Искусственный интеллект как научное направление зародилось с. История возникновения искусственного интеллекта. §1. Этапы проектирования ИИС

Как научное направление представляет собой наглядный пример интеграции различных научных областей. Специалисты в естественно-научных областях и вычислительных науках изучают свойства и функционирование живых систем, пользуясь сходными методами.

В целом, искусственный интеллект – это самостоятельная область научных исследований, которая сформировалась в результате достижений в математике и логике и основана на накопленных человечеством знаниях о живой и неживой природе.

Древность

Как таковая устойчивая область научных знаний об искусственном интеллекта сформировалась в середине XX века, однако попытки в этом направлении делались ещё и в глубокой древности, и в средние века.

Еще древние египтяне и римляне испытывали благоговейный ужас перед культовыми статуями, которые жестикулировали и изрекали пророчества. Разумеется, делалось это с непосредственной помощью жрецов.

Средневековье

В средние века в понятие искусственного интеллекта вкладывали задачи создания механической человекоподобной мыслящей машины, способной, возможно, превзойти его по интеллекту. В это время, в частности, говорили о гомункулах – маленьких искусственных человечках, способных воспринимать информацию окружающего мира.

XVIII век

В XVIII веке благодаря развитию техники и, в особенности, часовых механизмов интерес к подобным изобретениям вырос ещё сильнее. В середине 1750-х годов австрийский изобретатель Фридрих фон Кнаус, служивший при дворе Франциска I, сконструировал серию машин, умевших писать пером довольно длинные тексты.

XIX век

Достижения в механике XIX века способствовали новому толчку изобретений в направлении к современному пониманию искусственного интеллекта. В 1830-х годах английский математик Чарльз Бэббидж придумал концепцию сложного цифрового калькулятора – аналитической машины, которая, как утверждал разработчик, могла бы рассчитывать ходы для игры в шахматы. А уже в 1914 году директор одного из испанских технических институтов Леонардо Торрес Кеведо изготовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти также хорошо, как и человек.

XX век

С середины 30-х годов прошлого столетия, с момента публикации работ Тьюринга, в которых обсуждались проблемы создания устройств, способных самостоятельно решать различные сложные задачи, к проблеме искусственного интеллекта стали относиться внимательно в мировом научном сообществе. Тьюринг предложил считать интеллектуальной такую машину, которую испытатель в процессе общения с ней не сможет отличить от человека.

В 1954 году американский исследователь Ньюэлл решил написать программу для игры в шахматы. К работе были привлечены аналитики корпорации RAND Corporation. В качестве теоретической основы программы был использован метод, предложенный основателем теории информации Шенноном, а его точная формализация была выполнена Тьюрингом. К работе также была привлечена группа голландских психологов под руководством Де Гроота, изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 – первый символьный язык обработки списков, а вскоре была написана первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Это была программа «Логик-Теоретик», предназначенная для автоматического доказательства теорем в исчислении высказываний. Собственно же программа для игры в шахматы была завершена в 1957 году. В её основе лежали так называемые эвристики – правила, позволяющие сделать выбор при отсутствии точных теоретических оснований, и описания конечных целей.

Одним из наиболее важных признаков интеллектуальности служит способность к обучению. Так, в 1961 году один из ведущих английских специалистов по искусственному интеллекту профессор Мичи, описал механизм, состоящий из 300 спичечных коробков, который мог научиться играть в «крестики-нолики». Однако делать вывод об интеллектуальности и тем более говорить об искусственном интеллекте, основываясь только на одном единственном признаке, явно недостаточно.

В 1956 году в США собрались основатели кибернетики с целью обсудить возможности реализации проекта «Искусственный интеллект». В числе участников конференции были Маккарти, Минский, Шеннон, Тьюринг и другие. Первоначально к данному понятию отнесли свойства машин брать на себя отдельные функции человека, например, перевод с одного языка на другой, распознавание объектов, принятие оптимальных решений.

В нашей стране направление «Искусственный интеллект» возникло с опозданием примерно на 10 лет и пришло на смену кибернетическому и бионическому буму первой половины 60-х годов XX века.

Практически с самого начала учёные, занимавшиеся этим новым направлением научных знаний, предположили, что к конструктивному определению и моделированию мышления полезно идти от специфики задач, вводя искусственный интеллект как механизм, необходимый для их решения. Таким образом, искусственный интеллект в современном понимании – это совокупность методов и инструментов решения различных сложных прикладных задач, использующих принципы и подходы, аналогичные размышляющему над их решением человеку или процессам, протекающим в живой или неживой природе.

Тем не менее, даже в настоящее время единого и признанного всеми определения искусственного интеллекта не существует. И это не удивительно. Достаточно вспомнить, что универсального определения человеческого интеллекта также нет.

На сегодняшний день исследования в области искусственного интеллекта ведутся по различным направлениям: представление знаний, моделирование рассуждений, приобретение знаний, машинное обучение и автоматическое порождение гипотез, интеллектуальный анализ данных и обработка образной информации, поддержка принятия решений, управление процессами и системами, динамические интеллектуальные системы, планирование и т.д.

Ниже перечислены наиболее активно развиваемые подходы и методы искусственного интеллекта:

  • искусственные нейронные сети ;
  • эволюционные вычисления;
  • нечёткая логика и теория нечётких множеств;
  • экспертные системы;
  • клеточные автоматы;
  • многоагентные системы.

Раньше с понятием искусственного интеллекта (ИИ) связывали надежды на создание мыслящей машины, способной соперничать с человеческим мозгом и, возможно, превзойти его. Эти надежды, на долгое время захватившие воображение многих энтузиастов, так и остались несбывшимися. И хотя фантастические литературные прообразы «умных машин» создавались еще за сотни лет до наших дней, лишь с середины тридцатых годов, с момента публикации работ А. Тьюринга, в которых осуждалась реальность создания таких устройств, к проблеме ИИ стали относиться серьезно.

Для того, чтобы ответить на вопрос, какую машину считать «думающей», Тьюринг предложил использовать следующий тест: испытатель через посредника общается с невидимым для него собеседником человеком или машиной. «Интеллектуальной» может считаться та машина, которую испытатель в процессе такого общения не сможет отличить от человека.

Если испытатель при проверке компьютера на «интеллектуальность» будет придерживаться достаточно жестких ограничений в выборе темы и формы диалога, этот тест выдержит любой современный компьютер, оснащенный подходящим программным обеспечением. Можно было бы считать признаком интеллектуальности умение поддерживать беседу, но, как было показано, эта человеческая способность легко моделируется на компьютере. Признаком интеллектуальности может служить способность к обучению. В 1961 г. профессор Д. Мичи, один из ведущих английских специалистов по ИИ, описал механизм, состоящий из 300 спичечных коробков, который мог научиться играть в крестики и нолики. Мичиназвалэтоустройство MENACE (Matchbox Educable Naughts and Crosses Engine). В названии (угроза) заключается, очевидно, доля иронии, вызванной предубеждениями перед думающими машинами.

До настоящего времени единого и признанного всеми определения ИИ не существует, и это не удивительно. «Достаточно вспомнить, что универсального определения человеческого интеллекта также нет дискуссии о том, что можно считать признаком ИИ, а что нет, напоминают споры средневековых ученых о том, которых интересовало, сколько ангелов смогут разместиться на кончике иглы»1. Сейчас к ИИ принято относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как кто делал бы размышляющий над их решением человек.

Нейросети

Идея нейронных сетей родилась в ходе исследований в области искусственного интеллекта, а именно в результате попыток воспроизвести способность нервных биологических систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Основной областью исследований по искусственному интеллекту в 60-80е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на его представлении как манипуляций с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не охватывают некоторые ключевые аспекты работы человеческого мозга.

Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственный интеллект, необходимо построить систему с похожей архитектурой.

Мозг состоит из очень большого числа (приблизительно 1010) нейронов, соединенных многочисленными связями (в среднем несколько тысяч связей на один нейрон, однако это число может сильно колебаться). Нейроны - это специальные клетки, способные распространять электрохимические сигналы. Нейрон имеет разветвленную структуру ввода информации (дендриты), ядро и разветвляющийся выход (аксон). Аксоны клетки соединяются с дендритами других клеток с помощью синапсов. При активации нейрон посылает электрохимический сигнал по своему аксону. Через синапсы этот сигнал достигает других нейронов, которые могут в свою очередь активироваться. Нейрон активируется тогда, когда суммарный уровень сигналов, пришедших в его ядро из дендритов, превысит определенный уровень (порог активации).

Интенсивность сигнала, получаемого нейроном (а, следовательно, и возможность его активации), сильно зависит от активности синапсов. Каждый синапс имеет протяженность, и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, Дональд Хебб, высказал постулат, что обучение заключается в первую очередь в изменениях силы синоптических связей. Например, в классическом опыте. Павлова каждый раз перед кормлением собаки звонил колокольчик, и собака быстро научилась связывать звонок колокольчика с пищей.

Синоптические связи между участками коры головного мозга, ответственными за слух, и слюнными железами усилились, и при возбуждении коры звуком колокольчика у собаки начиналось слюноотделение.

Таким образом, будучи построен из очень большого числа совсем простых элементов (каждый из которых берет взвешенную сумму входных сигналов и в случае, если суммарный вход превышает определенный уровень, передает дальше двоичный сигнал), мозг способен решать чрезвычайно сложные задачи. Определение формального классического нейрона дается следующим образом:

Он получает входные сигналы (исходные данные или выходные сигналы других нейронов сети) через несколько входных каналов. Каждый входной сигнал проходит через соединение, имеющее определенную интенсивность (или вес); этот вес соответствует синоптической активности биологического нейрона. С каждым нейроном связано определенное пороговое значение. Вычисляется взвешенная сумма входов, из нее вычитается пороговое значение и в результате получается величина активации нейрона.

Сигнал активации преобразуется с помощью функции активации (или передаточной функции) и в результате получается выходной сигнал нейрона.

Если при этом использовать ступенчатую функцию активации, то такой нейрон будет работать точно так же, как описанный выше естественный нейрон.

Нейросети в искусственном интеллекте

Работы по созданию интеллектуальных систем ведутся в двух направлениях. Сторонники первого направления, составляющие сегодня абсолютное большинство среди специалистов в области искусственного интеллекта, исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и проистекающие в ней процессы, присущие биологическим системам. Важно лишь то, что теми или иными средствами удается добиться тех же результатов в поведении, какие характерны для человека и других биологических систем.

Сторонники второго направления считают, что на чисто информационном уровне этого не удастся сделать. Феномены человеческого поведения, его способность к обучению и адаптации, по мнению этих специалистов, есть следствие именно биологической структуры и особенностей её функционирования.

У сторонников первого информационного направления есть реально действующие макеты и программы, моделирующие те или иные стороны интеллекта. Одна из наиболее ярких работ, представляющих первое направление, это программа «Общий решатель задач» А. Ньюэлла, И. Шоу и Г. Саймона. Развитие информационного направления шло от задачи о рационализации рассуждений путем выяснения общих приемов быстрого выявления ложных и истинных высказываний в заданной системе знаний. Способность рассуждать и находить противоречия в различных системах взаимосвязанных ситуаций, объектов, понятий является важной стороной феномена мышления, выражением способности к дедуктивному мышлению.

Результативность информационного направления бесґспорна в области изучения и воспроизведения дедуктивных мыслительных проявлений. Для некоторых практических задач этого достаточно. Информационное направление наука точная, строгая, вобравшая в себя основные результаты изысканий кибернетики и математическую культуру. Главные проблемы информационного направления ввести в свои модели внутреннюю активность и суметь представить индуктивные процедуры.

Одна из центральных проблем, это «проблема активных знаний, порождающих потребности в деятельности системы из-за тех знаний, которые накопились в памяти системы»1.

У сторонников второго биологического направления результатов пока существенно меньше, чем надежд. Одним из родоначальников биологического направления в кибернетике является У. Мак-Каллок. В нейрофизиологии установлено, что целый ряд функций и свойств у живых организмов реализованы с помощью определенных нейронных структур. На основе воспроизведения таких структур в ряде случаев получены хорошие модели, в особенности это касается некоторых сторон работы зрительного тракта.

Создание нейрокомпьютеров, моделирующих нейронные сети (НС), в настоящее время рассматривается как одно из наиболее перспективных направлений в решении проблем интеллектуализации вновь создаваемых ЭВМ и информационно-аналитических систем нового поколения.

В большей части исследований на эту тему НС представляется как совокупность большого числа сравнительно простых элементов, топология соединений которых зависит от типа сети. Практически все известные подходы к проектированию НС связаны в основном с выбором и анализом некоторых частных структур однородных сетей на формальных нейронах с известными свойствами (сети Хопфилда, Хемминга, Гроссберга, Кохоннена и др.) и некоторых описанных математически режимов их работы. В этом случае термин нейронные сети метафоричен, поскольку он отражает лишь то, что эти сети в некотором смысле подобны живым НС, но не повторяют их во всей сложности. Вследствие такой трактовки нейронные ЭВМ рассматриваются в качестве очередного этапа высоко параллельных супер-ЭВМ с оригинальной идеей распараллеливания алгоритмов решения разных классов задач. Сам термин нейронная ЭВМ нейрокомпьютер, как правило, никак не связан с какими-то ни было свойствами и характеристиками мозга человека и животных. Он связан только с условным наименованием порогового логического элемента как формального нейрона с настраиваемыми или фиксированными весовыми коэффициентами, который реализует простейшую передаточную функцию нейрона-клетки. Исследования в области создания нейроинтеллекта ведутся на различных уровнях: теоретический инструментарий, прототипы для прикладных задач, средства программного обеспечения НС, структуры аппаратных средств. Основными этапами на пути создания мозгоподобного компьютера являются выяснение принципов образования межэлементных связей и мозгоподобных системах адаптивных сетях с большим числом элементов, создание компактного многовходового адаптивного элемента аналога реального нейрона, исследование его функциональных особенностей, разработка и реализация программы обучения мозгоподобного устройства.

Краткая история искусственного интеллекта

Основные направления исследований в области искусственного интеллекта

Представление знаний и вывод на знаниях

Нечеткие знания

Прикладные интеллектуальные системы

1.1. Краткая история искусственного интеллекта

1.1.1. Предыстория

Идея создания искусственного подобия человека для решения сложных задач и моделирования человеческого разума витала в воздухе еще в древнейшие времена. Так, в древнем Египте была создана «оживающая» механическая статуя бога Амона. У Гомера в «Илиаде» бог Гефест ковал человекоподобные существа-автоматы. В литературе эта идея обыгрывалась многократно: от Галатеи Пигмалиона до Буратино папы Карло. Однако родоначальником искусственного интеллекта считается средневековый испанский философ, математик и поэт Раймонд Луллий, который еще в XIII веке попытался создать механическую машину для решения различных задач, на основе разработанной им всеобщей классификации понятий. В ХУШ веке Лейбниц и Декарт независимо друг от друга продолжили эту идею, предложив универсальные языки классификации всех наук. Эти работы можно считать первыми теоретическими работами в области искусственного интеллекта. Окончательное рождение искусственного интеллекта как научного направления произошло только после создания ЭВМ в 40-х годах XX века. В это же время Норберт Винер создал свои основополагающие работы по новой науке - кибернетике.

Термин «искусственный интеллект» - ИИ - (AI - artificial intelligence) был предложен в 1956 г. на семинаре с аналогичным названием в Дартсмутском колледже (США). Семинар был посвящен разработке методов решения логических, а не вычислительных задач. В английском языке данное словосочетание не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть термин intellect.

Вскоре после признания искусственного интеллекта отдельной областью науки произошло разделение его на два направления: нейрокибернетика и «кибернетика черного ящика». Эти направления развиваются практически независимо, существенно различаясь как в методологии, так и в технологии. И только в настоящее время стали заметны тенденции к объединению этих частей вновь в единое целое.

Искусственный интеллект – это одна из новейших областей науки. Первые работы в этой области начались вскоре после Второй мировой войны, а само ее название было предложено в 1956 году. В настоящее время тематика искусственного интеллекта охватывает огромный перечень научных направлений, начиная с таких задач общего характера, как обучение и восприятие, и заканчивая такими специальными задачами, как игра в шахматы, доказательство математических теорем, сочинение поэтических произведений и диагностика заболеваний. В искусственном интеллекте систематизируются и автоматизируются интеллектуальные задачи и поэтому эта область касается любой сферы интеллектуальной деятельности человека. В этом смысле искусственный интеллект является поистине универсальной научной областью.

Разные ученые определяют искусственный интеллект по-разному. Все эти определения могут быть разбиты на 4 категории:

1. Системы, которые думают подобно людям.

2. Системы, которые думают рационально.

3. Системы, которые действуют подобно людям.

4. Системы, которые действуют рационально.

В рамках каждой, из приведенных категорий, могут быть даны следующие определения искусственного интеллекта:

1. Новое захватывающее направление работ по созданию компьютеров, способных думать, … машин, обладающих разумом, в полном и буквальном смысле этого слова. (Haugeland J.)

2. Изучение умственных способностей с помощью вычислительных моделей. (Charniak E., McDermott D.)

3. Наука о том, как научить компьютеры делать то, в чем люди в настоящее время их превосходят (Rich E., Knight K.)

4. Искусственный интеллект – это наука, посвященная изучению интеллектуального поведения артефактов (искусственных объектов). (Nilsson N.J.)

Какова же история искусственного интеллекта и какие науки внесли свой вклад в ее создание?

1. Философия.

В рамках этой науки возникли следующие вопросы:

· Могут ли использоваться формальные правила для вывода правильных заключений?

· Как такой идеальный объект, как мысль, рождается в таком физическом объекте, как мозг?



· Каково происхождение знаний?

· Каким образом знания ведут к действиям?

Ответы на эти вопросы пытались найти многие ученые, начиная с Аристотеля (4 век до н.э.), которым был сформулирован точный свод законов, руководящих рациональной частью мышления. Он разработал неформализованную систему силлогизмов, предназначенную для проведения правильных рассуждений, которая позволяла любому вырабатывать логические заключения механически, при наличии начальных предпосылок. Гораздо позднее Раймунд Луллий (13-14 век) выдвинул идею, что полезные рассуждения можно фактически проводить с помощью механического артефакта. Томас Гоббс (17 век) предположил, что рассуждения аналогичны числовым расчетам и что "в наших неслышимых мыслях мы поневоле складываем и вычитаем".

В 1623 г. немецким ученым Вильгельмом Шиккаром была создана первая вычислительная машина, хотя более известна арифметическая машина, созданная в 1642 году Блезом Паскалем. Паскаль писал, что "арифметическая машина производит эффект, который кажется более близким к мышлению по сравнению с любыми действиями животных". Позднее Готтфрид Вильгельм Лейбниц A646-1716) создал механическое устройство, предназначенное для выполнения операций над понятиями, а не над числами, но область его действия была довольно ограниченной.

После того как человечество осознало, каким должен быть набор правил, способных описать формальную, рациональную часть мышления, следующим этапом оказалось то, что разум стал рассматриваться как физическая система. Рене Декарт впервые опубликовал результаты обсуждения различий между разумом и материей, а также возникающих при этом проблем. Одна из проблем, связанных с чисто физическими представлениями о разуме, состоит в том, что они, по-видимому, почти не оставляют места для свободной воли: ведь если разум руководствуется исключительно физическими законами, то человек проявляет не больше свободной воли по сравнению с булыжником, "решившим" упасть в направлении к центру земли.

Несмотря на то что Декарт был убежденным сторонником взглядов, признающих только власть разума, он был также приверженцем дуализма. Декарт считал, что существует такая часть человеческого разума (душа, или дух), которая находится за пределами естества и не подчиняется физическим законам. С другой стороны, животные не обладают таким дуалистическим свойством, поэтому их можно рассматривать как своего рода машины. Альтернативой дуализму является материализм, согласно которому разумное поведение складывается из операций, выполняемых мозгом в соответствии с законами физики. Свободная воля – это просто форма, в которую в процессе выбора преобразуется восприятие доступных вариантов.

Если предположить, что знаниями манипулирует физический разум, то возникает следующая проблема – установить источник знаний. Такое научное направление, как эмпиризм, родоначальником которого был Фрэнсис Бекон (16-17 века), можно охарактеризовать высказыванием Джона Локка (17-18 века): "В человеческом понимании нет ничего, что не проявлялось бы прежде всего в ощущениях". Дэвид Юм (18 век) предложил метод, известный теперь под названием принципа индукции, который состоит в том, что общие правила вырабатываются путем изучения повторяющихся ассоциаций между элементами, которые рассматриваются в этих правилах. Основываясь на работе Людвига Виттгенштейна и Бертрана Рассела (19-20 века), знаменитый Венский кружок, возглавляемый Рудольфом Карнапом, разработал доктрину логического позитивизма. Согласно этой доктрине все знания могут быть охарактеризованы с помощью логических теорий, связанных в конечном итоге с констатирующими предложениями, которые соответствуют входным сенсорным данным. В теории подтверждения Рудольфа Карнапа и Карла Хемпеля (20 век) предпринята попытка понять, как знания могут быть приобретены из опыта. Карнап определил явно заданную вычислительную процедуру для извлечения знаний из результатов элементарных опытов. По-видимому, это – первая теория мышления как вычислительного процесса.

Последним вопросом философских исследований, наиболее важным для искусственного интеллекта, является связь между знаниями и действиями, поскольку интеллектуальность требует не только размышлений, но и действий. Кроме того, только поняв способы обоснования действий, можно понять, как создать агента, действия которого будут обоснованными (или рациональными). Под агентом мы будем подразумевать все, что действует. Аристотель утверждал, что действия обоснованы логической связью между целями и знаниями о результатах данного конкретного действия. Он приводил следующие рассуждения:

Нам предоставляется право выбора не целей, а средств достижения цели, ведь врач рассуждает не о том, должен ли он лечить, а оратор - не о том, станет ли он убеждать... Поставив цель, он размышляет, как и какими средствами ее достичь; а если окажется несколько средств, то определяет, какое из них самое простое и наилучшее; если же достижению цели служит одно средство, думает, как ее достичь при помощи этого средства и что будет средством для этого средства, пока не дойдет до первой причины, которую находит последней... и то, что было последним в порядке анализа, обычно становится первым в порядке осуществления... Если же он приходит к выводу, что цель недостижима, отступается, например, если нужны деньги, а достать их нельзя; но если достижение цели кажется возможным, то пытается ее достичь.

Анализ на основе цели является полезным, но не дает ответа на то, что делать, если к цели ведет несколько вариантов действий или ни один вариант действий не позволяет достичь ее полностью. Антуан Арно (17 век) описал количественную формулу для принятия решения о том, какое действие следует предпринять в подобных случаях: "Чтобы судить о том, что следует делать, чтобы получить хорошее или избежать плохого, необходимо рассматривать не только хорошее и плохое само по себе, но и вероятность того, произойдет ли оно или не произойдет, а также рассматривать математически пропорцию, в которой все эти обстоятельства встречаются вместе."

2. Математика.

Данная наука пыталась ответить на следующие вопросы:

· Каковы формальные правила формирования правильных заключений?

· Как определить пределы вычислимости?

· Как проводить рассуждения с использованием недостоверной информации?

Философы сформулировали наиболее важные идеи искусственного интеллекта, но для преобразования его в формальную науку потребовалось достичь определенного уровня математической формализации в трех фундаментальных областях: логика, вычисления и вероятность.

Истоки идей формальной логики можно найти в работах философов древней Греции, но ее становление как математической дисциплины фактически началась с трудов Джорджа Буля (19 век), который детально разработал логику высказываний, или булеву логику. В 1879 году Готтлоб Фреге расширил булеву логику для включения в нее объектов и отношений, создав логику первого порядка, которая в настоящее время используется как наиболее фундаментальная система представления знаний. Альфред Тарский (20 век) впервые ввел в научный обиход теорию ссылок, которая показывает, как связать логические объекты с объектами реального мира. Следующий этап состоял в определении пределов того, что может быть сделано с помощью логики и вычислений.

Первым нетривиальным алгоритмом считается алгоритм вычисления наибольшего общего знаменателя, предложенный Евклидом. Исследование алгоритмов как самостоятельных объектов было начато аль-Хорезми, среднеазиатским математиком IX столетия, благодаря работам которого Европа познакомилась с арабскими цифрами и алгеброй. Буль и другие ученые широко обсуждали алгоритмы логического вывода, а к концу XIX столетия уже предпринимались усилия по формализации общих принципов проведения математических рассуждений как логического вывода. В 1900 году Давид Гильберт представил список из 23 проблем и правильно предсказал, что эти проблемы будут занимать математиков почти до конца XX века. Последняя из этих проблем представляет собой вопрос о том, существует ли алгоритм для определения истинности любого логического высказывания, в состав которого входят натуральные числа. Это – так называемая проблема поиска решения. По сути, этот вопрос, заданный Гильбертом, сводился к определению того, есть ли фундаментальные пределы, ограничивающие мощь эффективных процедур доказательства. В 1930 году Курт Гёдель показал, что существует эффективная процедура доказательства любого истинного высказывания в логике первого порядка Фреге и Рассела, но при этом логика первого порядка не позволяет выразить принцип математической индукции, необходимый для представления натуральных чисел. В 1931 году Гёдель показал, что действительно существуют реальные пределы вычислимости. Предложенная им теорема о неполноте показывает, что в любом языке, достаточно выразительном для описания свойств натуральных чисел, существуют истинные высказывания, которые являются недоказуемыми, в том смысле, что их истинность невозможно установить с помощью какого-либо алгоритма.

Этот фундаментальный результат может также рассматриваться как демонстрация того, что имеются некоторые функции от целых чисел, которые не могут быть представлены с помощью какого-либо алгоритма, т.е. они не могут быть вычислены.

Это побудило Алана Тьюринга попытаться точно охарактеризовать, какие функции способны быть вычисленными. Этот подход фактически немного проблематичен, поскольку в действительности понятию вычисления, или эффективной процедуры вычисления, не может быть дано формальное определение. Но общепризнано, что вполне удовлетворительное определение дано в тезисе Чёрча-Тьюринга, который указывает, что машина Тьюринга способна вычислить любую вычислимую функцию. Кроме того, Тьюринг показал, что существуют некоторые функции, которые не могут быть вычислены машиной Тьюринга. Например, вообще говоря, ни одна машина не способна определить, возвратит ли данная конкретная программа ответ на конкретные входные данные или будет работать до бесконечности (проблема зацикливания).

Хотя для понимания возможностей вычисления очень важны понятия недоказуемости и невычислимости, гораздо большее влияние на развитие искусственного интеллекта оказало понятие неразрешимости. Грубо говоря, задача называется неразрешимой, если время, требуемое для решения отдельных экземпляров этой задачи, растет экспоненциально с увеличением размеров этих экземпляров. Различие между полиномиальным и экспоненциальным ростом сложности было впервые подчеркнуто в середине 1960-х годов в работах Кобхэма и Эдмондса.

Важность этого открытия состоит в следующем: экспоненциальный рост означает, что даже экземпляры задачи умеренной величины не могут быть решены за какое-либо приемлемое время. Поэтому, например, приходится заниматься разделением общей задачи выработки интеллектуального поведения на разрешимые подзадачи, а не пытаться решать неразрешимую задачу.

Как можно распознать неразрешимую проблему? Один из приемлемых методов такого распознавания представлен в виде теории NP-полноты, впервые предложенной Стивеном Куком и Ричардом Карпом. Кук и Карп показали, что существуют большие классы канонических задач комбинаторного поиска и формирования рассуждений, которые являются NP-полными. Существует вероятность того, что любой класс задач, к которому сводится этот класс NP-полных задач, является неразрешимым.

Эти результаты контрастируют с тем оптимизмом, с которым в популярных периодических изданиях приветствовалось появление первых компьютеров под такими заголовками, как "Электронные супермозги", которые думают "быстрее Эйнштейна!" Несмотря на постоянное повышение быстродействия компьютеров, характерной особенностью интеллектуальных систем является экономное использование ресурсов. Грубо говоря, наш мир, в котором должны освоиться системы ИИ, – это чрезвычайно крупный экземпляр задачи.

Кроме логики и теории вычислений, третий по величине вклад математиков в искусственный интеллект состоял в разработке теории вероятностей. Идея вероятности была впервые сформулирована итальянским математиком Джероламо Кардано (16 век), который описал ее в терминах результатов событий с несколькими исходами, возникающих в азартных играх. Теория вероятностей быстро стала неотъемлемой частью всех количественных наук, помогая использовать недостоверные результаты измерений и неполные теории. Пьер Ферма, Блез Паскаль, Джеймс Бернулли (17 век), Пьер Лаплас (18-19 века) и другие ученые внесли большой вклад в эту теорию и ввели новые статистические методы. Томас Байес (18 век) предложил правило обновления вероятностей с учетом новых фактов. Правило Байеса и возникшее на его основе научное направление, называемое байесовским анализом, лежат в основе большинства современных подходов к проведению рассуждений с учетом неопределенности в системах искусственного интеллекта.

3. Экономика.

В рамках данной науки возникли такие вопросы:

· Как следует организовать принятие решений для максимизации вознаграждения?

· Как действовать в таких условиях, когда другие могут препятствовать осуществлению намеченных действий?

· Как действовать в таких условиях, когда вознаграждение может быть предоставлено лишь в отдаленном будущем?

Экономика как наука возникла в 1776 году. Ее основателем считается шотландский философ Адам Смит. Он впервые сумел оформить эту область знаний как науку, используя идею, что любую экономику можно рассматривать как состоящую из отдельных агентов, стремящихся максимизировать свое собственное экономическое благосостояние. Большинство людей считают, что экономика посвящена изучению денежного оборота, но любой экономист ответит на это, что в действительности он изучает то, как люди делают выбор, который ведет к предпочтительным для них результатам. Математическая трактовка понятия "предпочтительных результатов", или полезности, была впервые формализована Леоном Валрасом (19-20 века), уточнена Фрэнком Рамсеем, а затем усовершенствована Джоном фон Нейманом и Оскаром Моргенштерном.

Теория решений, которая объединяет в себе теорию вероятностей и теорию полезности, предоставляет формальную и полную инфраструктуру для принятия решений (в области экономики или в другой области) в условиях неопределенности, т.е. в тех случаях, когда среда, в которой действует лицо, принимающее решение, наиболее адекватно может быть представлена лишь с помощью вероятностных описаний. Она хорошо подходит для «крупных» экономических образований, где каждый агент не обязан учитывать действия других агентов как индивидуумов. А в "небольших" экономических образованиях ситуация в большей степени напоминает игру, поскольку действия одного игрока могут существенно повлиять на полезность действий другого (или положительно, или отрицательно). Теория игр, разработанная фон Нейманом и Моргенштерном, позволяет сделать вывод, что в некоторых играх рациональный агент должен действовать случайным образом или, по крайней мере, таким образом, который кажется случайным для соперников.

Экономисты чаще всего не стремятся найти ответ на третий вопрос, приведенный выше, т.е. не пытаются выработать способ принятия рациональных решений в тех условиях, когда вознаграждение в ответ на определенные действия не предоставляется немедленно, а становится результатом нескольких действий, выполненных в определенной последовательности. Изучению этой темы посвящена область исследования операций.

Работы в области экономики и исследования операций оказали большое влияние на формирование понятия рациональных агентов, но в течение многих лет исследования в области искусственного интеллекта проводились совсем по другим направлениям. Одной из причин этого была кажущаяся сложность задачи выработки рациональных решений. Тем не менее Герберт Саймон (20 век) показал, что лучшее описание фактического поведения человека дают модели, основанные на удовлетворении (принятии решений, которые являются "достаточно приемлемыми"), а не модели, предусматривающие трудоемкий расчет оптимального решения, и стал одним из первых исследователей в области искусственного интеллекта, получившим Нобелевскую премию по экономике (это произошло в 1978 году).

4. Неврология.

В рамках этой науки ученые пытались ответить на вопрос о том, как происходит обработка информации в мозгу?

Неврология – это наука, посвященная изучению нервной системы, в частности мозга. Одной из величайших загадок, не поддающихся научному описанию, остается определение того, как именно мозг обеспечивает мышление.

5. Психология.

Как думают и действуют люди и животные?

В 1879 году в Лейпцигском университете была открыта первая лаборатория по экспериментальной психологии. Ее основателем был Вильгельма Вундт. Он настаивал на проведении тщательно контролируемых экспериментов, в которых его сотрудники выполняли задачи по восприятию или формированию ассоциаций, проводя интроспективные наблюдения за своими мыслительными процессами. Такой тщательный контроль позволил ему сделать очень многое для превращения психологии в науку, но из-за субъективного характера данных вероятность того, что экспериментатор будет стремиться опровергнуть выдвинутые им теории, оставалась очень низкой. Сторонники бихевиористского движения, возглавляемые Джоном Уотсоном (20 век) отвергали любую теорию, учитывающую мыслительные процессы, на том основании, что интроспекция не может предоставлять надежные свидетельства. Бихевиористы настаивали на том, что следует изучать только объективные меры восприятия (или стимулы), предъявленные животному, и вытекающие из этого действия (или отклики на стимулы). Такие мыслительные конструкции, как знания, убеждения, цели и последовательные рассуждения, отвергались как ненаучная "обывательская психология".

Кеннет Крэг (20 век) привел весомые доводы в пользу допустимости применения таких "мыслительных" терминов, как убеждения и цели, доказав, что они являются не менее научными, чем, скажем, такие термины, применяемые в рассуждениях о газах, как давление и температура, несмотря на то, что речь в них идет о молекулах, которые сами не обладают этими характеристиками. Крэг обозначил следующие три этапа деятельности агента, основанного на знаниях: во-первых, действующий стимул должен быть преобразован во внутреннее представление, во-вторых, с этим представлением должны быть выполнены манипуляции с помощью познавательных процессов для выработки новых внутренних представлений, и, в-третьих, они должны быть, в свою очередь, снова преобразованы в действия. Он наглядно объяснил, почему такой проект является приемлемым для любого агента.

Если живой организм несет в своей голове "модель в уменьшенном масштабе" внешней реальности и своих возможных действий, то обладает способностью проверять различные варианты, приходить к заключению, какой из них является наилучшим, реагировать на будущие ситуации, прежде чем они возникнут, использовать знания о прошлых событиях, сталкиваясь с настоящим и будущим, и во всех отношениях реагировать на опасности, встречаясь с ними, гораздо полнее, безопаснее для себя, а также в более компетентной форме.

Работа Крэга была продолжена Дональдом Броудбентом, который привел первые примеры моделей информационной обработки психологических феноменов.

Работы в области компьютерного моделирования привели к созданию такого научного направления, как когнитология. Существует такое мнение, что зарождение этого направления произошло на одном из семинаров в Массачусетсском технологическом институте в сентябре 1956 года. На этом семинаре было показано, как можно использовать компьютерные модели для решения задач в области психологии, запоминания, обработки естественного языка и логического мышления. В настоящее время среди психологов находят широкое признание взгляды на то, что "любая теория познания должна напоминать компьютерную программу", т.е. она должна подробно описывать механизм обработки информации, с помощью которого может быть реализована некоторая познавательная функция.

6. Вычислительная техника.

Каким образом можно создать эффективный компьютер?

Для успешного создания искусственного интеллекта требуется, во-первых, интеллект и, во-вторых, артефакт. Наиболее предпочтительным артефактом в этой области всегда был компьютер.

Искусственный интеллект во многом обязан тем направлениям компьютерных наук, которые касаются программного обеспечения, поскольку именно в рамках этих направлений создаются операционные системы, языки программирования и инструментальные средства, необходимые для написания современных программ. Но эта область научной деятельности является также одной из тех, где искусственный интеллект в полной мере возмещает свои долг: работы в области искусственного интеллекта стали источником многих идей, которые затем были воплощены в основных направлениях развития компьютерных наук, включая разделение времени, интерактивные интерпретаторы, персональные компьютеры с оконными интерфейсами и поддержкой позиционирующих устройств, применение среды ускоренной обработки, создание типов данных в виде связных списков, автоматическое управление памятью и ключевые концепции символического, функционального, динамического и объектно-ориентированного программирования.

7. Теория управления и кибернетика.

Каким образом артефакты могут работать под своим собственным управлением?

Первое самоуправляемое устройство было построено Ктесибием из Александрии (примерно в 250 году до н.э.); это были водяные часы с регулятором, который поддерживал поток воды, текущий через эти часы с постоянным, предсказуемым расходом. Это изобретение изменило представление о том, на что могут быть способны устройства, созданные человеком. До его появления считалось, что только живые существа способны модифицировать свое поведение в ответ на изменения в окружающей среде. К другим примерам саморегулирующихся систем управления с обратной связью относятся регулятор паровой машины, созданный Джеймсом Уаттом (18-19 века), и термостат, изобретенный Корнелисом Дреббелем (16-17 века), который изобрел также подводную лодку. Математическая теория устойчивых систем с обратной связью была разработана в XIX веке.

Центральной фигурой в создании науки, которая теперь именуется теорией управления, был Норберт Винер (20 век). Винер был блестящим математиком, который совместно работал со многими учеными, включая Бертрана Рассела, под влиянием которых у него появился интерес к изучению биологических и механических систем управления и их связи с познанием. Как и Крэг (который также использовал системы управления в качестве психологических моделей), Винер и его коллеги Артуро Розенблют и Джулиан Бигелоу бросили вызов ортодоксальным бихевиористским взглядам. Они рассматривали целенаправленное поведение как обусловленное действием регуляторного механизма, пытающего минимизировать "ошибку" – различие между текущим и целевым состоянием. В конце 1940-х годов Винер совместно с Уорреном Мак-Каллоком, Уолтером Питтсом и Джоном фон Нейманом организовал ряд конференций, на которых рассматривались новые математические и вычислительные модели познания; эти конференции оказали большое влияние на взгляды многих других исследователей в области наук о поведении. Винер впервые дал определение кибернетики как науки, и убедил широкие круги общественности в том, что мечта о создании машин, обладающих искусственным интеллектом, воплотилась в реальность.

Предметом современной теории управления, особенно той ее ветви, которая получила название стохастического оптимального управления, является проектирование систем, которые максимизируют целевую функцию во времени. Это примерно соответствует представлению об искусственном интеллекте как о проектировании систем, которые действуют оптимальным образом. Почему же в таком случае искусственный интеллект и теория управления рассматриваются как две разные научные области, особенно если учесть, какие тесные взаимоотношения связывали их основателей? Ответ на этот вопрос состоит в том, что существует также тесная связь между математическими методами, которые были знакомы участникам этих разработок, и соответствующими множествами задач, которые были охвачены в каждом из этих подходов к описанию мира. Дифференциальное и интегральное исчисление, а также алгебра матриц, являющиеся инструментами теории управления, в наибольшей степени подходят для анализа систем, которые могут быть описаны с помощью фиксированных множеств непрерывно изменяющихся переменных; более того, точный анализ, как правило, осуществим только для линейных систем. Искусственный интеллект был отчасти основан как способ избежать ограничений математических средств, применявшихся в теории управления в 1950-х годах. Такие инструменты, как логический вывод и вычисления, позволили исследователям искусственного интеллекта успешно рассматривать некоторые проблемы (например, понимание естественного языка, зрение и планирование), полностью выходящие за рамки исследований, предпринимавшихся теоретиками управления.

8. Лингвистика.

Каким образом язык связан с мышлением?

В 1957 году Ноам Хомский показал, что бихевиористская теория не позволяет понять истоки творческой деятельности, осуществляемой с помощью языка, – она не объясняет, почему ребенок способен понимать и складывать предложения, которые он до сих пор никогда еще не слышал. Теория Хомского, основанная на синтаксических моделях, восходящих к работам древнеиндийского лингвиста Панини (примерно 350 год до н.э.), позволяла объяснить этот феномен, и, в отличие от предыдущих теорий, оказалась достаточно формальной для того, чтобы ее можно было реализовать в виде программ.

Таким образом, современная лингвистика и искусственный интеллект, которые "родились" примерно в одно и то же время и продолжают вместе расти, пересекаются в гибридной области, называемой вычислительной лингвистикой или обработкой естественного языка. Вскоре было обнаружено, что проблема понимания языка является гораздо более сложной, чем это казалось в 1957 году. Для понимания языка требуется понимание предмета и контекста речи, а не только анализ структуры предложений. Это утверждение теперь кажется очевидным, но сам данный факт не был широко признан до 1960-х годов. Основная часть ранних работ в области представления знаний (науки о том, как преобразовать знания в такую форму, с которой может оперировать компьютер) была привязана к языку и подпитывалась исследованиями в области лингвистики, которые, в свою очередь, основывались на результатах философского анализа языка, проводившегося в течение многих десятков лет.

Итак, такова предыстория искусственного интеллекта. Перейдем теперь к самому процессу развития искусственного интеллекта.

Появление предпосылок искусственного интеллекта (период с 1943 года по 1955 год)

Первая работа, которая теперь по общему признанию считается относящейся к искусственному интеллекту, была выполнена Уорреном Мак-Каллоком и Уолтером Питтсом. В этой работе им понадобилось: знание основ физиологии и назначения нейронов в мозгу; формальный анализ логики высказываний, взятый из работ Рассела и Уайтхеда; а также теория вычислений Тьюринга. Мак-Каллок и Питтс предложили модель, состоящую из искусственных нейронов, в которой каждый нейрон характеризовался как находящийся во "включенном" или "выключенном" состоянии, а переход во "включенное" состояние происходил в ответ на стимуляцию достаточного количества соседних нейронов. Состояние нейрона рассматривалось как "фактически эквивалентное высказыванию, в котором предлагается адекватное количество стимулов". Работы этих ученых показали, например, что любая вычислимая функция может быть вычислена с помощью некоторой сети из соединенных нейронов и что все логические связки ("И", "ИЛИ", "НЕ" и т.д.) могут быть реализованы с помощью простых сетевых структур. Кроме того, Мак-Каллок и Питтс выдвинули предположение, что сети, структурированные соответствующим образом, способны к обучению. Дональд Хебб продемонстрировал простое правило обновления для модификации количества соединений между нейронами. Предложенное им правило, называемое теперь правилом хеббовского обучения, продолжает служить основой для моделей, широко используемых и в наши дни.

Два аспиранта факультета математики Принстонского университета, Марвин Минский и Дин Эдмондс, в 1951 году создали первый сетевой компьютер на основе нейронной сети. В этом компьютере, получившем название Snare, использовалось 3000 электронных ламп и дополнительный механизм автопилота с бомбардировщика В-24 для моделирования сети из 40 нейронов. Аттестационная комиссия, перед которой Минский защищал диссертацию доктора философии, выразила сомнение в том, может ли работа такого рода рассматриваться как математическая, на что фон Нейман, по словам современников, возразил: "Сегодня – нет, но когда-то будет". В дальнейшем Минский доказал очень важные теоремы, показывающие, с какими ограничениями должны столкнуться исследования в области нейронных сетей.

История искусственного интеллекта (с 1956 год)

В Принстонском университете проводил свои исследования еще один авторитетный специалист в области искусственного интеллекта, Джон Маккарти. После получения ученой степени Маккарти перешел в Дартмутский колледж, который и стал официальным местом рождения искусственного интеллекта. Маккарти уговорил Марвина Минского, Клода Шеннона и Натаниэля Рочестера, чтобы они помогли ему собрать всех американских исследователей, проявляющих интерес к теории автоматов, нейронным сетям и исследованиям интеллекта. Они организовывали двухмесячный семинар в Дартмуте летом 1956 года. Всего на этом семинаре присутствовали 10 участников, включая Тренчарда Мура из Принстонского университета, Артура Самюэла из компании IBM, а также Рея Соломонова и Оливера Селфриджа из Массачусетсского технологического института.

Дартмутский семинар не привел к появлению каких-либо новых крупных открытий, но позволил познакомиться всем наиболее важным деятелям в этой научной области. Они, а также их студенты и коллеги из Массачусетсского технологического института, Университета Карнеги-Меллона, Станфордского университета и компании IBM занимали ведущее положение в этой области в течение следующих 20 лет.

Одним из результатов данного семинара было соглашение принять новое название для этой области, предложенное Маккарти, – искусственный интеллект.

Первые годы развития искусственного интеллекта были полны успехов, хотя и достаточно скромных. Если учесть, какими примитивными были в то время компьютеры и инструментальные средства программирования, и тот факт, что лишь за несколько лет до этого компьютеры рассматривались как устройства, способные выполнять только арифметические, а не какие-либо иные действия, можно лишь удивляться тому, как удалось заставить компьютер выполнять операции, хоть немного напоминающие разумные.

Была создана программа общего решателя задач (General Problem Solver- GPS), предназначенная для моделирования процедуры решения задач человеком. Как оказалось, в пределах того ограниченного класса головоломок, которые была способна решать эта программа, порядок, в котором она рассматривала подцели и возможные действия, был аналогичен тому подходу, который применяется людьми для решения таких же проблем. Поэтому программа GPS была, по-видимому, самой первой программой, в которой был воплощен подход к "организации мышления по такому же принципу, как и у человека".

Герберт Гелернтер сконструировал программу Geometry Theorem Prover (программа автоматического доказательства геометрических теорем), которая была способна доказывать такие теоремы, которые показались бы весьма сложными многим студентам-математикам.

Начиная с 1952 года Артур Самюэл написал ряд программ для игры в шашки, которые в конечном итоге научились играть на уровне хорошо подготовленного любителя. В ходе этих исследований Самюэл опроверг утверждение, что компьютеры способны выполнять только то, чему их учили: одна из его программ быстро научилась играть лучше, чем ее создатель.

В 1958 году Джон Маккарти привел определение нового языка высокого уровня Lisp – одного из первых языков программирования для искусственного интеллекта.

Лекция 1

Введение. Понятие информационной системы и технологии, интеллектуальной информационной системы (ИИС). Исторические аспекты развития методов представления и обработки сигналов, методов построения систем обработки сигналов, их интеллектуализации. Отличие ИИС от традиционных информационных систем. Виды и характеристики интеллектуальных систем. Понятие и виды интеллектуального управления. Подходы к построению интеллектуальных информационных систем. Основные классы ИИС. Отличительные признаки каждого класса.

В современном мире рост производительности программиста практически достигается только в тех случаях, когда часть интеллектуальной нагрузки берут на себя компьютеры. Одним из способов достигнуть максимального прогресса в этой области является "искусственный интеллект", когда компьютер не только берет на себя однотипные, многократно повторяющиеся операции, но и сам может обучаться. Кроме того, создание полноценного "искусственного интеллекта" открывает перед человечеством новые горизонты развития.

Прежде чем начать рассмотрение вопросов построения работоспособных интеллектуальных информационных систем, обратимся к некоторым определениям и основным понятиям темы.

Информация – сведения об объектах, явлениях и событиях, процессах окружающего мира, передаваемые устным, письменным или иным способом и уменьшающие неопределенность знаний о них.

Информация должна быть достоверной, полной, адекватной, т.е. иметь определенный уровень соответствия, краткой, ясно и понятно выраженной, своевременной и ценной.

Система – совокупность элементов, объединенная связями между ними и обладающая определенной целостностью. Т.е., система – это совокупность взаимодействующих взаимосвязанных элементов, объединенных некоторой целью и общими (целенаправленными) правилами взаимоотношений.

Автоматические информационные системы выполняют все операции по переработке информации без участия человека.

Автоматизированные информационные системы предполагают участие в процессе обработки информации и человека, и технических средств, причем главная роль отводится компьютеру. В современном толковании в термин «информационная система» обязательно вкладывается понятие автоматизируемой системы. Следует различать понятия информационной системы и информационной технологии.

Информационная технология – приемы, способы и методы применения средств вычислительной техники при выполнении функций сбора, хранения, обработки и использования данных (по ГОСТ 34.003-90).

Информационная система – организационно упорядоченная совокупность документов и информационных технологий, в том числе и с использованием средств вычислительной техники и связи, реализующих информационные процессы.

Такое понимание информационной системы предполагает использование в качестве основного технического средства переработки информации ЭВМ и средств связи, реализующих информационные процессы и выдачу информации, необходимой в процессе принятия решений о задачах из любой области.

ИнфСист является средой, составляющими элементами которой являются компьютеры, компьютерные сети, программные продукты, БД, люди, различного рода технические и программные средства связи и т.д. Хотя сама идея ИС и некоторые принципы их организации возникли задолго до появления компьютеров, однако компьютеризация в десятки и сотни раз повысила эффективность ИС и расширила сферы их применения.

Под термином «система» понимается объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность взаимосвязанных разнородных элементов, работающих как единое целое. Системы значительно отличаются между собой как по составу, так и по главным целям. Это целое приобретает некоторое свойство, отсутствующее у элементов в отдельности.

Признаки системности описываются тремя принципами:

    Внешней целостности – обособленность или относительная обособленность системы в окружающем мире;

    Внутренней целостности – свойства системы зависят от свойств её элементов и взаимосвязей между ними. Нарушение этих взаимосвязей может привести к тому, что система не сможет выполнять свои функции;

    Иерархичности – в системе можно выделить различные подсистемы, с другой стороны сама система тоже может являться подсистемой другой более крупной системы или подсистемы.

В информатике понятие "система" широко распространено и имеет множество смысловых значений. Чаще всего оно используется применительно к набору технических средств и программ. Системой может называться аппаратная часть компьютера. Системой может также считаться множество программ для решения конкретных прикладных задач, дополненных процедурами ведения документации и управления расчетами.

В зависимости от конкретной области применения ИС могут очень различаться по своим функциям, архитектуре, реализации. Можно выделить основные свойства, которые являются общими для всех ИС :

    структура ИС, ее функциональное назначение должны соответствовать поставленным целям;

    ИС использует сети для передачи данных;

    так как любая ИС предназначена для сбора, хранения и обработки информации, то в основе любой ИС лежит среда хранения и доступа к данным. И поскольку задача ИС – производство достоверной, надежной, своевременной и систематизированной информации, основанной на использование БД, экспертных систем и баз знаний, то она должна обеспечивать требуемый уровень надежности хранения и эффективность доступа, которые соответствуют области применения ИС;

    ИС должна контролироваться людьми, ими пониматься и использоваться в соответствии с основными принципами, реализованными в виде стандарта предприятия или иного стандарта на ИС. Интерфейс пользователя ИС должен быть легко понимаем на интуитивном уровне.

Основные задачи информационных систем и разработчиков ИС:

    Поиск, обработка и хранение информации, которая долго накапливается и утрата которой невосполнима. Компьютеризованные ИС предназначены для более быстрой и надежной обработки информации, чтобы люди не тратили время, чтобы избежать свойственных человеку случайных ошибок, чтобы сэкономить расходы, чтобы сделать жизнь людей более комфортной;

    Хранение данных разной структуры. Не существует развитой ИС, работающей с одним однородным файлом данных. Более того, разумным требованием к информационной системе является то, чтобы она могла развиваться. Могут появиться новые функции, для выполнения которых требуются дополнительные данные с новой структурой. При этом вся накопленная ранее информация должна остаться сохраненной. Теоретически можно решить эту задачу путем использования нескольких файлов внешней памяти, каждый из которых хранит данные с фиксированной структурой. В зависимости от способа организации используемой системы управления файлами эта структура может быть структурой записи файла или поддерживаться отдельной библиотечной функцией, написанной специально для данной ИС. Известны примеры реально функционирующих ИС, в которых хранилище данных планировалось основывать на файлах. В результате развития большинства таких систем в них выделился отдельный компонент, который представляет собой разновидность системы управления базами данных (СУБД);

    Анализ и прогнозирование потоков информации различных видов и типов, перемещающихся в обществе. Изучаются потоки с целью их минимизации, стандартизации и приспособления для эффективной обработки на вычислительных машинах, а также особенности потоков информации, протекающей через различные каналы распространения информации;

    Исследование способов представления и хранения информации, создание специальных языков для формального описания информации различной природы, разработка специальных приемов сжатия и кодирования информации, аннотирования объемных документов и реферирования их. В рамках этого направления развиваются работы по созданию банков данных большого объема, хранящих информацию из различных областей знаний в форме, доступной для вычислительных машин;

    Построение процедур и технических средств для их реализации, с помощью которых можно автоматизировать процесс извлечения информации из документов, не предназначенных для вычислительных машин, а ориентированных на восприятие их человеком;

    Создание информационно-поисковых систем, способных воспринимать запросы к информационным хранилищам, сформулированные на естественном языке, а также специальных языках запросов для систем такого типа;

    Создание сетей хранения, обработки и передачи информации, в состав которых входят информационные банки данных, терминалы, обрабатывающие центры и средства связи.

Конкретные задачи, которые должны решаться информационной системой, зависят от той прикладной области, для которой предназначена система. Области применения информационных приложений разнообразны: банковское дело, управление производством, медицина, транспорт, образование и т.д. Введем понятие «предметная область» - фрагмент, выделенный из окружающего мира, называется областью экспертизы или предметной областью . Существует также множество задач и проблем, которые необходимо решать, используя сущности и отношения из этой предметной области, поэтому используется более широкое понятие - проблемная среда – это предметная область + решаемые задачи.

С двумя типами информационных систем мы будем знакомиться поближе. Это экспертные и интеллектуальные системы.

Экспертные системы (Expert System) – информационные консультирующие и\или принимающие решения системы, основанные на структурированных, часто плохо формализуемых процедурах, использующих опыт, интуицию, т.е. поддерживающие или моделирующие работу экспертов интеллектуальные особенности; системы используются как в долгосрочном, так и в краткосрочном оперативном прогнозировании, управлении.

Интеллектуальные системы или системы, основанные на знаниях (Knowleadge Based System) - системы поддержки задач принятия решения в сложных системах, где необходимо использование знаний в достаточно широком диапазоне, особенно в плохо формализуемых и плохо структурируемых системах, нечетких системах и при нечетких критериях принятия решения; эти системы наиболее эффективны и используемы для сведения проблем долгосрочного, стратегического управления к проблемам тактического и краткосрочного характера, повышения управляемости, особенно в условиях многокритериальности. В отличие от экспертных систем, в системах, основанных на знаниях, следует чаще избегать экспертных и эвристических процедур и прибегать к когнитивным процедурам для минимизации риска. Здесь более существенно влияние профессионализма персонала, ибо при разработке таких систем необходимо сотрудничество и взаимопонимание не только разработчиков, но и пользователей, менеджеров, а сам процесс разработки, как правило, происходит итерационно, итерационными улучшениями, постепенным преобразованием (переходом) процедурных знаний (как делать) в непроцедурные, декларативные (что делать).

Рассмотрим теперь вопрос интеллектуальности информационных систем.

Термининтеллект (intelligence) происходит от латинского intellectus, что означает "ум, рассудок, разум; мыслительные способности человека". Соответственноискусственный интеллект (artificial intelligence) - ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. Можно сказать, чтоинтеллект - это способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразованиязнаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам. Сам термин «искусственный интеллект» (artificial intelligence) был предложен в 1956 году на семинаре в Дартсмутском колледже (США). Слово intelligence, собственно, и означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть термин intellect.

В 1950 году британский математик Алан Тьюринг опубликовал в журнале «Mind» свою работу «Вычислительная машина и интеллект», в которой описал тест для проверки программы на интеллектуальность. Он предложил поместить исследователя и программу в разные комнаты и до тех пор, пока исследователь не определит, кто за стеной - человек или программа, считать поведение программы разумным. Это было одно из первых определений интеллектуальности, то есть А. Тьюринг предложил называть интеллектуальным такое поведение программы, которое будет моделировать разумное поведение человека. С тех пор появилось много определений интеллектуальных систем (ИнС) и искусственного интеллекта (ИИ). Приведем некоторые из этих определений. 1. ИИ определяется как область компьютерных наук, занимающуюся исследованием и автоматизацией разумного поведения. 2. другое определение: «ИИ - это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка». 3. ИС – это адаптивная система , позволяющую строить программы целесообразной деятельности по решению поставленных перед ними задач на основании конкретной ситуации, складывающейся на данный момент в окружающей их среде. При этом адаптивная система определяется как система, которая сохраняет работоспособность при непредвиденных изменениях свойств управляемого объекта, целей управления или окружающей среды путем смены алгоритма функционирования, программы поведения или поиска оптимальных, в некоторых случаях просто эффективных, решений и состояний. Традиционно, по способу адаптации различают самонастраивающиеся, самообучающиеся и самоорганизующиеся системы.

Итак, применяя интеллектуальные системы, человек решает интеллектуальные задачи. Для определения отличия просто задачи от интеллектуальной задачи необходимо ввести понятие алгоритма. Под алгоритмом понимают точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин "алгоритм" происходит от имени узбекского математика Аль-Хорезми, который еще в IX веке предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Отыскание алгоритма для задач некоторого данного типа связано с тонкими и сложными рассуждениями, требующими большой изобретательности и высокой квалификации. Принято считать, что подобного рода деятельность требует участия интеллекта человека. Задачи, связанные с отысканием алгоритма решения класса задач определенного типа, будем называть интеллектуальными. Т.е. интеллектуальные задачи – это сложные плохо формализуемые задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

Разные исследователи по-разному определяют искусственный интеллект как науку, в зависимости от своего взгляда на нее, и работают над созданием систем, которые:

    думают подобно людям;

    думают рационально;

    действуют подобно людям;

    действуют рационально.

При воссоздании разумных рассуждений и действий возникают определенные трудности. Во-первых, в большинстве случаев, выполняя какие-то действия, человек не осознает, как это делает, не известен точный способ, метод или алгоритм понимания текста, распознавания лиц, доказательства теорем, решения задач, сочинения стихов и т.д. Во-вторых, на современном уровне развития компьютер слишком далек от человеческого уровня компетентности и работает по другим принципам.

Искусственный интеллект всегда был междисциплинарной наукой, являясь одновременно и наукой и искусством, и техникой и психологией. Методы искусственного интеллекта разнообразны. Они активно заимствуются из других наук, адаптируются и изменяются под решаемую задачу. Для создания интеллектуальной системы необходимо привлекать специалистов из прикладной области, поэтому в рамках искусственного интеллекта сотрудничают лингвисты, нейрофизиологи, психологи, экономисты, информатики, программисты и т.д.

История развития искусственного интеллекта

Идея создания искусственного подобия человека для решения сложных задач и моделирования человеческого разума витала в воздухе еще в древнейшие времена. Так, в Древнем Египте была создана «оживающая» механическая статуя бога Амона. У Гомера в «Илиаде» бог Гефест ковал человекоподобных существ.

Искусственный интеллект является в некотором смысле наукой будущего, в которой нет жесткого разделения по областям и ясно видна связь между отдельными дисциплинами, которые лишь отражают определенную грань познания.

Точный свод законов, руководящих рациональной частью мышления, был сформулирован Аристотелем (384-322 гг. до н.э.). Однако родоначальником искусственного интеллекта считается средневековый испанский философ, математик и поэт Раймонд Луллий, который еще в XIII веке попытался создать механическую машину для решения различных задач на основе разработанной им всеобщей классификации понятий. В XVIII веке Лейбниц и Декарт независимо друг от друга продолжили эту идею, предложив универсальные языки классификации всех наук. Труды этих ученых можно считать первыми теоретическими работами в области искусственного интеллекта. Теория игр и теория принятия решений, данные о строении мозга, когнитивная психология – все это стало строительным материалом для искусственного интеллекта. Но окончательное рождение искусственного интеллекта как научного направления произошло только после создания ЭВМ в 40-х годах XX века и выпуска Норбертом Винером основополагающих работ по новой науке – кибернетике.

Формирование искусственного интеллекта как науки произошло в1956 году. Д. Маккарти, М. Минский, К. Шеннон и Н. Рочестер организовали двухмесячный семинар в Дартмуте для американских исследователей, занимающихся теорией автоматов, нейронными сетями, интеллектом. Хотя исследования в этой области уже активно велись, но именно на этом семинаре появились термин и отдельная наука – искусственный интеллект.

Одним из основателей теории искусственного интеллекта считается известный английский ученый Алан Тьюринг, который в 1950 году опубликовал статью «Вычислительные машины и разум» (переведенную на русский язык под названием «Может ли машина мыслить?»). Именно в ней описывался ставший классическим «тест Тьюринга», позволяющий оценить «интеллектуальность» компьютера по его способности к осмысленному диалогу с человеком.

Первые десятилетия развития искусственного интеллекта (1952- 1969 гг.)были полны успехов и энтузиазма. А. Ньюэлл, Дж. Шоу и Г. Саймон создали программу для игры в шахматы на основе метода, предложенного в 1950 году К. Шенноном, формализованного А. Тьюрингом и промоделированного им же вручную. К работе была привлечена группа голландских психологов под руководством А. де Гроота, изучавших стили игры выдающихся шахматистов. В 1956 году этим коллективом был создан язык программирования ИПЛ1 – практически первый символьный язык обработки списков и написана первая программа «Логик-Теоретик», предназначенная для автоматического доказательства теорем в исчислении высказываний. Эту программу можно отнести к первым достижениям в области искусственного интеллекта.

В 1960 году этой же группой была написана программа GPS (General Problem Solver) – универсальный решатель задач. Она могла решать ряд головоломок, вычислять неопределенные интегралы, решать некоторые другие задачи. Результаты привлекли внимание специалистов в области вычислений, и появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач.

С 1952 года А. Самюэл написал ряд программ для игры в шашки, которые играли на уровне хорошо подготовленного любителя, причем одна из них научилась играть лучше, чем ее создатель.

В 1958 году Д. Маккарти определил новый язык высокого уровня Lisp, который стал доминирующим для искусственного интеллекта.

Первые нейросети появились в конце 50-х годов. В 1957 году Ф. Розенблаттом была предпринята попытка создать систему, моделирующую человеческий глаз и его взаимодействие с мозгом, – персептрон.

Первая международная конференция по искусственному интеллекту (IJCAI) состоялась в 1969 году в Вашингтоне.

В 1963 году Д. Робинсон реализовал метод автоматического доказательства теорем, получивший название «принцип резолюции», и на основе этого метода в 1973 году был создан язык логического программирования Prolog.

В США появились первые коммерческие системы, основанные на знаниях, – экспертные системы. Происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения и интерес ксамообучающимся системам , создаются промышленные экспертные системы. Разрабатываются методы представления знаний.

Первая экспертная система была создана Э. Фейгенбаумом в 1965 году. Но до коммерческой прибыли было еще далеко. Лишь в 1986 году первая коммерческая система R1 компании DEC позволила сэкономить примерно 40 миллионов долларов за год. К 1988 году компанией DEC было развернуто 40 экспертных систем. В компании Du Pont применялось 100 систем, и экономия составляла примерно 10 миллионов в год.

В 1981 году Япония, в рамках 10-летнего плана по разработке интеллектуальных компьютеров на базе Prolog, приступила к разработке компьютера 5-го поколения, основанного на знаниях. 1986 год стал годом возрождения интереса к нейронным сетям.

В 1991 году Япония прекращает финансирование проекта компьютера 5-го поколения и начинает проект создания компьютера 6-го поколения – нейрокомпьютера.

В 1997 году компьютер «Дип Блю» победил в игре в шахматы чемпиона мира Г. Каспарова, доказав возможность того, что искусственный интеллект может сравняться с человеком или превзойти его в ряде интеллектуальных задач (пусть и в ограниченных условиях).

Огромную роль в борьбе за признание искусственного интеллекта в СССР сыграли академики А. И. Берг и Г. С. Поспелов.

В 1954-1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. Создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Кора» М. М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы искусственного интеллекта внесли выдающиеся ученые М. Л. Цетлин, В. Н. Пушкин, М. А. Гаврилов, чьи ученики и явились пионерами этой науки в России.

В 1964 году предлагался метод автоматического поиска доказательства теорем в исчислении предикатов, получивший название «обратный метод Маслова».

В 1965-1980 гг. произошло рождение нового направления – ситуационного управления (в западной терминологии соответствует представлению знаний). Основателем этой научной школы стал профессор Д. А. Поспелов.

В Московском государственном университете в 1968 году В. Ф. Турчиным был создан язык символьной обработки данных РЕФАЛ.