Закон сохранения электрического заряда. Большая энциклопедия нефти и газа


"Если я хочу в каком-либо теле увеличить количество электрической материи, я должен

неизбежно взять ее вне него и, следовательно, умень­шить ее в каком-либо другом теле".

Эпинус

III. Вопросы:

1. Почему зимой электризация тел значительнее, чем летом?

2. Почему повышение среднемесячной температуры воздуха в тропиках, например всего на 2 0 С (с 25 до 27°С), приводит к росту грозовой активности в 100 раз?

3. Если бы электрон был нестабильной частицей, то сохранялся бы элек­трический заряд или нет?

4. Почему при переливании бензина из одной цистерны в другую он может воспламениться, если не принять специальных мер предосторожности?

5. Какими способами можно предотвратить возгорание горючего при его переливании из одной емкости в другую? (Повышение электропроводности бензина, фильтры из разных материалов, металлизация шланга, повышение влажности воздуха, заземление.)

Задачи:

1. Эбонитовая палочка получила заряд –1,6· 10 –6 Кл. Определите число избыточных электронов на ней.

2. В результате трения с поверхности стеклянной палочки было удалено 6,4∙10 12 электронов. Определить электрический заряд на палочке. На сколько килограмм уменьшилась масса палочки?

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ: Эффект электризации наблюдается у водопадов, в пещерах и на берегу моря. Вблизи водопадов в воздухе отношение концентрации отрицательных ионов к концентрации положительных достигает 6, у берега моря 1/2. Почему?

IV. § 31-34 Упр. 7 № 1.

1. Изготовить набор по электризации.

2. Подготовить пятиминутное сообщение о жизни и научной деятельности Б.Франклина.

3. Если некоторый объем води замораживать с одной стороны, то на гра­нице "лед - вода" возникает напряжение. Измерьте его и объясните явление.

4. Составить обобщающую таблицу "Электризация тел", используя рисунки, чертежи и текстовый материал.

"Отталкивательное, так же как и притягательное дейст­вие двух наэлектризованных шаров, а, следовательно, и двух электрических молекул, прямо пропорционально плотности электрического флюида обеих электрических молекул и обратно пропорционально квадрату расстояния между ними"



Ш. Кулон


Урок 2. ЗАКОН КУЛОНА

Цель урока: Выяснить характер зависимости кулоновской силы от величины зарядов и ра стояния между ними.

Тип урока: комбинированный.

Оборудование: модель "крутильные весы", весы чувствительные с принадлежностями, выпрямитель высоковольтный, обобщающая таблица "Закон Кулона".

План урока:

2. Опрос 10 мин

3. Объяснение 20 мин

4. Закрепление 10 мин

5. Задание на дом 2-3 мин

II. Опрос фундаментальный:

1. Электрический заряд.

2. Электризация тел.

3. Закон сохранения электрического заряда.

Задачи:

1. Два металлических шарика с одноименными, но разными по величине зарядами привели в соприкосновение. При этом заряд одного из них увеличился на 60%, а заряд другого уменьшился на 40%. Найти отношение начальных зарядов шаров.

2. Какой электрический заряд приобрел бы железный шарик радиуса 1 см, если у каждого атома железа удалить по одному электрону?

Вопросы:

1. Можно ли на концах стеклянной палочки получить два одновременно существующих разноименных заряда?

2. Если резиновой трубкой (шлангом) ударить по столу, то она элек­тризуется. Почему?

3. Предложите как можно больше способов, позволяющих очистить одежду от пыли.

4. Зачем бензовозам нужна толстая цепь, которая соединяет их корпус с землей?

5. Почему электризуются капли воды при её дроблении (водопады, душ)?

III. Основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел в вакууме. Понятие точечного заряда. Устройство крутильных весов (демонстрация модели). Опыты Кулона. Закон Кулона (1785 г).

"Сегодня я предъявляю Академии электрические весы. Они измеряют с наивысшей точностью электрическое состояние и электрическую силу тела, как бы мала не была степень его электризации". Шарль Кулон

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ: Момент М упругих сил, возникающих при закручивании нити, прямо пропорционален углу закручивания нити , и связаны эти величины формулой: , где - длина нити, - ее диаметр, С – коэффициент, зависящий от свойств нити.

Два точечных заряда взаимодействуют друг с другом в вакууме с силой F, величина которой пропорциональна произведению зарядов q 1 и q 2 и обратно пропорциональна квадрату расстояния между ними.

Экспериментальная проверка закона Кулона (демонстрация с чувствительными весами). Центральный характер кулоновских сил.

Единица электрического заряда в СИ (повторение). Если бы нам удалось два точечных заряда по 1 Кл поместить на расстояние 1 м друг от друга, то электрическая сила оказалась бы равной 9∙10 9 Н.

Этот факт, несмотря на огромную величину силы, дает нам возможность определить коэффициент пропорциональности в формуле закона Кулона: k = 9·10 9 Н·м 2 /Кл 2 .

Формула закона Кулона в СИ:

Экспериментальная проверка формулы закона Кулона: измерение кулонометром электрического заряда шариков и выяснение зависимости кулоновской силы от величины заряда шариков и расстояния между ними.

Обобщающее повторение по таблице "Закон Кулона".

IV. Задачи:

1. С какой силой взаимодействуют два заряда по 10 нКл, находящиеся на расстоянии 3 см друг от друга?

2. На каком расстоянии друг от друга электрические заряды 1 мкКл и 10 нКл взаимодействуют с силой 9 мН?

3. Какую массу должен был бы иметь протон для того, чтобы сила электростатического отталкивания двух протонов уравновешивалась силой их гравитационного притяжения?

4. На каком расстоянии сила электростатического отталкивания двух протонов уравновешивается силой их гравитационного притяжения (зада­ча-провокация)?

V. § 35-36. Упр. 7, № 2, 3

1. Подготовить пятиминутное сообщение о жизни и научной деятельности Ш.Кулона.

"Среди всех людей науки, принесших славу Франции, трудно было бы указать одного человека, кто с точки зрения развития земной физики мог бы хоть как-то сравниться с Кулоном".

Т.Юнг

Исследовательская работа:

Зная расстояние между центрами соседних ионов в кристалле поваренной соли, вычислите силу, необходимую для разрыва всех связей в сечении образца площадью 1 м 2 (теоретический предел прочности материала). Почему же экспериментальное значение предела прочности в 1000 раз меньше теоретического?

s экс = 4,5·10 6 Па s теор = 10 9 Па

"Мы должны знать - мы будем знать".

Гильберт


Урок 3. РЕШЕНИЕ ЗАДАЧ

Цель урока: Научить учащихся применять закон Кулона при решении конкретных физических задач.

Тип урока: решение задач.

Оборудование: микрокалькулятор, обобщающая таблица "Закон Кулона".

План урока:

1. Вступительная часть 1-2 мин

2. Опрос 10 мин

3. Решение задач 30 мин

4. Задание на дом 2-3 мин

II. Опрос фундаментальный:

1. Закон Кулона.

Задачи:

1. Заряды 10 и 16 нКл расположены на расстоянии 7 мм друг от друга. Какая сила будет действовать на заряд 2 нКл. помещенный в точку, удаленную на 3 мм от меньшего заряда и 4 мм от большего?

2. Два одинаковых металлических шарика заряжены так, что заряд одного из них в 5 раз больше заряда другого. Шарики привели в соприкосновение и раздвинули на прежнее расстояние. Во сколько раз изменилась по модулю кулоновская сила, если шарики были заряжены одноименно, разноименно?

3. На нить одели три бусинки и замкнули ее в петлю. Одна бусинка имеет заряд q , а остальные 3q . Бусинки могут скользить по нити без трения. В состоянии равновесия нить образует треугольник. Найти угол при основании треугольника.

Вопросы:

1. Как изменится период колебаний математического маятника, если в точку подвеса и на груз поместить одноименные заряды?

2. Укажите границы применимости закона Кулона.

3. Как изменится сила электростатического взаимодействия между двумя точечными зарядами, если расстояние между ними уменьшить в 3 раза и один из зарядов увеличить в 3 раза?

4. С какой силой действуют два одноименных и равных заряда на третий заряд, помещенный посредине между ними?

6. Почему в окружающем нас мире объекты, как правило, нейтральны?

7. Какие опыты свидетельствуют о том, что существует два вида электрических зарядов?

8. Положительно заряженную частицу подносят близко к одноименно заряженному закрепленному точечному заряду. Как зависит ускорение частицы от расстояния между зарядами?

III. Задачи:

1. С какой силой взаимодействовали бы две одинаковые капли воды на расстоянии 1 км, если бы удалось передать одной из капель 1% всех электронов, содержащихся в другой капле массой 0,3 г?

2. Два точечных заряда находятся на фиксированном расстоянии друг от друга, а их суммарный заряд равен q . Чему должен быть равен каждый заряд, чтобы действующая между ними сила была максимальна? (Задачу решить самому двумя способами: определение вершины параболы, обращение в нуль производной от функции в точке экстремума).

3. Изолированная система из двух заряженных материальных точек, расположенных на расстоянии L друг от друга, вращается по окружности относительно оси, проходящей через её центр. Массы материальных точек одинаковы и равны m, их заряды q и –q. Чему равна угловая скорость их вращения, если взаимодействие материальных точек только электростатическое?

4. Три одинаковых заряженных шарика массами m и зарядом q связаны в треугольник нитями длиной L и лежат на гладком столе. Одну из нитей пережигают. Рассчитайте ускорение шариков в начальный момент.

5. По тонкому кольцу радиуса R равномерно распределен малый заряд Q . Кольцо расположено горизонтально в вакууме, а в его центр помещен одноименный точечный заряд q . Найдите силу натяжения, возникающую в кольце.

IV. Упр. 7, № 4-6.

"Поэтому должна быть нечувствительная материя вне

электризованного тела, которая и производит эти действия…"

М.В.Ломоносов

Урок 4. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ.

В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.
(... но, не числа заряженных частиц, т.к. существуют превращения элементарных частиц).

Замкнутая система
- система частиц, в которую не входят извне и не выходят наружу заряженные частицы.

Закон Кулона - основной закон электростатики.


Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна
произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.
Когдатела считаются точечными ? - если расстояние между ними во много раз больше размеров тел.
Если у двух тел есть электрические заряды, то они взаимодействуют по закону Кулона.
Единица электрического заряда
1 Кл - заряд, проходящий за 1 секунду через поперечное сечение проводника при силе тока 1 А.
1 Кл - очень большой заряд.
Элементарный заряд:

Таким образом, сила Кулона зависит от свойств среды между заряженными телами.

БЛИЗКОДЕЙСТВИЕ И ДАЛЬНОДЕЙСТВИЕ

Теория близкодействия - определяет вхзаимодействие между заряженными телами
с помощью промежуточной среды (посредством электрического поля - Фарадей, Максвелл).

Теория действия на расстоянии - взаимодействие между заряж. телами, передается мгновенно
на любые расстояния через пустоту.
Победила ТЕОРИЯ БЛИЗКОДЕЙСТВИЯ!!

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
- существует вокруг электрического заряда, материально.
О сновное свойство электрического поля: действие с силой на эл.заряд, внесенный в него.
Электростатическое поле - поле неподвижного эл.заряда, не меняется со временем.
Напряженность электрического поля. - количественная характеристика эл. поля.
- это отношение силы, с которой поле действует на внесенный точечный заряд к величине этого заряда.
- не зависит от величины внесенного заряда, а характеризует электрическое поле!

Направление вектора напряженности
совпадает с направлением вектора силы, действующей на положительный заряд,
и противоположно направлению силы, действующий на отрицательный заряд.

Напряженность поля точечного заряда:


где q0 - заряд, создающий электрическое поле.
В любой точке поля напряженность направлена всегда вдоль прямой, соединяющей эту точку и q0.

ПРИНЦИП СУПЕРПОЗИЦИИ (НАЛОЖЕНИЯ) ПОЛЕЙ

Если в данной точке пространства различные электрически заряженные частицы 1, 2, 3... и т.д.
создают электрические поля с напряженностью Е1, Е2, Е3 ... и т.д., то результирующая напряженность
в данной точке поля равна геометрической сумме напряженностей.

Силовые линии эл. поля - непрерывные линии, касательными к которым являются векторы
напряженности эл.поля в этих точках.
Однородное эл.поле - напряженность поля одинакова во всех точках этого поля.
Свойства силовых линий: не замкнуты (идут от + заряда к _), непрерывны, не пересекаются,
их густота говорит о напряженности поля (чем гуще линии, тем больше напряженность).

Графически надоуметь показать эл.поля: точечного заряда, двух точечных зарядов, обкладок
конденсатора (в учебнике есть).

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
заряженного шара.

Есть заряженный проводящий шар радиусом R.

Заряд равномерно рапределен лишь по поверхности шара!
Н апряженность эл. поля снаружи:

внутри шара Е = 0

ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

Электростатическое поле - эл.поле, образованное неподвижными электрическими зарядами.
Свободные электроны - электроны, способные свободно перемещаться внутри проводника
(в основном в металлах) под действием эл. поля;
образуются при образовании металлов: электроны с внешних оболочек атомов утрачивают связи
с ядрами и начинают принадлежать всему проводнику;


- участвуют в тепловом жвижении и могут свободно перемещаться по всему проводнику.
Электростатическое поле внутри проводника
- внутри проводника электростатического поля нет (Е = 0), что справедливо для заряженного
проводника и для незаряженного проводника, внесенного во внешнее электростатическое поле.Почему? - т.к. существуетявление электростатической индукции, т.е.
явление разделения зарядов в проводнике, внесенном в электростатическое поле (Евнешнее)


с образованием нового электростатического поля (Евнутр.) внутри проводника.
Внутри проводника оба поля (Евнешн. и Евнутр.) компенсируют друг друга, тогда внутри проводника
Е = 0.
Заряды можно разделить.


Электростатическая защита


- металл. экран, внутри которого Е = 0, т.к. весь заряд будет сосредоточен на поверхности проводника.
Электрический заряд проводников
- весь статический заряд проводника расположен на его поверхности, внутри проводника q = 0;
- справедливо для заряженных и незаряженных проводников в эл.поле.
Линии напряженности эл.поля в любой точке поверхности проводника перпендикулярны этой поверхности.

ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

Внутри диэлектрика может существовать электрическое поле!

Электрические свойства нейтральных атомов и молекул:
Нейтральный атом
-положительный заряд (ядро) сосредоточен в центре;
- отрицательный заряд - электронная оболочка;
считается, что из-за большой скорости движения
электронов по орбитам центр распределения отрицательного заряда совпадает с центром атома.
Молекула - чаще всего - это система ионов с зарядами противоположных знаков,
т.к. внешние электроны слабо связаны с ядрами и могут переходить к другим атомам.
Электрический диполь - молекула, в целом нейтральная, но центры распределения
противоположных по знаку зарядов разнесены; рассматривается, как совокупность
двух точечных зарядов, равных по модулю и противоположных по знаку,
находящихся внутри молекулы на некотором расстоянии друг от друга.
2 вида диэлектриков ( различаются строением молекул) :
1)полярные - молекулы, у которых центры положительного и отрицательного зарядов
не совпадают (спирты, вода и др.);

2)неполярные - атомы и молекулы, у которых центры распределения зарядов совпадают
(инертные газы, кислород, водород, полиэтилен и др.).

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Смещение положительного и отрицательного зарядов в противоположные стороны,
т.е.ориентация молекул.

Поляризация полярных диэлектриков
Диэлектрик вне эл.поля - в результате теплового движения электрические диполи ориентированы
беспорядочно на поверхности и внутри диэлектрика.
q = 0 и Eвнутр = 0
Диэлектрик в однородном эл.поле - на диполи действуют силы, создают моменты сил
и поворачивают диполи вдоль силовых линий эл.поля.


НО ориентация диполей - только частичная, т.к. мешает тепловое движение.
На поверхности диэлектрика возникают связанные заряды, а внутри диэлектрика заряды диполей
компенсируют друг друга.
Таким образом, средний связанный заряд диэлектрика = 0.
Поляризация неполярных диэлектриков - тоже поляризуются в эл.поле:
положительные и отрицательные заряды молекул смещаются,


центры распределения зарядов перестают совпадать (как диполи),
на поверхности диэлектрика возникает связанный заряд, а внутри эл.поле лишь ослабляется


Ослабление поля зависит от свойств диэлектрика.

РАБОТА ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

ПО ПЕРЕМЕЩЕНИЮ ЗАРЯДА

Электростатическое поле - эл. поле неподвижного заряда.
Fэл, действующая на заряд, перемещает его, совершая раборту.
В однородном электрическом поле Fэл = qE - постоянная величина


Работа поля (эл. силы)не зависит от формы траектории и на замкнутой траектории = нулю.

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА

В ОДНОРОДНОМ ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

Электростатическая энергия - потенциальная энергия системы заряженных тел
(т.к. они взаимодействуют и способны совершить работу).

Так как работа поля не зависит от формы траектории, то одновременно

Сравнивая формулы работы, получим
потенциальную энергию заряда в однородном электростатическом поле


Если поле совершает положительную работу (вдоль силовых линий), то потенциальная энергия
заряженного тела уменьшается (но согласно закону сохранения энергии увеличивается кинетическая
энергия) и наоборот.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

Энергитическая характеристика эл. поля.
- равен отношению потенциальной энергии заряда в поле к этому заряду.
- скалярная величина, определяющая потенциальную энергию заряда в любой точке эл. поля.


Величина потенциала считается относительно выбранного нулевого уровня.

РАЗНОСТЬ ПОТЕНЦИАЛОВ

(или иначе НАПРЯЖЕНИЕ)

Это разность потенциалов в начальной и конечной точках траектории заряда.


Напряжение между двумя точками (U) равно разности потенциалов этих точек
и равно работе поля по перемещению единичного заряда.

СВЯЗЬ МЕЖДУ НАПРЯЖЕННОСТЬЮ ПОЛЯ И РАЗНОСТЬЮ ПОТЕНЦИАЛОВ


Чем меньше меняется потенциал на отрезке пути, тем меньше напряженность поля.
Напряженность эл. поля направлена в сторону уменьшения потенциала.

ЭКВИПОТЕНЦИАЛЬНЫЕ ПОВЕРХНОСТИ
- поверхности, все точки которых имеют одинаковый потенциал


для однородного поля............................................для поля точечного заряда
- плоскость................................................................концентрические сферы
Эквипотенциальная поверхность имеетсяу любого проводника в электростатическом поле,
т.к. силовые линии перпендикулярны поверхности проводника.
Все точки внутри проводника имеют одинаковый потенциал (=0).
Напряженность внутри проводника = 0, значит и разность потенциалов внутри = 0.

ЭЛЕКТРОЕМКОСТЬ
- характеризует способность двух проводников накапливать электрический заряд.
- не зависит от q и U.
- зависит от геометрических размеров проводников, их формы, взаимного расположения,
электрических свойств среды между проводниками.


Единицы измерения в СИ: (Ф - фарад)

КОНДЕНСАТОРЫ

Электротехническое устройство, накапливающее заряд
(два проводника, разделенных слоем диэлектрика).


где d много меньше размеров проводника.
Обозначение на электрических схемах:


Все электрическое поле сосредоточено внутри конденсатора.
Заряд конденсатора - это абсолютное значение заряда одной из обкладок конденсатора.

Виды конденсаторов:
1. по виду диэлектрика: воздушные, слюдяные, керамические, электролитические
2. по форме обкладок: плоские, сферические.
3. по величине емкости: постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора


где S - площадь пластины (обкладки) конденсатора
d - расстояние между пластинами
eо - электрическая постоянная
e - диэлектрическая проницаемость диэлектрика

Включение конденсаторов в электрическую цепь

параллельное..............................и..................................последовательное


Тогда С общая при
параллельном включении.............................................при последовательном включении

. .....................................................

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

Конденсатор - это система заряженных тел и обладает энергией.
Энергия любого конденсатора:


где С - емкость конденсатора
q - заряд конденсатора
U - напряжение на обкладках конденсатора
Энергия конденсатора равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную,
или равна работе по разделению положительных и отрицательных зарядов, необходимой при зарядке конденсатора.

ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ КОНДЕНСАТОРА

Энергия конденсатора приблизительно равна квадрату напряженности эл. поля внутри конденсатора.
Плотность энергии эл. поля конденсатора:

ЗАКОНЫ ПОСТОЯННОГО ТОКА

Электрический ток - упорядоченное движение заряженных частиц (свободных электронов или ионов).
При этом через поперечное сечение проводника перносится эл. заряд (при тепловом движении заряженных частиц суммарный перенесенный эл. зпряд = 0, т.к. положительные и отрицательные заряды компенсируются).

Направление эл. тока - условно принято считать направление движения положительно заряженных частиц (от + к -).

Действия эл. тока (в проводнике):

тепловое - нагревание проводника (кроме сверхпроводников);
химическое - проявляется только у электролитов, На электродах выделяются вещества, входящие в состав электролита;
магнитное (основное) - наблюдается у всех проводников (отклонение магнитной стрелки вблизи проводника с током и силовое действие тока на соседние проводники посредством магнитного поля).

Cтраница 1


Закон сохранения электрического заряда: полный заряд замкнутой системы, т.е. алгебраическая сумма зарядов всех тел, постоянен. Это утверждение очевидно, если в системе не происходит превращений элементарных частиц. Но закон сохранения заряда имеет более фундаментальный характер - он выполняется в любых процессах рождения и уничтожения элементарных частиц.  

Закон сохранения электрического заряда звучит следующим образом: в изолированной системе алгебраическая сумма электрических зарядов остается постоянной. Заряды могут только передаваться от одного тела данной системы другому или передвигаться внутри одного тела. Это значит, что изменение суммарного заряда электрически изолированной системы можно осуществить только путем внесения зарядов извне или перенесения их за пределы системы.  

Закон сохранения электрического заряда: в изолированной системе полная алгебраическая сумма электрических зарядов остается постояннэй; заряды могут только передаваться от одного тела другому или смещаться внутри тела.  

Закон сохранения электрических зарядов: алгебраическая сумма электрических зарядов в изолированной системе сохраняется постоянной. Закон сохранения барионного заряда говорит о том, что для ба-рионов (например, нейтронов, протонов) в любой реакции число барио-нов в начале и в конце процесса оказывается одинаковым.  

Закон сохранения электрического заряда: в замкнутой (электрически изолированной) системе алгебраическая сумма зарядов всех частиц остается неизменной.  

Закон сохранения электрических зарядов: алгебраическая сумма электрических зарядов в изолированной системе сохраняется постоянной. Следовательно, в нейтральном (незаряженном) теле содержатся заряды противоположных знаков, равные по абсолютной величине.  

Закон сохранения электрического заряда утверждает, что электрический заряд изолированной системы остается постоянным при любых физических процессах, происходящих в системе. Так как электрические заряды бывают двух знаков, положительные и отрицательные, закон сохранения электрического заряда не утверждает, что невозможно возникновение или исчезновение электрических зарядов в замкнутой системе. Положительные и отрицательные заряды в замкнутой системе могут возникать или исчезать, но всегда так, чтобы их алгебраическая сумма оставалась постоянной.  

По закону сохранения электрического заряда сумма нижних индексов после реакции должна равняться их сумме до реакции. Также сумма массовых чисел, т, е, верхних индексов, после реакции должна равняться их сумме до реакции.  

По закону сохранения электрического заряда сумма нижних индексов после реакции должна равняться их сумме до реакции.  

Так выражается закон сохранения электрического заряда в дифференциальной форме.  

Гласит, что алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при происходящих в ней процессах.

Электрический заряд любой частицы или системы частиц является целым кратным элементарному электрическому заряду (равному по величине заряду электрона) или нулевым.

Одним из подтверждений закона сохранения электрического заряда служит строгое равенство (по абсолютной величине) электрических зарядов электрона и протона. Изучение движения атомов (молекул) и микроскопических тел в электрических полях подтверждает электронейтральность вещества и, соответственно, равенство зарядов электрона и протона (и электронейтральность ней-трона) с точностью до 10 -21 .

Закон сохранения заряда подтверждается и простыми опытами по электризации тел. Укрепим на стержне электромера металлический диск и, положив на него прослойку из сукна, поставим сверху еще один такой же диск, но с ручкой из диэлектрика. Совершив несколько движений верхним диском по изоляционной прослойке, уберем его в сторону. Мы увидим, что стрелка электромера отклонится, свидетельствуя о появлении на сукне и соприкасающемся с ним диске электрического заряда. Далее прикоснемся вторым диском (которым мы терли о сукно) к стерж-ню второго электромера. Стрелка этого электромера отклонится примерно на такой же угол, что и стрелка первого электромера. Это означает, что при электризации оба диска получили одинако-вый по модулю заряд. Что можно сказать о знаках этих зарядов? Для ответа на этот вопрос завер-шим опыт, соединив электромеры металлическим стержнем. Мы увидим, как стрелки приборов опустятся вниз. Нейтрализация зарядов свидетельствует о том, что они были равны по модулю, но противоположны по знаку (и, следовательно, в сумме давали нуль).

Этот и другие опыты показывают, что в процессе электризации общий (суммарный) заряд тел сохраняется: если он был равен нулю до электризации, то таким он останется и после нее.

Полный электрический заряд сохраняется и в том случае, если первоначальные заряды тел были отличны от нуля. Если обозначить первоначальные заряды тел как q 1 и q 2 , а заряд тех же тел после их взаимодействия как q’ 1 и q’ 2 то можно записать:

q’ 1 + q’ 2 = q 1 + q 2 .

При любых взаимодействиях тел их полный электрический заряд остается неизменным.

В этом заключается фундаментальный закон природы — закон сохранения электрического заряда.

Закон сохранения заряда был установлен в 1750 г. американским ученым и видным политическим деятелем Бенджамином Франклином. Он же ввел понятие о положительных и отрицатель-ных зарядах, обозначив их знаками «+» и «-».

Закон сохранения заряда имеет глубокий смысл. Он очевиден, когда число элементарных частиц не меняется. Однако элементарные частицы могут возникать (рождаться) и исчезать, т. е. пре-терпевать различные превращения. Возникают и исчезают элементарные частицы всегда пара-ми (с противоположными зарядами). Многочисленные наблюдения превращений элементарных частиц подтверждают закон сохранения заряда. Этот закон выражает одно из фундаментальных свойств электрического заряда.

Таким образом, электрический заряд во Вселенной сохраняется, а полный электрический за-ряд Вселенной, скорее всего, равен нулю.

Электрический заряд. Закон сохранения заряда. Закон Кулона. Напряженность поля

Электростатикой называется раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчёта. Существуют два рода электрических зарядов - положительные и отрицательные. Силы взаимодействия тел или частиц, обусловленные электрическими зарядами этих тел или частиц, называются электростатическими силами. Точечным электрическим зарядом называется заряженное тело, форма и размеры которого несущественны в данной задаче. Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, приближённо равных 1,6·10 –19 Кл.

Закон сохранения электрического заряда

Алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

Силы электростатического взаимодействия заряженных тел подчиняются экспериментально установленному закону Кулона. Поэтому их часто называют кулоновскими силами.

Закон Кулона

Сила электрического взаимодействия двух точечных электрических зарядов, находящихся в вакууме, прямо пропорциональна произведению этих зарядов, обратно пропорциональна квадрату расстояния между зарядами и направлена вдоль прямой, соединяющей заряды (рис. 1.1).

,

где e 0 =8,85·10 -12 Ф/м - электрическая постоянная.

Всякое заряженное тело можно рассматривать как систему точечных зарядов. Поэтому электростатическая сила, с которой одно заряженное тело действует на другое, равна геометрической сумме сил, приложенных ко всем точечным электрическим зарядам второго тела со стороны каждого точечного заряда первого тела.

Взаимодействие между электрически заряженными частицами или телами, движущимися произвольным образом относительно инерциальной системы отсчёта, осуществляется посредством электромагнитного поля, которое представляет собой совокупность двух взаимосвязанных полей - электрическогои магнитного. Характерная особенность электрического поля, отличающая его от других физических полей, состоит в том, что оно действует на электрический заряд (заряженную частицу или тело) с силой, которая не зависит от скорости движения заряда. Основной количественной характеристикой электрического поля служит вектор напряжённости электрического поля, являющийся его силовой характеристикой.

Напряженность электрического поля равна силе, действующей со стороны поля на положительный единичный точечный заряд, помещённый в данную точку поля, В/м.

Сила, действующая со стороны электрического поля на помещённый в него произвольный точечный электрический заряд q : = , где - напряженность в месте нахождения заряда q для поля, искажённого этим зарядом, т.е. в общем случае, отличного от поля, которое было до внесения в него заряда q .