Формула лапласа определяет. Свойства жидкостей. Поверхностное натяжение. Капиллярные явления. Формула Лапласа. Локальная и интегральная формулы муавра - лапласа

Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур. Если поверхность жидкости не плоская, то стремление её к сокращению приведёт к возникновению давления, дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно, в случае вогнутой поверхности – отрицательно. В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость. Работа преподаватель курса кадровое делопроизводство москва .

Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения α и кривизны поверхности. Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечём сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 5).

Сечение сферической капли жидкости.

Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной:

Эта сила прижимает друг к другу оба полушария по поверхности S=πR2 и следовательно, обуславливает дополнительное давление:

∆p=F/S=(2πRα)/ πR2=2α/R (4)

Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы R. Очевидно, что чем меньше R, тем больше кривизна сферической поверхности. Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной, которая может оказаться различной для разных точек поверхности.

Средняя кривизна определяется через кривизну нормальных сечений. Нормальным сечением поверхности в некоторой точке называется линия пересечения этой поверхности с плоскостью, проходящей через нормаль к поверхности в рассматриваемой точке. Для сферы любое нормальное сечение представляет собой окружность радиуса R (R-радиус сферы). Величина H=1/R даёт кривизну сферы. В общем случае различные сечения, проведённые через одну и ту же точку, имеют различную кривизну. В геометрии доказывается, что полусумма обратных радиусов кривизны

H=0,5(1/R1+1/R2) (5)

для любой пары взаимно перпендикулярных нормальных сечений имеет одно и тоже значение. Эта величина и есть средняя кривизна поверхности в данной точке.

Радиусы R1 и R2 в формуле (5) – алгебраические величины. Если центр кривизны нормального сечения находиться под данной поверхностью, соответствующий радиус кривизны положителен, если центр кривизны лежит над поверхностью, радиус кривизны отрицателен.

Для сферы R1=R2=R, так что в соответствии с (5) H=1/R. Заменив в (4) 1/R через H, получим, что

Лаплас доказал, что формула (6) справедлива для поверхности любой формы, если под H понимать среднюю кривизну поверхности в это точке, под которой определяется дополнительное давление. Подставив в (6) выражение (5) для средней кривизны, получим формулу для добавочного давления под произвольной поверхностью:

∆p=α(1/R1+1/R2) (7)

Она называется формулой Лапласа.

Добавочное давление (7) обуславливает изменение уровня жидкости в капилляре, вследствие чего называется иногда капиллярным давлением.

Существование краевого угла приводит к тому, что вблизи стенок сосуда наблюдается искривление поверхности жидкости. В капилляре или в узком зазоре между двумя стенками искривленной оказывается вся поверхность. Если жидкость смачивает стенки, поверхность имеет вогнутую форму, если не смачивает – выпуклую (рис. 4). Такого рода изогнутые поверхности жидкости называются менисками.

Если капилляр погрузить одним концом в жидкость, налитую в широкий сосуд, то под искривлённой поверхностью в капилляре давление будет отличаться от давления по плоской поверхностью в широком сосуде на величину ∆p, определённую формулой (7). В результате при смачивании капилляра уровень жидкости в нём будет выше, чем в сосуде, при несмачивании – ниже.

Свойства жидкостей.

Особенности жидкого состояния вещества. Молекулы вещества в жидком состоянии расположены вплотную друг к другу, как и в твердом состоянии. Поэтому объем жидкости мало зависит от давления. Постоянство занимаемого объема является свойством, общим для жидких и твердых тел и отличающим их от газов, способных занимать любой предоставленный им объем.

Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости. Тело в жидком состоянии, как и в газообразном, не имеет постоянной формы. Форма жидкого тела определяется формой сосуда, в котором находится жидкость, действием внешних сил и сил поверхностного натяжения. Большая свобода движения молекул в жидкости приводит к большей скорости диффузии в жидкостях по сравнению с твердыми телами, обеспечивает возможность растворения твердых веществ в жидкостях.


Поверхностное натяжение.

Поверхностное натяжение. С силами притяжения между молекулами и подвижностью молекул в жидкостях связано проявление сил поверхностного натяжения.

Внутри жидкости силы притяжения, действующие на одну молекулу со стороны соседних с ней молекул, взаимно компенсируются. Любая молекула, находящаяся у поверхности жидкости, притягивается молекулами, находящимися внутри жидкости. Под действием этих сил молекулы с поверхности жидкости уходят внутрь жидкости и число молекул, находящихся на поверхности, уменьшается до тех пор, пока свободная поверхность жидкости не достигнет минимального из возможных в данных условиях значения. Минимальную поверхность среди тел данного объема имеет шар, поэтому при отсутствии или пренебрежимо малом действии других сил жидкость под действием сил поверхностного натяжения принимает форму шара.

Свойство сокращения свободной поверхности жидкости во многих явлениях выглядит таким образом, будто жидкость покрыта тонкой растянутой упругой пленкой, стремящейся к сокращению.

Силой поверхностного натяжения называют силу, которая действует вдоль поверхности жидкости перпендикулярно к линии, ограничивающей эту поверхность, и стремится сократить ее до минимума.

Подвесим на крючок пружинного динамометра П-образную проволоку. Длина стороны АВ равна l . Начальное растяжение пружины динамометра под действием силы тяжести проволоки можно исключить из рассмотрения установкой нулевого деления шкалы против указателя действующей силы.

Опустим проволоку в воду, затем будем медленно опускать вниз сосуд с водой (рис. 92). Опыт показывает, что при этом вдоль проволоки образуется пленка жидкости и пружина динамометра растягивается. По показаниям динамометра можно определить силу поверхностного натяжения. При этом следует учесть, что пленка жидкости имеет две поверхности (рис. 93) и сила упругости равна по модулю удвоенному значению силы поверхностного натяжения :

Если взять проволоку со стороной АВ, вдвое большей длины, то значение силы поверхностного натяжения оказывается вдвое большим. Опыты с проволоками разной длины показывают, что отношение модуля силы поверхностного натяжения, действующей на границу поверхностного слоя длиной l , к этой длине есть величина постоянная, не зависящая от длины l . Эту величину называют коэффициентом поверхностного натяжения и обозначают греческой буквой «сигма»:

. (27.1)

Коэффициент поверхностного натяжения выражается в ньютонах на метр (Н/м). Поверхностное натяжение различно у разных жидкостей.

Если силы притяжения молекул жидкостей между собой меньше сил притяжения молекул жидкости к поверхности твердого тела, то жидкость смачивает поверхность твердого тела. Если же силы взаимодействия молекул жидкости и молекул твердого тела меньше сил взаимодействия между молекулами жидкости, то жидкость не смачивает поверхность твердого тела.


Капиллярные явления.

Капиллярные явления. Особенности взаимодействия жидкостей со смачиваемыми и несмачиваемыми поверхностями твердых тел являются причиной капиллярных явлений.

Капилляром называется трубка с малым внутренним диаметром. Возьмем капиллярную стеклянную трубку и погрузим один ее конец в воду. Опыт показывает, что внутри капиллярной трубки уровень воды оказывается выше уровня открытой поверхности воды.

При полном смачивании жидкостью поверхности твердого тела силу поверхностного натяжения можно считать направленной вдоль поверхности твердого тела перпендикулярно к границе соприкосновения твердого тела и жидкости. В этом случае подъем жидкости вдоль смачиваемой поверхности продолжается до тех пор, пока сила тяжести , действующая на столб жидкости в капилляре и направленная вниз, не станет равной по модулю силе поверхностного натяжения , действующей вдоль границы соприкосновения жидкости с поверхностью капилляра (рис. 94):

,

.

Отсюда получаем, что высота подъема столба жидкости в капилляре обратно пропорциональна радиусу капилляра:

(27.2)

Формула Лапласа.

Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна p (0 < p < 1), событие наступит ровно k раз, приближенно равна
Таблица значений функции φ(x); для отрицательных значений x пользуются этой же таблицей (функция φ (x) четная: φ(-x) = φ(x)).

Событие может наступить раз. Вероятность наступления этого события равна . Найти вероятность того, что событие:
наступит раз;
менее раз;
не менее раз;
более раз;
не более раз;
не менее и не более раз;
наступит хотя бы один раз.
Выводить в отчет:
Наивероятнейшее число;
Вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на .

Пример №1 . В каждом из 700 независимых испытаний событие A происходит с постоянной вероятностью 0,35. Найдите вероятность того, что событие A происходит: а) ровно 270 раз; б) меньше чем 270 и больше чем 230 раз; в) больше чем 270 раз.
Решение. Так как количество опытов n = 700 довольно велико, то используем формулы Лапласа.
а) Задано: n = 700, p = 0,35, k = 270.
Найдем P 700 (270). Используем локальную теорему Лапласа.
Находим:

Значение функции φ(x) найдем из таблицы:

б) Задано: n = 700, p = 0,35, a = 230, b = 270.
Найдем P 700 (230 < k < 270).
Используем интегральную теорему Лапласа (23), (24). Находим:

Значение функции Ф(x) найдем из таблицы :

в) Задано: n = 700, p = 0,35, a = 270, b = 700.
Найдем P 700 (k > 270).
Имеем:

Пример №2 . При установившемся технологическом процессе на ткацкой фабрике происходит 10 обрывов нити на 100 веретен в час. Определите: а) вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити; б) наивероятнейшее число обрывов нити на 80 веретенах в течение часа.
Решение. Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.
Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:

Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:

Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.
Наивероятнейшее число k 0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k 0 < 8,1. Поскольку k 0 может быть только целым числом, то k 0 = 8.

Пример №3 . Вероятность того, что деталь первого сорта равна 0.4. Сделано 150 деталей. Найти вероятность того, что среди них 68 деталей первого сорта.

Пример №4 . Вероятность появления события в каждом из независимых испытаний равна p .
Найти вероятность того, что событие состоится n раз, если проведения m испытаний.
Ответ представить с точностью до трех значащих цифр.
р=0.75, n=87, m=120

Свойства жидкого состояния. Поверхностный слой. Поверхностное натяжение. Смачивание. Формула Лапласа. Капиллярные явления.

Жидкостями называются вещества, находящиеся в конденсированном состоянии, которое является промежуточным между твердым кристаллическим состоянием и газообразным состоянием.

Область существования жидкостей ограничена со стороны высоких температур переходом ее в газообразное состояние, со стороны низких температур – переходом в твердое состояние.

В жидкостях расстояние между молекулами значительно меньше, чем в газах (плотность жидкостей в ~ 6000 раз больше плотности насыщенного пара вдали от критической температуры) (рис.1).

Рис.1. Водяной пар (1) и вода (2). Молекулы воды увеличены примерно в 5·10 7 раз

Следовательно, силы межмолекулярного взаимодействия в жидкостях, в отличие от газов, являются основным фактором, который определяет свойства жидкостей. Поэтому жидкости, как и твердые тела, сохраняют свой объем и имеют свободную поверхность. Подобно твердым телам жидкости характеризуются очень малой сжимаемостью и сопротивляются растяжению.

Однако силы связей между молекулами жидкости не настолько велики, чтобы препятствовать скольжению слоев жидкости относительно друг друга. Поэтому жидкости, как и газы, обладают текучестью. В поле силы тяжести жидкости принимают форму сосуда, в который они налиты.

Свойства веществ определяются движением и взаимодействием частиц, из которых они состоят.

В газах в столкновениях участвуют в основном две молекулы. Следовательно, теория газов сводится к решению задачи двух тел, которая может быть решена точно. В твердых телах молекулы совершают колебательное движение в узлах кристаллической решетки в периодическом поле, созданном другими молекулами. Такая задача поведения частиц в периодическом поле так же решается точно.

В жидкостях каждую молекулу окружают несколько других. Задача подобного типа (задача многих тел) в общем, виде, независимо от природы молекул, характера их расположения до сих пор точно не решена.

Опыты по дифракции рентгеновских лучей, нейтронов, электронов помогли определить строение жидкостей. В отличие от кристаллов, в которых наблюдается дальний порядок (регулярность размещения частиц в больших объемах), в жидкостях на расстояниях порядка 3 – 4 молекулярных диаметров порядок в размещении молекул нарушается. Следовательно, в жидкостях наблюдается так называемый ближний порядок в размещении молекул (рис.2):

Рис.2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед

В жидкостях молекулы совершают малые колебания в пределах ограниченных межмолекулярными расстояниями. Однако время от времени в результате флуктуаций молекула может получить от соседних молекул энергию, которой хватит, чтобы скачком переместиться в новое положение равновесия. В новом положении равновесия молекула будет находиться некоторое время, пока снова, в результате флуктуаций не получит энергию необходимую для скачка. Скачок молекулы происходит на расстояние сравнимое с размерами молекулы. Колебания, которые сменяются скачками, представляют собой тепловое движение молекул жидкости.

Среднее время, которое молекула находится в состоянии равновесия, называется временем релаксации . При повышении температуры увеличивается энергия молекул, следовательно, увеличивается вероятность флуктуаций, время релаксации при этом уменьшается:

(1)

где τ – время релаксации, B – коэффициент, имеющий смысл периода колебаний молекулы, W энергия активации молекулы, т.е. энергия необходимая для совершения скачка молекулы .

Внутреннее трение в жидкостях, как и в газах, возникает при движении слоев жидкости из-за переноса импульса в направлении нормали к направлению движения слоев жидкости. Перенос импульса от слоя к слою происходит и при скачках молекул. Однако, в основном, импульс переносится из-за взаимодействия (притяжения) молекул соседних слоев.

В соответствии с механизмом теплового движения молекул жидкости, зависимость коэффициента вязкости от температуры имеет вид:

(2)

где A – коэффициент, зависящий от дальности скачка молекулы, частоты ее колебаний и температуры, W энергия активации .

Уравнение (2) – формула Френкеля-Андраде . Температурная зависимость коэффициента вязкости в основном определяется экспоненциальным множителем.

Величина обратная вязкости называется текучестью . При понижении температуры вязкость некоторых жидкостей увеличивается настолько, что они практически перестают течь, образуя аморфные тела (стекло, пластмассы, смолы и т.д.).

Каждая молекула жидкости взаимодействует с соседними молекулами, которые находятся в зоне действия ее молекулярных сил. Результаты этого взаимодействия неодинаковые для молекул внутри жидкости и на поверхности жидкости. Молекула, находящаяся внутри жидкости взаимодействует с соседними молекулами окружающими ее и, равнодействующая сила, которая на нее действует, равна нулю (рис.3).

Рис.3. Силы, действующие на молекулы жидкости

Молекулы поверхностного слоя находятся при других условиях. Плотность пара над жидкостью значительно меньше плотности жидкости. Поэтому на каждую молекулу поверхностного слоя действует равнодействующая сила, направленная по нормали внутрь жидкости (рис.3). Поверхностный слой оказывает давление на остальную жидкость подобно упругой пленке. Молекулы, лежащие в этом слое также притягиваются друг к другу (рис.4).

Рис.4. Взаимодействие молекул поверхностного слоя

Это взаимодействие создает силы направленные по касательной к поверхности жидкости и стремящиеся сократить поверхность жидкости.

Если на поверхности жидкости провести произвольную линию, то по нормали к линии и по касательной к поверхности будут действовать силы поверхностного натяжения. Величина этих сил пропорциональна числу молекул, находящихся вдоль этой линии, следовательно, пропорциональна длине линии:

(3)

где σ – коэффициент пропорциональности, который называется коэффициентом поверхностного натяжения :

(4)

Коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, действующей на единицу длины контура, ограничивающего поверхность жидкости .

Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия примесей. Вещества, которые уменьшают поверхностное натяжение, называются поверхностно - активными (спирт, мыло, стиральный порошок и т.д.).

Чтобы увеличить площадь поверхности жидкости, необходимо выполнить работу против сил поверхностного натяжения. Определим величину этой работы. Пусть имеется рамка с жидкой пленкой (например, мыльной) и подвижной перекладиной (рис.5).

Рис.5. Подвижная сторона проволочной рамки находится в равновесии под действием внешней силы F вн и результирующей сил поверхностного натяжения F н

Растянем пленку силой F вн на dx . Очевидно:

где F н = σL –сила поверхностного натяжения. Тогда:

где dS = Ldx – приращение площади поверхности пленки. Из последнего уравнения:

(5)

Согласно (5) коэффициент поверхностного натяжения численно равен работе необходимой для увеличения площади поверхности на единицу при постоянной температуре. Из (5) видно, что σ может измеряться в Дж/м 2 .

Если жидкость граничит с другой жидкостью или с твердым телом, то из-за того, что плотности соприкасающихся веществ сравнимые, нельзя не обращать внимания на взаимодействие молекул жидкости с молекулами граничащих с ней веществ.

Если при контакте жидкости и твердого тела взаимодействие между их молекулами более сильное, чем взаимодействие между молекулами самой жидкости, то жидкость стремится увеличить поверхность соприкосновения и растекается по поверхности твердого тела. В этом случае жидкость смачивает твердое тело . Если взаимодействие между молекулами жидкости сильнее, чем взаимодействие между молекулами жидкости и твердого тела, то жидкость сокращает поверхность соприкосновения. В этом случае жидкость не смачивает твердое тело . Например: вода смачивает стекло, но не смачивает парафин, ртуть смачивает поверхности металлов, но не смачивает стекло.

Рис.6. Различные формы капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей

Рассмотрим каплю жидкости на поверхности твердого тела (рис.7):

Рис.7. Схемы к расчету равновесия капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей: 1 - газ, 2 - жидкость, 3 - твердое тело

Форма капли определяется взаимодействием трех сред: газа – 1, жидкости – 2 и твердого тела – 3. У всех этих сред есть общая граница – окружность, ограничивающая каплю. На элемент длины dl этого контура, будут действовать силы поверхностного натяжения: F 12 = σ 12 dl – между газом и жидкостью, F 13 = σ 13 dl - между газом и твердым телом, F 23 = σ 23 dl – между жидкостью и твердым телом. Если dl =1м, то F 12 = σ 12 , F 13 = σ 13 , F 23 = σ 23 . Рассмотрим случай когда:

Это значит, что <θ = π (рис.7,а). Окружность, которая ограничивает место соприкосновения жидкости с твердым телом, будет стягиваться в точку и капля принимает эллипсоидальную или сферическую форму. Это случай полного несмачивания. Полное несмачивание наблюдается также и в случае: σ 23 > σ 12 + σ 13 .

Другой граничный случай будет наблюдаться если:

Это значит, что <θ = 0 (рис.7,б), наблюдается полное смачивание. Полное смачивание будет наблюдаться и в случае когда: σ 13 > σ 12 + σ 23 . В этом случае равновесия не будет, ни при каких значениях угла θ , и жидкость будет растекаться по поверхности твердого тела вплоть до мономолекулярного слоя.

Если капля находится в равновесии, то равнодействующая всех сил, действующих на элемент длины контура равна нулю. Условие равновесия в этом случае:

Угол между касательными к поверхности твердого тела и к поверхности жидкости, который отсчитывается внутри жидкости , называется краевым углом .

Его значение определяется из (6):

(7)

Если σ 13 > σ 23 , то cosθ > 0, угол θ острый – имеет место частичное смачивание, если σ 13 < σ 23 , то cosθ < 0 – угол θ тупой – имеет место частичное несмачивание. Таким образом, краевой угол является величиной, характеризующей степень смачивания или несмачивания жидкости

Кривизна поверхности жидкости приводит к возникновению добавочного давления, действующего на жидкость под этой поверхностью. Определим величину добавочного давления под искривленной поверхностью жидкости. Выделим на произвольной поверхности жидкости элемент площадью ∆S (рис.8):

Рис.8. К расчету величины добавочного давления

O O – нормаль к поверхности в точке O . Определим силы поверхностного натяжения действующие на элементы контура AB и CD . Силы поверхностного натяжения F и F ′, которые действуют на AB и CD , перпендикулярны AB и CD и направлены по касательной к поверхности ∆S . Определим величину силы F :

Разложим силу F на две составляющих f 1 и f ′. Сила f 1 параллельна O O и направлена внутрь жидкости. Эта сила увеличивает давление на внутренние области жидкости (вторая составляющая растягивает поверхность и на величину давления не влияет).

Проведем плоскость перпендикулярную ∆S через точки M , O и N . Тогда R 1 – радиус кривизны поверхности в направлении этой плоскости. Проведем плоскость перпендикулярную ∆S и первой плоскости. Тогда R 2 – радиус кривизны поверхности в направлении этой плоскости. В общем случае R 1 ≠ R 2 . Определим составляющую f 1 . Из рисунка видно:

Учтем, что:

(8)

Силу F ′ разложим на такие же две составляющих и аналогично определим составляющую f 2 (на рисунке не показана):

(9)

Рассуждая аналогично, определим составляющие сил действующих на элементы AC и BD , учитывая, что вместо R 1 будет R 2:

(10)

Найдем сумму всех четырех сил, действующих на контур ABDC и оказывающих добавочное давление на внутренние области жидкости:

Определим величину добавочного давления:

Следовательно:

(11)

Уравнение (11) называется формулой Лапласа . Добавочное давление, которое оказывает искривленная поверхность жидкости на внутренние области жидкости, называется лапласовским давлением .

Лапласовское давление очевидно направлено к центру кривизны поверхности. Поэтому в случае выпуклой поверхности оно направлено внутрь жидкости и добавляется к нормальному давлению жидкости. В случае вогнутой поверхности жидкость будет находиться под меньшим давлением, чем жидкость под плоской поверхностью, т.к. лапласовское давление направлено за пределы жидкости.

Если поверхность сферическая, то: R 1 = R 2 = R :

Если поверхность цилиндрическая, то: R 1 = R , R 2 = ∞:

Если поверхность плоская то: R 1 = ∞, R 2 = ∞:

Если поверхностей две, например, мыльный пузырь, то лапласовское давление удваивается.

С явлениями смачивания и несмачивания связаны так называемые капиллярные явления . Если в жидкость опустить капилляр (трубка малого диаметра), то поверхность жидкости в капилляре принимает вогнутую форму, близкую к сферической в случае смачивания и выпуклую в случае несмачивания. Такие поверхности называются менисками .

Капиллярами называются такие трубки, в которых радиус мениска примерно равен радиусу трубки.

Рис. 9. Капилляр в смачивающей (а) и не смачивающей (б) жидкостях

Рис.10. Подъем жидкости в капилляре в случае смачивания

В случае вогнутого мениска добавочное давление направленно к центру кривизны вне жидкости. Поэтому давление под мениском меньше давления под плоской поверхностью жидкости в сосуде на величину лапласовского давления:

R – радиус мениска, r – радиус капиллярной трубки.

Следовательно, лапласовское давление вызовет подъем жидкости в капилляре на такую высоту h (рис.9), пока гидростатическое давление столба жидкости не уравновесит лапласовское давление:

Из последнего уравнения:

(12)

Уравнение (12) называется формулой Жюрена . Если жидкость несмачивает стенки капилляра, мениск выпуклый, cosθ < 0, то жидкость в этом случае опускается ниже уровня жидкости в сосуде на такую же глубину h согласно формуле (12) (рис.9).

Рассмотрим выпуклую поверхность (рис. 5.18), кривизна ко­торой в точке О для каждого из двух взаимно перпендикуляр­ных нормальных сечений различна. Пусть я-внешняя нормаль

к поверхности в точке О; MN и Р г Р 2 -главные сечения. Вы­делим мысленно элемент поверхности AS U и рассчитаем силы поверхностного натяжения, действующие на отрезки АВ и CD, АС и BD, полагая, что АВ = CD и AC ~ BD. На каждую еди­ницу длины контура ABDC действует сила поверхностного на­тяжения а окружающей жидкости, стремящаяся растянуть элемент поверхности AS n во все стороны. Все силы, действую­щие на сторону АВ, заменим одной равнодействующей силой A.F, приложенной к середине отрезка АВ = А/ в перпендикуные параллельно п, только в них вместо R x будет радиус кри­визны £? 2 перпендикулярного сечения Р г Р. г. Радиус R 2 изобра­жен на рис. 5.18 отрезком P-fi". Отсюда равнодействующая AF-* всех нормальных сил, действующих на четыре стороны

элемента поверхности А5 П, AF~ = ДК. + AF, + af s f AF. = V af, да (rAS n | - -|- -V

Сила AF^ прижимает элемент поверхности А5 П к слоям, распо­ложенным ниже его. Отсюда среднее давление р ср, обусловлен­ное искривлением поверхности,

Чтобы получить давление р а в точке, устремим AS, к нулю. Переходя к пределу отношения AF^ к площади as n , на кото­рую действует эта сила, получим AF^ dF.

AS n -*o AS n dS n \ R, R 2

Но по определению

p. = о 14-+ 4-\ (5 - 8)

p„ = a I ■

где R lt R 2 - главные радиусы кривизны в данной точке по­верхности.

В дифференциальной геометрии выражение е = -~ ^--\-

J--) называют средней кривизной поверхности в точке Р.

Она имеет одно и то же значение для всех пар нормальных се­чений, перпендикулярных друг к другу.

Выражение (5.8), устанавливающее зависимость перепада гидростатического давления р а на поверхности раздела двух фаз (жидкость - жидкость, жидкость -■ газ или пар) от меж­фазного поверхностного натяжения а и средне!! кривизны по­верхности 8 в рассматриваемой точке называется формулой Лапласа в честь французского физика Лапласа.

Величина р а прибавляется к капиллярному давлению р ь соответствующему плоской поверхности. Если поверхность вог­нута, тогда в формуле (5.8) ставится знак минус. В общем случае произвольной поверхности радиусы кривизны R x и R 2 мо­гут отличаться друг от друга как по величине, так и по зна­ку. Так, например, у поверхности, изображенной на рис. 5.19, радиусы кривизны R x и R 2 в двух взаимно перпендикулярных нормальных сечениях различны по величине и знаку. Этот слу­чай может привести к положительным или отрицательным зна­чениям р а в зависимости от абсолютной величины R x и R 2 . Принято считать, что если центр кривизны нормального сече­ния находится под поверхностью, то соответствующий ей ра­диус кривизны является положительным, если над поверх­ностью - отрицательным. Поверхности, средняя кривизна которых



во всех точках равна нулю е == ~(~--1" - 0 , называ­ют минимальными поверхностями. Если в одной точке такой поверхности /? 1 >0, то автоматически /? 2 <С0.

Для сферы любое нормальное сечение представляет собой окружность радиуса R, поэтому в формуле (5.8) /? х = R 2 = R и добавочное капиллярное давление

Р. = ~. (5-9)

Для мыльного пузыря вследствие существования у него внеш­ней и внутренней поверхностей

Р*=-~- (5-Ю)

Если для кругового цилиндра одним из нормальных сечений считать сечение, идущее вдоль образующей, то R x = со. Второе, перпендикулярное к нему сечение дает окружность радиуса

R (R 2 = R). Поэтому в соответствии с формулой (5.8) добавочное капиллярное давление под цилиндрической поверхностью

Р. = -}|- (5-И)

Из выражений (5.9) - (5.11) видно, что при изменении фор­мы поверхности меняется лишь коэффициент перед отношением a/R. Если поверхность жидкости плоская, то R x ~ R 2 = со и, следовательно, р з = 0. В этом случае суммарное давление

Р = Pi ± р а = Pi ± 0 = p t .

Добавочное капиллярное давление, определяемое формулой Лапласа, всегда направлено к центру кривизны. Поэтому для выпуклой поверхности оно направлено внутрь жидкости, для вогнутой -наружу. В первом случае оно прибавляется к ка­пиллярному давлению p h во втором--вычитается из него. Ма­тематически это учитывается тем, что для выпуклой поверхности радиус кривизны считается положительным, для вогнутой - от­рицательным.



Качественную зависимость добавочного капиллярного давле­ния от кривизны поверхности можно наблюдать на следующем опыте (рис. 5.20). Концы А я В стеклянного тройника опускают в раствор мыльной воды. В результате оба конца тройника затя­гиваются мыльной пленкой. Вынув тройник из раствора, через отросток С выдувают два мыльных пузыря. Как правило, вслед­ствие различных причин пузыри имеют разные размеры. Если закрыть отверстие С, то пузырь большего размера будет постепен­но раздуваться, а меньшего-сокращаться. Это убеждает нас в том, что капиллярное давление, вызванное кривизной поверх­ности, растет с уменьшением радиуса кривизны.

Чтобы составить представление о величине добавочного ка: пиллярного давления, вычислим его для капли диаметра 1 мкм (примерно из таких капель часто состоят облака):

2а 2.72,75-Ю- 3 „ мгт

р --= -==-= 0,1455 МПа.

5.8. Смачивание

Поверхностным натяжением обладает не только свободная поверхность жидкости, но и граница раздела двух жидкостей, жидкости и твердого тела, а также свободная поверхность твердого тела. Во всех случаях поверхностная энергия опреде­ляется как разность между энергией молекул у поверхности раздела и энергией в объеме соответствующей фазы. При этом величина поверхностной энергии на границе раздела зависит от свойств обеих фаз. Так, например, на границе вода - воздух а = 72,75-10 ~ 3 Н/м (при 20 °С и нормальном атмосферном дав­лении), на границе вода-эфир а= 12-10 3 Н/м, а на границе вода - ртуть а = 427-10~ 3 Н/м.

Молекулы (атомы, ионы), находящиеся на поверхности твер­дого тела, испытывают притяжение с одной стороны. Поэтому твердые тела так же, как и жидкости, обладают поверхностным натяжением.

Опыт показывает, что капля жидкости, находящейся на по­верхности твердой подложки, приобретает ту или иную форму в зависимости от природы твердого тела, жидкости и среды, в ко­торой они находятся. Чтобы уменьшить потенциальную энергию в поле силы тяжести, жидкость всегда стремится принять такую форму, при которой центр ее массы занимает наинизшее положе­ние. Эта тенденция и приводит к растеканию жидкости по по­верхности твердого тела. С другой стороны, силы поверхностного натяжения стремятся придать жидкости форму, соответствующую минимуму поверхностной энергии. Конкуренция между этими силами и приводит к созданию той или иной формы.

Самопроизвольное увеличение площади фазовой границы твер­дое тело - жидкость или жидкость А - жидкость В под влияни­ем молекулярных сил сцепления называется растеканием.

Выясним причины, приводящие к растеканию капли по поверх­ности. На молекулу С (рис. 5.21, а), находящуюся в месте соприкосновения капли жидкости с твердой подложкой, с одной

стороны действуют силы притяжения молекул жидкости, равно­действующая которых Fj_ направлена по биссектрисе краевого угла с другой - молекулы твердого тела, равнодействующая которых F 2 перпендикулярна к его поверхности. Равнодействую­щая R этих двух сил наклонена влево от вертикали, как пока­зано на рисунке. В этом случае стремление жидкости расположить свою поверхность перпендикулярно к R приведет к ее растеканию (смачиванию).

Процесс растекания жидкости прекращается, когда угол Ф (его называют краевым) между касательной к поверхности жид­кости в точке С и поверхностью твердого тела достигает неко­торого предельного значения гт к, характерного для каждой пары жидкость -твердое тело. Если краевой угол острый

(0 ^ ■& ^ -), то жидкость смачивает поверхность твердого

тела и тем лучше, чем он меньше. При $ к = 0 имеет место полное Смачивание, при котором жидкость растекается по по­верхности до образования мономолекулярной пленки. Смачива­ние обычно наблюдается на границе соприкосновения трех фаз, одна из которых является твердым телом (фаза 3), а две дру­гие - несмешивающимися жидкостями или жидкостью и газом (фазы / и 2) (см. рис. 5.21, с).

Если сила F x больше, чем F. 2 , т. е. со стороны жидкости силы притяжения на выделенную молекулу больше, чем со стороны твердого тела, то краевой угол $ будет большим и картина вы­глядит так, как показано на рис. 5.21, б. В этом случае угол Ф тупой (я/2 < § ^ я) и жидкость частично (при неравенстве) или полностью (при равенстве) не смачивает твердую подложку. По отношению к стеклу такой несмачивающей жидкостью яв­ляется, например, ртуть, гдесозд = - 1. Однако та же самая ртуть хорошо смачивает другую твердую подложку, например цинк.

Количественно эти соображения могут быть выражены на

основе следующих представлений. Обозначим через o"i_ 2 , °1-з, 0-2-3 соответственно поверхностное натяжение на границе жидкость - газ, твердое вещество - газ и жидкость -■ твердая поверхность. Направления действия этих сил в сечении будем изображать стрелками (рис. 5.22). На каплю жидкости, нахо­дящуюся на твердой подложке, действуют следующие силы поверхностного натяжения: на границе /-3 -ffi-з, стремя­щаяся растянуть каплю, и на границе 2 - 3 -Ог-з. стремящая­ся стянуть ее к центру. Поверхностное натяжение 04-2 на гра­нице 1-2 направлено по касательной к поверхности капли в точке С. Если краевой угол Ф острый, то проекция силы cri_ 2 на плоскость твердой подложки (ov 2 cos Ф) совпадет по напра­влению с о 2 .-з (рис. 5.22 ; а). В этом случае действия обеих сил

будут складываться. Если же угол ft тупой, как показано на рис. 5.21, б, то cos ft отрицательный и проекция cri._ 2 cosft сов­падет по направлению с O1-.3. При равновесии капли на твер­дой подложке должно соблюдаться следующее равенство:

= 02-3 + СГ1-2 соэФ. (5.12)

Это уравнение было получено в 1805 г. Юнгом и названо его име­нем. Отношение

В = ---^- = cos ft

называют критерием смачивания.

Таким образом, краевой угол ft зависит лишь от поверх­ностных натяжений на границах соответствующих сред, опреде­ляемых их природой, и не зависит от формы сосуда и величи­ны силы тяжести. Когда равенство (5.12) не соблюдено, могут иметь место следующие случаи. Если 01-3 больше правой части уравнения (5.12), то капля будет растекаться, а угол ft-■ уменьшаться. Может случиться так, что cos ft увеличится настолько, что правая часть равенства (5,12) станет равной о"ь_ 3 , тогда наступит равновесие капли в растянутом состоянии. Если же ov_ 3 настолько велико, что даже при cos ft = 1 левая часть равенства (5.12) больше правой (01 _з > 0 2 -з + o"i_ 2)> то капля будет растягиваться в жидкую пленку. Если же правая часть равенства (5.12) больше, чем o"i 3 , то капля стягивается к центру, угол ft увеличивается, a cos ft соответственно умень­шается до тех пор, пока не наступит равновесие. Когда cos ft станет отрицательным, капля примет форму, показанную на рис. 5.22, б. Если окажется, что 0 2 - 3 настолько велико, что даже при cos ft = -1 (ft = я) правая часть равенства (5.12) бу­дет больше o"i (01 <02 з-01-2)1 то в отсутствие силы тя­жести капля стянется в шар. Этот случай можно наблюдать на маленьких каплях ртути на поверхности стекла.

Критерий смачивания можно выразить через работу адгезии и когезии. Адгезией А а называется возникновение связи между поверхностными слоями двух разнородных (твердых или жидких) тел (фаз), приведенных в соприкосновение. Частный случай ад­гезии, когда соприкасающиеся тела одинаковы, называют ко-гезией (обозначается А с). Адгезия характеризуется удельной ра­ботой, затрачиваемой на разделение тел. Эта работа рассчиты­вается на единицу площади соприкосновения поверхностей и зависит от того, как производится их разделение: сдвигом вдоль поверхности раздела или отрывом в направлении, перпендику­лярном к поверхности. Для двух различных тел (фаз) А и В ее можно выразить уравнением

А а = ста + а в -Од-в,

где а а , а в, а А -в - коэффициенты поверхностного натяжения фаз Л и В на границе с воздухом и между ними.

В случае когезии для каждой из фаз Л и В имеем:

АШ = 2аа , А <*> = 2а в.

Для рассматриваемой нами капли

Л С| =2а]_ 2 ; А а = ffi^ 3 -f ai_ 2 - сЬ-з-

Отсюда критерий смачивания можно выразить равенством

В - с

Таким образом, по мере увеличения разности 2А а -Л с смачива­ние улучшается.

Заметим, что коэффициенты cti-з и Оо„ 3 обычно отождест­вляются с поверхностным натяжением твердого тела на грани­цах с газом и жидкостью, тогда как в состоянии термодинами­ческого равновесия поверхность твердого тела обычно покры­та равновесным адсорбционным слоем вещества, образующего каплю. Поэтому при точном решении задачи для равновесных краевых углов величины cri_ 3 и (Тг-з. вообще говоря, следова­ло бы относить не к самому твердому телу, а к покрывающему его адсорбционному слою, термодинамические свойства кото­рого определяются силовым полем твердой подложки.

Явления смачивания особенно ярко проявляются в невесомости. Иссле­дование жидкости в состоянии космической невесомости впервые провел советский летчик-космонавт П. Р. Попович на корабле «Восток-4». В кабине корабля находилась сферическая стеклянная колба, наполовину заполненная водой. Поскольку вода полностью смачивает чистое стекло (О = 0), то в условиях невесомости она растеклась по всей поверхности и замкнула воз­дух внутри колбы. Таким образом, граница раздела между стеклом и воз­духом исчезла, что оказалось энергетически выгодным. Однако краевой угол i} между поверхностью жидкости и стенками колбы и в состоянии не­весомости оставался таким же, каким он был на Земле.

Явления смачивания и несмачивапия широко используются в техни­ке и быту. Например, чтобы сделать ткань водоотталкивающей, ее обра­батывают гидрофобизирующим (ухудшающим смачивание водой) веще­ством (мылонафт, олеиновая кислота и др.). Эти вещества образуют вокруг волокон тонкую пленку, увеличивающую поверхностное натяжение па границе вода - ткань, по лишь незначительно меняющую его на гра­нице ткань - воздух. При этом краевой угол О при контакте с водой воз­растает. В этом случае, если поры малы, вода в них не проникает, а за­держивается выпуклой поверхностной пленкой и собирается в капли, которые легко скатываются с материала.

Песмачивающая жидкость не вытекает через очень малые отверстия. Например, если нити, из которых сплетено решето, покрыть парафином, то в нем можно носить воду, если, конечно, слой жидкости невелик. Бла­годаря этому свойству водоплавающие насекомые, быстро бегающие по воде, не смачивают лапок. Хорошее смачивание необходимо при краше­нии, склеивании, пайке, при диспергировании твердых тел в жидкой сре­де и т. д.