Древнегреческий философ первым определивший радиус земли. §3 От плоской земли к земному шару. Единицы измерения площади земельных участков

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №13

«Кусочные функции»

Сапогова Валентина и

Донская Александра

Руководитель-консультант:

г. Бердск

1. Определение основных целей и задач.

2. Анкетирование.

2.1. Определение актуальности работы

2.2. Практическая значимость.

3. История функций.

4. Общая характеристика.

5. Способы задания функций.

6. Алгоритм построения.

8. Используемая литература.

1. Определение основных целей и задач.

Цель:

Выяснить способ решения кусочных функций и, исходя из этого, составить алгоритм их построения.

Задачи:

— Познакомиться с общим понятием о кусочных функциях;

— Узнать историю термина «функция»;

— Провести анкетирование;

— Выявить способы задания кусочных функций;

— Составить алгоритм их построения;

2. Анкетирование.

Среди старшеклассников было проведено анкетирование на умение строить кусочные функции. Общее количество опрошенных составило 54 человека. Среди них 6% - работу выполнили полностью. 28% работу смогли выполнить, но с определёнными ошибками. 62% - работу не смогли выполнить, хоть и предпринимали какие-либо попытки, а оставшиеся 4% вообще не приступали к работе.

Из этого анкетирования можно сделать вывод, что ученики нашей школы, которые проходят программу имеют не достаточную базу знаний, ведь этот автор не уделяет особого внимания на задания подобного рода. Именно из этого вытекает актуальность и практическая значимость нашей работы.

2.1. Определение актуальности работы.

Актуальность:

Кусочные функции встречаются, как в ГИА, так и в ЕГЭ, задания, которые содержат функции подобного рода, оцениваются в 2 и более баллов. И, следовательно, от их решения может зависеть ваша оценка.

2.2. Практическая значимость.

Результатом нашей работы будет являться алгоритм решения кусочных функций, который поможет разобраться в их построении. И добавит шансы на получения желаемой вами оценки на экзамене.

3. История функций.

— «Алгебра 9 класс» и др.;

Кусочные функции - это функции, заданные разными формулами на разных числовых промежутках. Например,

Такая запись обозначает, что значение функции вычисляется по формуле √x, когда x больше или равен нулю. Когда же x меньше нуля, то значение функции определяется по формуле –x 2 . Например, если x = 4, то f(x) = 2, т. к. в данном случае используется формула извлечения корня. Если же x = –4, то f(x) = –16, т. к. в этом случае используется формула –x 2 (сначала возводим в квадрат, потом учитываем минус).

Чтобы построить график такой кусочной функции, сначала строятся графики двух разных функций не зависимо от значения x (т. е. на всей числовой прямой аргумента). После этого от полученных графиков берутся только те части, которые принадлежат соответствующим диапазонам x. Эти части графиков объединяются в один. Понятно, что в простых случаях чертить можно сразу части графиков, опустив предварительную прорисовку их «полных» вариантов.

Для приведенного выше примера для формулы y = √x получим такой график:

Здесь x в принципе не может принимать отрицательных значений (т. е. подкоренное выражение в данном случае не может быть отрицательным). Поэтому в график кусочной функции уйдет весь график уравнения y = √x.

Построим график функции f(x) = –x 2 . Получим перевернутую параболу:

В данном случае в кусочную функции мы возьмем только ту часть параболы, для которой x принадлежит промежутку (–∞; 0). В результате получится такой график кусочной функции:

Рассмотрим другой пример:

Графиком функции f(x) = (0.6x – 0.5) 2 – 1.7 будет видоизмененная парабола. Графиком f(x) = 0.5x + 1 является прямая:

В кусочной функции x может принимать значения в ограниченных промежутках: от 1 до 5 и от –5 до 0. Ее график будет состоять из двух отдельных частей. Одну часть берем на промежутке от параболы, другую - на промежутке [–5; 0] от прямой:


Совершая путешествия из г. Александрии на юг, в г. Сиену (теперь Асуан), люди замечали, что там летом в тот день, когда солнце бывает всего выше на небе (день летнего солнцестояния - 21 или 22 июня), в полдень оно освещает дно глубоких колодцев, т. е. бывает как раз над головой, в зените. Вертикально стоящие столбы в этот момент не дают тени. В Александрии же и в этот день солнце в полдень не доходит до зенита, не освещает дна колодцев, предметы дают тень.

Эратосфен измерил, насколько полуденное солнце в Александрии отклонено от зенита, и получил величину, равную 7°12", что составляет 1 / 50 окружности. Это ему удалось сделать при помощи прибора, называемого скафисом. Скафис представлял собой чашу в форме полушария. В центре ее отвесно укреплялась

Слева - определение высоты солнца скафисом. В центре - схема направления солнечных лучей: в Сиене они падают вертикально, в Александрии - под углом в 7°12". Справа - направление солнечного луча в Сиене в момент летнего солнцестояния.

Скафис - древний прибор для определения высоты солнца над горизонтом (в разрезе).

игла. Тень от иглы падала на внутреннюю поверхность скафиса. Для измерения отклонения солнца от зенита (в градусах) на внутренней поверхности скафиса проводились окружности, помеченные цифрами. Если, например, тень доходила до окружности, помеченной цифрой 50, солнце стояло на 50° ниже зенита. Построив чертеж, Эратосфен совершенно правильно заключил, что Александрия отстоит от Сиены на 1 / 50 окружности Земли. Чтобы узнать окружность Земли, оставалось измерить расстояние между Александрией и Сиеной и умножить его на 50. Это расстояние было определено по числу дней, которое тратили караваны верблюдов на переход между городами. В единицах того времени оно равнялось 5 тыс. стадий. Если 1 / 50 окружности Земли равняется 5000 стадий, то вся окружность Земли равна 5000х50 = 250 000 стадий. В переводе на наши меры это расстояние приблизительно равно 39 500 км. Зная длину окружности, можно вычислить и величину радиуса Земли. Радиус всякой окружности в 6,283 раза меньше ее длины. Поэтому средний радиус Земли, по Эратосфену, оказался равным круглому числу - 6290 км, а диаметр - 12 580 км. Так Эратосфен нашел приблизительно размеры Земли, близкие к тем, которые определены точными приборами в наше время.

Как проверялась информация о форме и величине земли

После Эратосфена Киренского на протяжении многих столетий никто из ученых не пытался вновь измерить земную окружность. В XVII в. был изобретен надежный способ измерения больших расстояний на поверхности Земли - способ триангуляции (названный так от латинского слова «триангулюм» - треугольник). Этот способ удобен тем, что встречающиеся на пути препятствия - леса, реки, болота и т. п.- не мешают точному измерению больших расстояний. Измерение производится следующим образом: непосредственно на поверхности Земли очень точно измеряют расстояние между двумя близко расположенными точками А и В, из которых видны удаленные высокие предметы - холмы, башни, колокольни и т. п. Если из А и В через зрительную трубу можно разглядеть предмет, находящийся в точке С, то нетрудно измерить в точке А угол между направлениями АВ и АС, а в точке В - угол между ВА и ВС.

После этого по измеренной стороне АВ и двум углам при вершинах А и В можно построить треугольник АBС и, следовательно, найти длины сторон АС и ВС, т. е. расстояния от А до С и от В до С. Такое построение можно выполнить на бумаге, уменьшив все размеры в несколько раз или с помощью вычисления по правилам тригонометрии. Зная расстояние от В до С и наводя из этих точек зрительную трубу измерительного инструмента (теодолита) на предмет в какой-либо новой точке D, тем же путем измеряют расстояния от В до D и от С до D. Продолжая измерения, как бы покрывают часть поверхности Земли сетью треугольников: ABC, BCD и т. д. В каждом из них можно последовательно определить все стороны и углы (см. рис.). После того как измерена сторона АВ первого треугольника (базис), все дело сводится к измерению углов между двумя направлениями. Построив сеть треугольников, можно вычислить по правилам тригонометрии расстояние от вершины одного треугольника до вершины любого другого, как бы далеко друг от друга они ни находились. Так решается вопрос об измерении больших расстояний на поверхности Земли. Практическое применение способа триангуляции - дело далеко не простое. Эту работу могут выполнять только опытные наблюдатели, вооруженные очень точными угломерными инструментами. Обычно для наблюдений приходится сооружать специальные вышки. Работы такого рода поручаются особым экспедициям, которые продолжаются по нескольку месяцев и даже лет.

Способ триангуляции помог ученым уточнить знания о форме и величине Земли. Произошло это при следующих обстоятельствах.

Знаменитый английский ученый Ньютон (1643-1727) высказал мнение, что Земля не может иметь форму точного шара, потому что она вращается вокруг своей оси. Все частицы Земли находятся под влиянием центробежной силы (силы инерции), которая особенно велика

Если нам нужно измерить расстояние от А до D (при этом точку В не видно из точки А), то мы измеряем базис АВ и в треугольнике AВС измеряем углы, прилегающие к базису (a и b). По одной стороне и прилегающим к ней двум углам определяем расстояние АС и BС. Далее из точки С мы с помощью зрительной трубы измерительного инструмента находим точку D, видимую из точки С и точки B. В треугольнике CUB нам известна сторона СВ. Остается измерить прилегающие к пей углы, а затем определить расстояние DB. Зная расстояния DB u AB и угол между этими линиями, можно определить расстояние от А до D.

Схема триангуляции: АB - базис; BE - измеряемое расстояние.

у экватора и отсутствует у полюсов. Центробежная сила у экватора действует против силы тяжести и ослабляет ее. Равновесие между силой тяжести и центробежной силой было достигнуто тогда, когда земной шар у экватора «раздулся», а у полюсов «сплющился» и постепенно приобрел форму мандарина, или, выражаясь научным языком, сфероида. Интересное открытие, сделанное в то же время, подтвердило предположение Ньютона.

В 1672 г. один французский астроном установил, что если точные часы перевезти из Парижа в Кайенну (в Южной Америке, вблизи экватора), то они начинают отставать на 2,5 минуты в сутки. Это отставание происходит потому, что маятник часов около экватора качается медленнее. Стало очевидно, что сила тяжести, которая заставляет маятник качаться, в Кайенне меньше, чем в Париже. Ньютон объяснил это тем, что на экваторе поверхность Земли находится дальше от ее центра, чем в Париже.

Французская академия наук решила проверить правильность рассуждений Ньютона. Если Земля имеет форму мандарина, то дуга меридиана размером в 1° должна удлиняться при приближении к полюсам. Оставалось при помощи триангуляции измерить длину дуги в 1° на разном расстоянии от экватора. Измерить дугу на севере и на юге Франции поручили директору Парижской обсерватории Джованни Кассини. Однако южная дуга у него получилась длиннее северной. Казалось, что Ньютон не прав: Земля не сплюснута, как мандарин, а вытянута подобно лимону.

Но Ньютон не отказался от своих выводов и уверял, что Кассини ошибся при измерениях. Между сторонниками теории «мандарина» и «лимона» разгорелся ученый спор, который длился 50 лет. После смерти Джованни Кассини его сын Жак, также директор Парижской обсерватории, чтобы защитить мнение своего отца, написал книгу, где доказывал, что по законам механики Земля должна быть вытянута, как лимон. Чтобы окончательно решить этот спор, Французская академия наук снарядила в 1735 г. одну экспедицию к экватору, другую - к северному полярному кругу.

Южная экспедиция проводила измерения в Перу. Для измерения была выбрана дуга меридиана длиной около 3° (330 км). Она пересекала экватор и проходила через ряд горных долин и высочайших горных хребтов Америки.

Работа экспедиции продолжалась восемь лет и была сопряжена с большими трудностями и опасностями. Однако ученые выполнили свою задачу: градус меридиана у экватора был измерен с очень большой точностью.

Северная экспедиция работала в Лапландии (так до начала XX в. называлась северная часть Скандинавского и западная часть Кольского полуостровов).

После сравнения результатов работы экспедиций выяснилось, что полярный градус длиннее экваториального. Следовательно, Кассини действительно ошибался, а Ньютон был прав, утверждая, что Земля имеет форму мандарина. Так кончился этот затянувшийся спор, и ученые признали правильность утверждений Ньютона.

В наше время существует особая наука - геодезия, которая занимается определением величины Земли при помощи точнейших измерений ее поверхности. Данные этих измерений позволили достаточно точно определить действительную фигуру Земли.

Геодезические работы по измерению Земли проводились и проводятся в различных странах. Такие работы выполнены и в нашей стране. Еще в прошлом веке русскими геодезистами была проделана очень точная работа по измерению «русско-скандинавской дуги меридиана» протяжением более 25°, т. е. длиной почти в 3 тыс. км. Ее назвали «дугой Струве» в честь основателя Пулковской обсерватории (под Ленинградом) Василия Яковлевича Струве, который задумал эту огромную работу и руководил ею.

Градусные измерения имеют большое практическое значение прежде всего для составления точных карт. Как на карте, так и на глобусе вы видите сеть меридианов - кругов, идущих через полюсы, и параллелей - кругов, параллельных плоскости земного экватора. Карта Земли не могла быть составлена без длительной и кропотливой работы геодезистов, определявших шаг за шагом на протяжении многих лет положение разных мест на земной поверхности и затем наносивших полученные результаты на сеть меридианов и параллелей. Чтобы иметь точные карты, требовалось знать действительную форму Земли.

Результаты измерений Струве и его сотрудников оказались очень важным вкладом в эту работу.

Впоследствии другие геодезисты с большой точностью измерили длины дуг меридианов и параллелей в разных местах земной поверхности. По этим дугам при помощи вычислений удалось определить длину поперечников Земли в плоскости экватора (экваториальный диаметр) и в направлении земной оси (полярный диаметр). Оказалось, что экваториальный диаметр длиннее полярного примерно на 42,8 км. Это еще раз подтвердило, что Земля сжата с полюсов. По последним данным советских ученых, полярная ось на 1 / 298,3 короче экваториальной.

Допустим, мы хотели бы изобразить отклонение формы Земли от шара на глобусе с поперечником в 1 м. Если шар по экватору имеет поперечник точно 1 м, то его полярная ось должна быть всего лишь на 3,35 мм короче! Это столь малая величина, что на глаз ее нельзя обнаружить. Форма Земли, таким образом, очень мало отличается от шара.

Можно подумать, что неровности земной поверхности, и особенно горные вершины, высочайшая из которых Джомолунгма (Эверест) достигает почти 9 км, должны сильно искажать форму Земли. Однако это не так. В масштабе глобуса диаметром в 1 м девятикилометровая гора изобразится в виде прилипшей к нему песчинки диаметром около 3 / 4 мм. Разве только на ощупь, да и то с трудом, можно обнаружить этот выступ. А с той высоты, на которой летают наши корабли-спутники, его можно различить разве по черному пятнышку тени, отбрасываемой им при низком стоянии Солнца.

В наше время размеры и форма Земли очень точно определены учеными Ф. Н. Красовским, А. А. Изотовым и др. Вот числа, показывающие размер земного шара по измерениям этих ученых: длина экваториального диаметра - 12 756,5 км, длина полярного диаметра - 12 713,7 км.

Изучение пути, пройденного искусственными спутниками Земли, позволит определить величину силы тяжести в разных местах над поверхностью земного шара с такой точностью, которой нельзя было достигнуть никаким другим способом. Это в свою очередь позволит внести дальнейшее уточнение в наши знания о размерах и форме Земли.

Постепенное изменение формы земли

Однако, как удалось выяснить при помощи все тех же космических наблюдений и сделанных на их базе специальных вычислений, геоид имеет сложный вид вследствие вращения Земли и неравномерного распределения масс в земной коре, но достаточно хорошо (с точностью до нескольких сотен метров) представляется эллипсоидом вращения, имеющим полярное сжатие 1:293,3 (эллипсоид Красовского).

Тем не менее до самого недавнего времени считалось вполне установленным фактом, что этот небольшой дефект медленно, но верно нивелируется из-за так называемого процесса восстановления гравитационного (изостатического) равновесия, начавшегося примерно восемнадцать тысяч лет назад. Но совсем недавно Земля опять начала сплющиваться.

Геомагнитные измерения, которые с конца 70-х годов стали неотъемлемым атрибутом научно-исследовательских программ спутникового наблюдения, стабильно фиксировали выравнивание гравитационного поля планеты. В общем, с точки зрения мейнстримовских геофизических теорий гравитационная динамика Земли представлялась вполне прогнозируемой, хотя, разумеется, как внутри мейнстрима, так и за его рамками существовали многочисленные гипотезы, по-разному интерпретирующие средне- и долгосрочные перспективы этого процесса, а равно и то, что происходило в прошлой жизни нашей планеты. Довольно большой популярностью пользуется сегодня, скажем, так называемая пульсационная гипотеза, согласно которой Земля периодически то сжимается, то расширяется; есть сторонники и у "контракционной" гипотезы, постулирующей, что в долгосрочном плане размеры Земли будут уменьшаться. Нет единства у геофизиков и по части того, в какой фазе находится сегодня процесс послеледникового восстановления гравитационного равновесия: большинство специалистов полагают, что он довольно близок к завершению, но имеются и теории, утверждающие, что до его конца еще далеко или что он уже прекратился.

Тем не менее, несмотря на обилие разночтений, до конца 90-х годов прошлого века у ученых все-таки не было сколько-нибудь веских причин сомневаться в том, что процесс послеледникового гравитационного выравнивания живет и здравствует. Конец научному благодушию пришел довольно внезапно: потратив несколько лет на проверку и перепроверку результатов, полученных с девяти различных спутников, двое американских ученых, Кристофер Кокс из компании Raytheon и Бенджамен Чао, геофизик Годдардовского центра управления космическими полетами NASA, пришли к удивительному выводу: начиная с 1998 года, "экваториальный охват" Земли (или, как окрестили эту размерность многие западные СМИ, ее "толщина") вновь стал увеличиваться.
Зловещая роль течений океана.

Статья Кокса и Чао, в которой декларируется "обнаружение крупномасштабного перераспределения массы Земли", была опубликована в журнале Science в начале августа 2002 года. Как отмечают авторы исследования, "длительные наблюдения за поведением гравитационного поля Земли показали, что у выравнивавшего его послеледникового эффекта в последние несколько лет неожиданно возник более мощный противник, примерно вдвое превосходящий его по силе гравитационного воздействия". Благодаря этому "таинственному противнику" Земля вновь, как и в последнюю "эпоху Великого Обледенения", начала сплющиваться, то есть с 1998 года в районе экватора происходит нарастание массы вещества, тогда как из полярных зон идет его отток.

Прямых измерительных методик, позволяющих обнаружить этот феномен, у земных геофизиков пока нет, поэтому в своей работе им приходится пользоваться косвенными данными, прежде всего результатами сверхточных лазерных замеров изменений траекторий орбит спутников, происходящих под влиянием колебаний гравитационного поля Земли. Соответственно, говоря о "наблюдаемых перемещениях масс земного вещества", ученые исходят из предположения о том, что именно они ответственны за эти локальные гравитационные колебания. Первые попытки объяснения этого странного явления и предприняты Коксом и Чао.

Версия о каких-либо подземных явлениях, например перетекании вещества в земной магме или ядре, выглядит, по мнению авторов статьи, довольно сомнительной: для того, чтобы подобные процессы возымели хоть сколько-нибудь значимый гравитационный эффект, якобы требуется куда более длительное время, чем смехотворные по научным меркам четыре года. В качестве возможных причин, обусловивших утолщение Земли по экватору, они называют три основных: океаническое воздействие, таяние полярных и высокогорных льдов и некие "процессы в атмосфере". Впрочем, последняя группа факторов ими также сразу отметается - регулярные замеры веса атмосферного столба не дают никаких оснований для подозрений в причастности тех или иных воздушных явлений к возникновению обнаруженного гравитационного феномена.

Далеко не столь однозначной представляется Коксу и Чао гипотеза о возможном влиянии на экваториальное вздутие процесса таяния льда в арктической и антарктической зонах. Этот процесс как важнейший элемент пресловутого глобального потепления мирового климата, безусловно, в той или иной степени может быть ответственен за перенос значительных масс вещества (прежде всего воды) от полюсов к экватору, но сделанные американскими исследователями теоретические расчеты показывают: для того, чтобы он оказался определяющим фактором (в частности, "перекрыл" последствия тысячелетнего "роста положительного рельефа"), размерность ежегодно растапливаемой с 1997 года "виртуальной глыбы льда" должна была бы составлять 10х10х5 километров! Никаких эмпирических свидетельств того, что процесс таяния льда в Арктике и Антарктике за последние годы мог принять подобные масштабы, у геофизиков и метеорологов не имеется. Согласно самым оптимистическим оценкам, совокупный объем растаявших льдин как минимум на порядок меньше этого "суперайсберга", следовательно, даже если он и оказал какое-то влияние на прирост экваториальной массы Земли, едва ли это влияние могло быть столь существенным.

В качестве наиболее вероятной причины, обусловившей внезапное изменение гравитационного поля Земли, Кокс и Чао рассматривают сегодня океаническое воздействие, то есть все тот же перенос больших объемов водной массы Мирового океана от полюсов к экватору, который, однако, связан не столько с быстрым таянием льда, сколько с некими не вполне объяснимыми резкими флуктуациями океанических течений, происходящими в последние годы. Причем, как полагают специалисты, главный кандидат на роль возмутителя гравитационного спокойствия - Тихий океан, точнее, циклические перемещения огромных водных масс из его северных регионов в южные.

Если данная гипотеза окажется верной, человечество в весьма скором будущем может столкнуться с очень серьезными изменениями мирового климата: зловещая роль океанических течений хорошо известна всем мало-мальски знакомым с основами современной метеорологии (чего стоит один Эль-Ниньо). Правда, вполне логичным выглядит и предположение, что внезапное разбухание Земли по экватору - следствие уже идущей полным ходом климатической революции. Но, по большому счету, толком разобраться по свежим следам в этом клубке причинно-следственных взаимосвязей пока едва ли представляется возможным.

Очевидную нехватку понимания происходящих "гравитационных безобразий" прекрасно иллюстрирует небольшой фрагмент интервью самого Кристофера Кокса корреспонденту службы новостей журнала Nature Тому Кларку: "По моему мнению, сейчас можно с высокой степенью определенности (здесь и далее выделено нами. - "Эксперт") говорить лишь об одном: "проблемы с весом" нашей планеты, вероятно, носят временный характер и не являются прямым результатом человеческой деятельности". Однако, продолжая эту словесную эквилибристику, американский ученый тут же еще раз предусмотрительно оговаривается: "Постровидимому, рано или поздно все вернется "к норме", но, возможно, мы заблуждаемся на сей счет".



Кто такой Эратосфен? Считается, что этот человек вычислил достаточно точные размеры Земли, но были у этого древнегреческого ученого и главы знаменитой Александрийской библиотеки и другие достижения. Круг его интересов поражает: от филологии и поэзии до астрономии и математики.

Вклад Эратосфена в географию поражает воображение по сей день. Это во многом обусловлено неординарностью личности древнегреческого ученого. Необходимо раскрыть наименее известные факты в биографии этого загадочного человека и выдающегося ученого, чтобы ответить на вопрос о том, кто такой Эратосфен.

Краткие общие сведения о личности

История сохранила краткие сведения из биографии Эратосфена, однако на него очень часто ссылались авторитетные и знаменитые мудрецы, философы античности: Архимед, Страбон и другие. Датой его рождения принято считать 276 год до н. э. Родился Эратосфен в Африке, в Кирене, поэтому нет ничего удивительного в том, что своё образование он начал в столице птолемеевского Египта - Александрии. Современники не зря дали ему прозвище Пентакл, или многоборец. Живой ум Эратосфена пытался постичь практически все известные на тот момент науки. И как все учёные, он наблюдал за природой. Сохранилось ещё одно прозвище описывающее труды и открытия Эратосфена. Его ещё называли «бетой», или «вторым». Нет, этим они ни в коей мере не хотели унизить его. Это прозвище говорило о его эрудиции и достаточно высоких достижениях в изучении наук.

Что значит быть древним греком?

Древние греки были искусными путешественниками, воинами и торговцами. Новые страны и земли манили их, обещая выгоду и знания. Древняя Греция, разделённая на множество полисов, и существующий пантеон богов, где каждый из них был покровителем определённого полиса, была скорее геополитическим пространством. Греки были не национальностью, это была культурная эллинистическая общность людей, считающая все остальные народы варварскими, которым необходимо помочь, познакомив их с культурой и цивилизацией.

Поэтому Эратосфен, как и большинство древнегреческих философов, так увлечённо любил путешествовать. Тяга к новому и привела его в Афины, где он продолжил своё обучение.

Жизнь в Афинах

В Афинах он не терял времени даром и продолжил обучение. Поэзию ему в своё время, помогал постигать великий Каллимах грамматику - Лисаний. Кроме этого, он ознакомился с философскими учениями и школами стоиков и платонистов. Себя он называл приверженцем последней. Впитывая знания в двух знаменитейших центрах науки и культуры Древней Греции, он лучше всех подходил на роль наставника для наследника. Птолемей III, не скупясь на посулы и обещания, уговорил ученого вернуться в Александрию. И Эратосфен не смог устоять перед возможностью поработать в Александрийской библиотеке, а впоследствии он стал её главой.

Александрийская библиотека

Библиотека была не просто академией или местом собрания древних знаний. Она была сосредоточием науки того времени. Задаваясь вопросом о том, кто такой Эратосфен, нельзя не упомянуть о той деятельности, которую он развернул, будучи назначенным главным хранителем Александрийской библиотеки.

Здесь жили и работали многие знаменитейшие философы античности, а также готовились кадры для администрации Птолемеев. Огромный штат переписчиков и наличие папируса позволяли пополнять фонды на месте. достойно соперничала с Пергамской. Были предприняты ещё некоторые шаги, направленные на увеличение фонда. Все найденные на кораблях свитки и пергаменты бережно копировались.

Ещё одно нововведение Эратосфена - это учреждение целого отдела, изучающего Гомера и его наследие. Немало он тратил и своих личных средств на покупку древних свитков. По некоторым сохранившимся до наших дней сведениям, здесь хранилось свыше семисот тысяч рукописей и пергаментов. Эратосфен продолжил дело своего учителя Каллимаха, который основал научную библиографию. И до 194 года до н. э. верно исполнял возложенные на него обязательства, пока с ним не случилось несчастье - он ослеп и не мог заниматься любимым делом. Это обстоятельство лишило его тягу к жизни, и он умер, перестав принимать пищу.

Крёстный отец географии

Книга Эратосфена «Географика» - это не просто научный труд. В ней была произведена попытка систематизировать полученные на тот момент знания об изучении Земли. Так зародилась новая наука - география. Эратосфена считают и создателем первой карты мира. В ней земную поверхность он разделил условно на 4 зоны. Одну из этих зон он выделил для проживания людей, поместив её строго на севере. По его представлениям и на основании известных тогда данных человек чисто физически не мог существовать южнее. Слишком горячий климат сделал бы это невозможным.

Отдельно стоит упомянуть изобретение системы координат. Это было сделано для упрощения поиска любого пункта на карте. Также были введены впервые такие понятия, как параллели и меридианы. География Эратосфена дополнена ещё одной идеей, которой придерживается и современная наука. Он, как и Аристотель, считал Мировой океан единым и безраздельным.

Официальная история утверждает, что великая Александрийская библиотека была варварски уничтожена римскими легионерами. По этой причине множество древних бесценных трудов не дошли до наших дней. Сохранились лишь некоторые фрагменты и отдельные упоминания. Не стала исключением и «Географика» Эратосфена.

«Катастеризмы» - превращение в созвездие

Древние греки, как и множество других народов, уделяли самое пристальное внимание звёздному небу, о чем свидетельствуют некоторые дошедшие до нас труды. В биографии Эратосфена упоминается его интерес к астрономии. «Катастеризмы» - трактат, в котором соединились древняя мифология греков и наблюдения более чем за 700 небесными объектами. Вопрос об авторстве Эратосфена до сих пор вызывает множество споров. Одна из причин - стилистическая. Крайне сложно поверить, что Эратосфен, уделявший столько внимания поэзии, написал «Катастеризмы» сухим, лишённым любой эмоциональности слогом. Кроме того, этот исторический источник грешит и астрономическими погрешностями. Однако официальная наука приписывает авторство именно Эратосфену.

Измерение размеров Земли

Наблюдательные египтяне заметили один интересный факт, который потом лёг в основу принципа измерения Земли Эратосфеном. В дни солнцестояния в разных уголках Египта солнце освещает дно глубоких колодцев (Сиена), а в Александрии такого явления не наблюдается.

Какой инструмент использовал Эратосфен, чтобы вычислить 19 июня 240 года до н. э. в Александрии в день летнего солнцестояния при помощи чаши с иглой он определил угол нахождения солнца на небе. Отталкиваясь от полученного результата, ученый высчитал радиус и окружность Земли. Она составила по разным источникам от 250000 до 252000 стадий. В переводе на современную систему исчислений получается, что средний радиус Земли составил 6287 километров. Современная наука вычисляет такой радиус и даёт величину, составляющую 6371 км. Стоит отметить, что для того времени такая точность вычисления была просто феноменальной.

Мезолябия

К сожалению, до наших дней практически не сохранились работы Эратосфена в области математики. Все сведения дошли до современности в комментариях Евтокия о письмах Эратосфена к царю Птолемею. В них изложена информация о делийской задаче (или «удвоение куба»), дается описание механического прибора мезолябия, служащего для извлечения кубических корней.

Прибор состоял из трех равных прямоугольных треугольников и двух реек. Одна из фигур закреплена, а остальные две могут передвигаться по рейкам (AB и CD). При условии, что точка K находится на середине стороны DB, а два свободных треугольника расположены таким образом, что пункты пересечения их сторон (L и N) совпадают с прямой AK, объем куба с ребром ML будет в два раза больше куба с ребром DK.

Решето Эратосфена

Этот прием, применяемый ученым, описан в трактате Никомаха Геразенского и служит для определения простых чисел. Было замечено, что некоторые числа можно разделить на 2, 3, 4 и 6, а иные делятся без остатка только сами на себя. Последние (к примеру, 7, 11, 13) и называются простыми. Если нужно определить небольшие числа, то, как правило, проблем не возникает. В случае с большими руководствуются правилом Эратосфена. Во многих источниках до сих пор оно называется и других способов определения простых чисел не изобретено.

Натуральные числа делятся на три группы:

  • имеющие 1 делитель (единица);
  • имеющие 2 делителя (простые числа);
  • имеющие делители больше двух (составные числа).

Суть метода заключается в последовательном вычеркивании всех чисел, кроме простых. Сначала удаляются числа кратные 2, затем 3, и так далее. В конечном результате должна получиться таблица с нетронутыми числами (простыми). Эратосфен выстроил последовательность простых чисел до 1000. В таблице приведены первые пятьсот чисел.

Вместо заключения

При условии сохранности рукописей греческого мыслителя можно было бы составить более полную картину о том, кто такой Эратосфен. Однако история не предоставила современным людям такой возможности. Поэтому описания его изобретений собираются по трактатам и упоминаниям иных авторов.

Не менее загадочной является и жизнь Эратосфена. К сожалению, исторические источники донесли скудную информацию о яркой личности мыслителя и философа. Однако масштабы гения Эратосфена поражают и сегодня. А древнегреческий современник мыслителя Архимед, отдавая должное коллеге, посвятил ему свое творение «Эфодик» (или «Метод»). Эратосфен обладал энциклопедическими знаниями во многих науках, но ему нравилось, когда его называли филологом. Возможно, отсутствие общения с текстами во время болезни и привело его к голодной смерти. Но данный факт нисколько не умаляет заслуг гения Эратосфена.