном растворе.


ПРАКТИЧЕСКАЯ РАБОТА № 1

Реакции ионного обмена между электролитами в водных растворах

Оборудование: штатив с пробирками, пипетки.

Реактивы: HCl, растворы Na 2 CO 3 , KCl, CaCl 2 , BaCl 2 , MgCl 2 , KBr, KI, K 3 PO 4 , Na 2 SO 4 , Na 2 SO 3 , AgNO 3 , H 2 SO 4 , NaOH, лакмус или метиловый оранжевый.

Правила безопасности:

Для опытов используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на кожу, в глаза;

Для определения запаха веществ не подносите пробирку к лицу, а направляйте воздух движениями руки к себе.

Опыт 1. В две пробирки налейте по 1 мл раствора натрий карбоната. В первую пробирку прилейте несколько капель хлоридной кислоты, а во вторую — 1 мл раствора хлорида кальция. Какие изменения наблюдаете? Эти реакции являются обратимыми или необратимыми? Составьте уравнения реакций в молекулярной, полной и сокращенной ионно-молекулярной формах. Будут ли проходить реакции, если вместо раствора натрий карбоната использовать нерастворимую соль, например магний карбонат?

Опыт 2. В две пробирки налейте по 1 мл раствора барий хлорида. В первую пробирку прилейте 1 мл раствора натрий сульфата, во вторую — несколько капель раствора аргентум(!) нитрата. Какие

изменения наблюдаете? Отличаются ли осадки в обеих пробирках по виду и по составу? Составьте уравнения реакций в молекулярной, полной и сокращенной ионно-молекулярной формах.

Опыт 3. В четыре пробирки налейте по 1 мл растворов калий хлорида, калий бромида, калий йодида и калий ортофосфата. В каждую пробирку прилейте по 1 мл раствора аргентумф нитрата. Какие изменения наблюдаете? Отличаются ли осадки во всех пробирках по виду и составу? Составьте уравнения реакций в молекулярной, полной и сокращенной ионно-молекулярной формах.

Опыт 4. В четыре пробирки налейте по 1 мл раствора сульфатной кислоты и добавьте по нескольку капель раствора индикатора (лакмуса или метилоранжа). В первую пробирку по капле добавляйте раствор щелочи до нейтрализации раствора. Во вторую пробирку прилейте 1 мл раствора барий хлорида. Происходит ли реакция? Как изменяется кислотность среды в пробирке? В третью пробирку прилейте 1 мл раствора натрий сульфита. Что наблюдаете? Определите запах в пробирке. Происходит ли реакция? По какому признаку это можно определить? В четвертую пробирку прилейте 1 мл раствора магний хлорида. Происходит ли реакция? По каким признакам это можно определить? Составьте уравнения реакций в молекулярной, полной и сокращенной ионно-молекулярной формах.

Если реакцию кислоты со щелочью проводить без использования индикатора, будут ли заметны изменения? Будет ли протекать реакция?

Вывод. Сделайте обобщающий вывод к практической работе. Для этого используйте ответы на вопросы:

1. При каких условиях происходят реакции ионного обмена в растворах?

2. По каким признакам вы сделали вывод о ходе реакций в каждом опыте?

Это материал учебника

Реакции обмена – это реакции, которые идут без изменения степени окисления элементов. Цель любого химического процесса получить новое вещество , которое можно выделить из реакционной системы. В растворах электролитов химические реакции протекают между ионами. Если в реакции участвует слабый электролит, основная масса которого находится в молекулярной форме, то при протекании реакции происходит смещение диссоциации слабого электролита в сторону ионной формы.

Любое взаимодействие между электролитами – это взаимодействие между противоположно заряженными ионами. Такие реакции называются ионными реакциями, а уравнения этих реакций записываются в виде молекулярных, полных ионных и сокращенных (кратких) ионных уравнений. В ионных уравнениях слабые электролиты (осадок, газ и малодиссоциирующие (слабые) соединения) всегда записывают в молекулярнойформе.

Реакции обмена в растворах электролитов протекают в направлении образования слабого или более слабого электролита. Количественной оценкой «слабости» электролита являются константа диссоциации - К дис, растворимость (Р) или произведение растворимости (ПР) труднорастворимых электролитов, константа нестойкости (диссоциации) комплексного иона и др константы, о которых еще будет сказано ниже. Необратимые реакции обмена в растворах электролитов можно разделить на три типа:

1. сильный электролит + сильный электролит = сильный электролит + слабый электролит ,

ионная форма ионная форма ионная форма молекулярная форма

2. сильный электролит + слабый электролит = сильный электролит + слабый электролит ,

ионная форма молекулярная форма ионная форма молекулярная форма

3. слабый электролит + слабый электролит = сильный электролит + слабый электролит .

молекулярная форма молекулярная форма ионная форма молекулярная форма

Приведем пример составления уравнений реакций обмена (1 тип):

NaC1 + АgNО 3 ↔ АgСl+ NаNО 3 - молекулярное уравнение

соль (Р) соль (Р) соль (Н) соль (Р)

электролитсильный сильный слабый сильный

состояние в растворе ионное ионное молек-ное ионное

Na + + C1 - + Аg + + NО 3 - ↔ АgСl+ Nа + NО 3 - полное ионно - молекулярное

Аg + + С1‾ ↔ АgСl сокращенное ионное

Сокращенное ионное уравнение отражает суть химических превращений в растворе. Для приведенного примера, сокращенное уравнение показывает, что в реакции только ионы Аg + и С1‾ изменили свое состояние – из ионного состояния в исходном растворе (АgNО 3 , NaC1)перешли в молекулярное (АgСl). Кроме того, сокращенное уравнение говорит, что при взаимодействии любого сильного электролита, содержащего катион Аg + с сильным электролитом, содержащим анион CI - (КCI, CaCI 2 , AICI 3 и др.) обязательно выпадет белый творожистый осадок труднорастворимой соли АgCI↓.

Пример 1 Составьте молекулярные и ионные уравнения реакций обмена между а). карбонатом натрия и сернистой кислотой; б) уксусной кислотой и гидроксидом аммония. Укажите причину необратимости реакции.

Решение: а) Na 2 CO 3 + H 2 SO 3 ↔ Na 2 SO 3 + H 2 CO 3 молекулярное

сильный слабый сильный слабый

2Na + + CO 3 2- + H 2 SO 3 ↔ 2Na + + SO 3 2- + H 2 CO 3 полное ионно - молекулярное

CO 3 2- + H 2 SO 3 = SO 3 2- + H 2 CO 3 сокращенное ионно – молекулярное.

Реакция необратима, так как Кдис (H 2 CO 3) < Кдис (H 2 SO 3).

б). CH 3 COOH + NH 4 OH ↔ CH 3 COONa + H 2 O

слабый слабый сильный слабый

Кдис =10 -5 К дис =10 -5 К дис =10 -16

CH 3 COOH + NH 4 OH ↔ CH 3 COO - + NH 4 + + H 2 O сокращенное ионно – молекулярное.

Реакция необратима, так как Кдис (CH 3 COOH) > Кдис (H 2 O) и Кдис (NH 4 OH) > Кдис (H 2 O).


1. Записывают формулы веществ, вступивших в реакцию, ставят знак «равно» и записывают формулы образовавшихся веществ. Расставляют коэффициенты.

2. Пользуясь таблицей растворимости, записывают в ионном виде формулы веществ (солей, кислот, оснований), обозначенных в таблице растворимости буквой «Р» (хорошо растворимые в воде), исключение – гидроксид кальция, который, хотя и обозначен буквой «М», все же в водном растворе хорошо диссоциирует на ионы.

3. Нужно помнить, что на ионы не разлагаются металлы, оксиды металлов и неметаллов, вода, газообразные вещества, нерастворимые в воде соединения, обозначенные в таблице растворимости буквой «Н». Формулы этих веществ записывают в молекулярном виде. Получают полное ионное уравнение.

4. Сокращают одинаковые ионы до знака «равно» и после него в уравнении. Получают сокращенное ионное уравнение.

5. Помните!

Р - растворимое вещество;

М - малорастворимое вещество;

ТР - таблица растворимости.

Алгоритм составления реакций ионного обмена (РИО)

в молекулярном, полном и кратком ионном виде


Примеры составления реакций ионного обмена

1. Если в результате реакции выделяется малодиссоциирующее (мд) вещество – вода.

В данном случае полное ионное уравнение совпадает с сокращенным ионным уравнением.

2. Если в результате реакции выделяется нерастворимое в воде вещество.


В данном случае полное ионное уравнение реакции совпадает с сокращенным. Эта реакция протекает до конца, о чем свидетельствуют сразу два факта: образование вещества, нерастворимого в воде, и выделение воды.

3. Если в результате реакции выделяется газообразное вещество.




ВЫПОЛНИТЕ ЗАДАНИЯ ПО ТЕМЕ "РЕАКЦИИ ИОННОГО ОБМЕНА"

Задание №1.
Определите, может ли осуществляться взаимодействие между растворами следующих веществ, записать реакциив молекулярном,полном, кратком ионном виде:
гидроксид калия и хлорид аммония.

Решение

Составляем химические формулы веществ по их названиям, используя валентности и записываем РИО в молекулярном виде (проверяем растворимость веществ по ТР):

KOH + NH4 Cl = KCl + NH4 OH

так как NH4 OH неустойчивое вещество и разлагается на воду и газ NH3 уравнение РИО примет окончательный вид

KOH (p) + NH4 Cl (p) = KCl (p) + NH3 + H2 O

Cоставляем полное ионное уравнение РИО, используя ТР (не забывайте в правом верхнем углу записывать заряд иона):

K+ + OH- + NH4 + + Cl- = K+ + Cl- + NH3 + H2 O

Cоставляем краткое ионное уравнение РИО, вычёркивая одинаковые ионы до и после реакции:

OH - + NH4 + = NH3 + H2 O

Делаем вывод:
Взаимодействие между растворами следующих веществ может осуществляться, так как продуктами данной РИО являются газ (NH3 ) и малодиссоциирующее вещество вода (H2 O).

Задание №2

Дана схема:

2H + + CO3 2- = H 2 O + CO 2

Подберите вещества, взаимодействие между которыми в водных растворах выражается следующими сокращёнными уравнениями. Составьте соответствующие молекулярное и полное ионное уравнения.

Используя ТР подбираем реагенты - растворимые в воде вещества, содержащие ионы 2H + и CO 3 2- .

Например, кислота - H 3 PO 4 (p) и соль -K 2 CO 3 (p).

Составляем молекулярное уравнение РИО:

2H 3 PO 4 (p) +3 K 2 CO 3 (p) -> 2K 3 PO 4 (p) + 3H 2 CO 3 (p)

так как угольная кислота – неустойчивое вещества, она разлагается на углекислый газ CO 2 и воду H 2 O, уравнение примет окончательный вид:

2H 3 PO 4 (p) +3 K 2 CO 3 (p) -> 2K 3 PO 4 (p) + 3CO 2 + 3H 2 O

Составляем полное ионное уравнение РИО:

6H + +2PO 4 3- + 6K + + 3CO 3 2- -> 6K + + 2PO 4 3- + 3CO 2 + 3H 2 O

Составляем краткое ионное уравнение РИО:

6H + +3CO 3 2- = 3CO 2 + 3H 2 O

2H + +CO 3 2- = CO 2 + H 2 O

Делаем вывод:

В конечном итоге мы получили искомое сокращённое ионное уравнение, следовательно, задание выполнено верно.

Задание №3

Запишите реакцию обмена между оксидом натрия и фосфорной кислотой в молекулярном, полном и кратком ионном виде.

1. Составляем молекулярное уравнение, при составлении формул учитываем валентности (см. ТР)

3Na 2 O (нэ) + 2H 3 PO 4 (р) -> 2Na 3 PO 4 (р) + 3H 2 O (мд)

где нэ - неэлектролит, на ионы не диссоциирует,
мд - малодиссоциирующее вещество, на ионы не раскладываем, вода - признак необратимости реакции

2. Составляем полное ионное уравнение:

3Na 2 O + 6H + + 2PO 4 3- -> 6Na + + 2PO4 3- + 3H 2 O

3. Сокращаем одинаковые ионы и получаем краткое ионное уравнение:

3Na 2 O + 6H + -> 6Na + + 3H 2 O
Сокращаем коэффициенты на три и получаем:
Na
2 O + 2H + -> 2Na + + H 2 O

Данная реакция необратима, т.е. идёт до конца, так как в продуктах образуется малодиссоциирующее вещество вода.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание №1

Взаимодействие карбоната натрия и серной кислоты

Составьте уравнение реакции ионного обмена карбоната натрия с серной кислотой в молекулярном, полном и кратком ионном виде.

Задание №2

ZnF 2 + Ca(OH) 2 ->
K
2 S + H 3 PO 4 ->

Задание №3

Посмотрите следующий эксперимент

Осаждение сульфата бария

Составьте уравнение реакции ионного обмена хлорида бария с сульфатом магния в молекулярном, полном и кратком ионном виде.

Задание №4

Закончите уравнения реакций в молекулярном, полном и кратком ионном виде:

Hg(NO 3 ) 2 + Na 2 S ->
K
2 SO 3 + HCl ->

При выполнении задания используйте таблицу растворимости веществ в воде. Помните об исключениях!

Электролиты – это вещества, растворы которых обладают ионной проводимостью.

Поскольку электролиты в растворах образуют ионы, то для отражения сущности реакций часто используют так называемые ионные уравнения реакций. Написанием ионных уравнений подчёркивается тот факт, что, согласно теории диссоциации, в растворах происходят реакции не между молекулами, а между ионами.

С точки зрения теории диссоциации при реакциях между ионами в растворах электролитов возможны два исхода :

1. Образующиеся вещества – сильные электролиты, хорошо растворимые в воде и полностью диссоциирующие на ионы.

2. Одно (или несколько) из образующихся веществ – газ, осадок или слабый электролит (хорошо растворимый в воде).

Например, можно рассмотреть две реакции:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ­, (1)

2Al + 2KOH + 6H 2 O = 2K + 3H 2 ­. (2)

В ионной форме уравнения (1) и (2) запишутся следующим образом:

2Al + 2Na + + 2OH - + 6 H 2 O = 2Na + + 2 - + 3H 2 ­, (3)

2Al + 2K + + 2OH - + 6 H 2 O = 2K + + 2 - + 3H 2 ­, (4)

В данном случае алюминий не является электролитом, а молекула воды записывается в недиссоциированной форме потому, что является очень слабым электролитом. Неполярные молекулы водорода практически нерастворимы в воде и удаляются из сферы реакции. Одинаковые ионы в обеих частях уравнений (3), (4) можно сократить, и тогда эти уравнения преобразуются в одно сокращённое ионное уравнение взаимодействия алюминия с щелочами:

2Al + 2OH - + 6H 2 O = 2 - + 3H 2 ­. (5)

Очевидно, что при взаимодействии алюминия с любой щелочью реакция будет описываться уравнением (5). Следовательно, ионное уравнение, в отличие от молекулярного, относится не к одной какой-нибудь реакции между конкретными веществами, а к целой группе аналогичных реакций. В этом его большая практическая ценность и значение, например благодаря этому широко используются качественные реакции на различные ионы.

Так, при помощи ионов серебра Ag + можно обнаружить присутствие в растворе ионов галогенов, а при помощи ионов галогенов можно обнаружить ионы серебра; при помощи ионов бария Ba 2+ можно обнаружить ионы SO 2- и наоборот.

С учётом вышеизложенного можно сформулировать правило, которым удобно руководствоваться при изучении процессов, протекающих в растворах электролитов.

Реакции между ионами в растворах электролитов идут практически до конца в сторону образования осадков, газов и слабых электролитов.

Следовательно, реакции идут с образованием веществ с меньшей концентрацией ионов в растворе в соответствии с законом действующих масс. Скорость прямой реакции пропорциональна произведению концентраций ионов реагирующих компонентов, а скорость обратной реакции пропорциональна произведению концентраций ионов продуктов. Но при образовании газов, осадков и слабых электролитов ионы связываются (уходят из раствора) и скорость обратной реакции уменьшается.

Необходимым условием протекания обменных реакций в растворах электролитов является удаление из раствора тех или иных ионов вследствие образования малодиссоциирующих (слабые электролиты и комплексные ионы) или малорастворимых веществ (осадки и газы) .

Реакции обмена в растворах электролитов записывают в виде трех уравнений: молекулярного, полного ионно-молекулярного и сокращенного ионно-молекулярного.

Для составления этих уравнений необходимо знать характер электролитической диссоциации участников реакции.

Малодиссоциирующие и малорастворимые вещества в ионно-молекулярных уравнениях записываются в молекулярном виде. Реакции, в которых слабые электролиты или малорастворимые вещества входят в состав только продуктов реакции, протекают, как правило, необратимо, т.е. до конца.

Примеры реакций, протекающих практически необратимо:

1. с образованием малодиссоциирующих соединений:

а) HCl + NaOH = NaCl + H 2 O - молекулярное уравнение,

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионно-молекулярное уравнение,

H + + OH - = H 2 O - сокращенное ионно-молекулярное уравнение,

Таким образом, сильные кислоты (основания) вытесняют слабые кислоты (основания) из растворов их солей.

1. с образованием малорастворимых веществ:

а) NaCl + AgNO 3 = NaNO 3 + AgCl¯- молекулярное уравнение.

Cl - + Ag + = AgCl¯ - сокращенное ионно-молекулярное уравнение.

Реакции, в которых слабые электролиты или малорастворимые вещества входят в состав как продуктов, так и исходных веществ, протекают, как правило, не до конца, т.е. являются обратимыми. Равновесие обратимого процесса в этих случаях смещено в сторону образования наименее диссоциированных или наименее растворимых частиц .

Примеры обратимых реакций, равновесие которых смещено вправо:

1. HF + NaOH « NaF + H 2 O,

HF + OH - « F - + H 2 O - сокращенное ионно-молекулярное уравнение.

Вода более слабый электролит, чем HF: K д (H 2 O) = 1,8·10 -16 ; K д (HF) = 6,6·10 -4 , поэтому равновесие обратимого процесса смещено в сторону образования H 2 O.

1. NH 3 ·H 2 O + HCl « NH 4 Cl + H 2 O,

NH 3 ·H 2 O + H + « NH 4 + + H 2 O - сокращенное ионно-молекулярное уравнение

K д (NH 3 ·H 2 O) = 1,78·10 -5 ; K д (H 2 O) = 1,8·10 -16

1. HF + NH 3 ·H 2 O « NH 4 F + H 2 O,

HF + NH 3 ·H 2 O « NH 4 + + F - + H 2 O - сокращенное ионно-молекулярное уравнение

Реакции нейтрализации слабых кислот (оснований) сильными основаниями (кислотами) или слабых кислот слабыми основаниями не доходят до конца (т.е. точка эквивалентности находится, соответственно, в основной или кислой области значений рН).

1. AgCl¯ + NaI « NaCl + AgI¯ ,

AgCl¯ + I - « Cl - + AgI¯ - сокращенное ионно-молекулярное уравнение

ПР(AgCl) = 1,78· 10 -10 ПР(AgI) = 8,3· 10 -17

ПР(AgI) меньше ПР(AgCl), равновесие обратимого процесса смещено в сторону образования AgI.

1. MnS¯ + 2HCl « H 2 S­ + MnCl 2 ,

MnS¯ + 2H + « H 2 S­ + Mn 2+ - сокращенное ионно-молекулярное уравнение

1. Be(OH) 2 ¯ + 2KOH « K 2 ,