При проверке гипотезы о равенстве генеральных средних. Проверка гипотезы о равенстве двух генеральных средних. Проверка гипотезы о равенстве среднего заданному значению а

8.1. Понятие зависимых и независимых выборок.

Выбор критерия для проверки гипотезы

в первую очередь определяется тем, являются ли рассматриваемые выборки зависимыми или независимыми. Введем соответствующие определения.

Опр. Выборки называются независимыми , если процедура отбора единиц в первую выборку никак не связана с процедурой отбора единиц во вторую выборку.

Примером двух независимых выборок могут служить обсуждавшиеся выше выборки мужчин и женщин, работающих на одном предприятии (в одной отрасли и т.д.).

Заметим, что независимость двух выборок отнюдь не означает отсутствие требования определенного рода сходства этих выборок (их однородности). Так, изучая уровень дохода мужчин и женщин, мы вряд ли допустим такую ситуацию, когда мужчины отбираются из среды московских бизнесменов, а женщины – из аборигенов Австралии. Женщины тоже должны быть москвичками и, более того – «бизнесвуменшами». Но здесь мы говорим не о зависимости выборок, а о требовании однородности изучаемой совокупности объектов, которое должно удовлетворяться и при сборе, и при анализе социологических данных.

Опр. Выборки называются зависимыми, или парными, если каждая единица одной выборки «привязывается» к определенной единице второй выборки.

Последнее определение, вероятно, станет более ясным, если мы приведем пример зависимых выборок.

Предположим, что мы хотим выяснить, является ли социальный статус отца в среднем ниже социального статуса сына (полагаем, что мы можем измерить эту сложную и неоднозначно понимаемую социальную характеристику человека). Представляется очевидным, что в такой ситуации целессобразно отбрать пары респондентов (отец, сын) и считать, что каждый элемент первой выборки (один из отцов) «привязан» к определенному элементу второй выборки (своему сыну). Эти две выборки и будут называться зависимыми.

8.2. Проверка гипотезы для независимых выборок

Для независимых выборок выбор критерия зависит от того, знаем ли мы генеральные дисперсии s 1 2 и s 2 2 рассматриваемого признака для изучаемых выборок. Будем считать эту проблему решенной, полагая, что выборочные дисперсии совпадают с генеральными. В таком случае в качестве критерия выступает величина:

Прежде, чем переходить к обсуждению той ситуации, когда генеральные дисперсии (или хотя бы одна из них) нам неизвестны, заметим следующее.

Логика использования критерия (8.1) похожа на ту, которая была описана нами при рассмотрении критерия “Хи-квадрат” (7.2). Имеется лишь одно принципиальное отличие. Говоря о смысле критерия (7.2), мы рассматривали бесконечное количество выборок объема n, «черпающихся» из нашей генеральной совокупности. Здесь же, анализируя смысл критерия (8.1), мы переходим к рассмотрению бесконечного количества пар выборок объемом n 1 и n 2 . Для каждой пары и рассчитывается статистика вида (8.1). Совокупности получаемых значений таких статистик, в соответствии с нашими обозначениями, отвечает нормальное распределение (как мы условились, буква z используется для обозначения такого критерия, которому отвечает именно нормальное распределение).

Итак, если генеральные дисперсии нам неизвестны, то мы вынуждены вместо них пользоваться их выборочными оценками s 1 2 и s 2 2 . Однако при этом нормальное распределение должно замениться на распределение Стьюдента – z должно замениться на t (как это имело место в аналогичной ситуации при построения доверительного интервала для математического ожидания). Однако при достаточно больших объемах выборок (n 1 , n 2 ³ 30) , как мы уже знаем, распределение Стьюдента практически совпадает с нормальным. Другими словами, при больших выборках мы можем продолжать пользоваться критерием:

Сложнее обстоит дело с такой ситуацией, когда и дисперсии неизвестны, и объем хотя бы одной выборки мал. Тогда вступает в силу еще один фактор. Вид критерия зависит от того, можем ли мы считать неизвестные нам дисперсии рассматриваемого признака в двух анализируемых выборках равными. Для выяснения этого надо проверить гипотезу:

H 0: s 1 2 = s 2 2 . (8.3)

Для проверки этой гипотезы используется критерий

О специфике использования этого критерия пойдет речь ниже, а сейчас продолжим обсуждать алгоритм выбора критерия, использующего для проверки гипотез о равенстве математических ожиданий.

Если гипотеза (8.3) отвергается, то интересующий нас критерий приобретает вид:

(8.5)

(т.е. отличается от критерия (8.2), использовавшегося при больших выборках, тем, что соответствующая статистика имеет не нормальное распределение, а распределение Стьюдента). Если гипотез (8.3) принимается, то вид используемого критерия меняется:

(8.6)

Подведем итог того, как выбирается критерий для проверки гипотезы о равенстве генеральных математических ожиданий на основе анализа двух независимых выборок.

известны

неизвестны

размер выборок большой

H 0: s 1 = s 2 отвергается

Принимается

8.3. Проверка гипотезы для зависимых выборок

Перейдем к рассмотрению зависимых выборок. Пусть последовательности чисел

X 1 , X 2 , … , X n ;

Y 1 , Y 2 , … , Y n –

это значения рассматриваемой случайной для элементов двух зависимых выборок. Введем обозначение:

D i = X i - Y i , i = 1, ... , n.

Для зависимых выборок критерий, позволяющий проверять гипотезу

выглядит следующим образом:

Заметим, что только что приведенное выражение для s D есть не что иное, как новое выражение для известной формулы, выражающей среднее квадратическое отклонение. В данном случае речь идет о среднем квадратическом отклонении величин D i . Подобная формула часто используется на практике как более простой (по сравнению с «лобовым» подсчетом суммы квадратов отклонений значений рассматриваемой величины от соответствующего среднего арифметического) способ расчета дисперсии.

Если сравнить приведенные формулы с теми, которые мы использовали при обсуждении принципов построения доверительного интервала, нетрудно заметить, что проверка гипотезы о равенстве средних для случая зависимых выборок по существу является проверкой равенства нулю математического ожидания величин D i . Величина

есть среднее квадратическое отклонение для D i . Поэтому значение только что описанного критерия t n -1 по существу равно величине D i , выраженной в долях среднего квадратического отклонения. Как мы говорили выше (при обсуждении способов построения доверительных интервалов), по такому показателю можно судить о вероятности рассматриваемого значения D i . Отличие состоит в том, что выше шла речь о простом среднем арифметическом, распределенном нормально, а здесь – о средних разностей, такие средние имеют распределение Стьюдента. Но рассуждения о взаимосвязи вероятности отклонения выборочного среднего арифметического от нуля (при математическом ожидании, равном нулю) с тем, сколько единиц s это отклонение составляет, остаются в силе.

Рассмотрим две независимые выборки x 1, x 2 , ….. , x n и y 1 , y 2 , … , y n , извлеченные из нормальных генеральных совокупностей с одинаковыми дисперсиями , причем объемы выборок соответственно n и m, а средние μ x , μ y и дисперсия σ 2 неизвестны. Требуется проверить основную гипотезу Н 0: μ x =μ y при конкурирующей Н 1: μ x μ y .

Как известно, выборочные средние и будут обладать свойствами: ~N(μ x , σ 2 /n), ~N(μ y , σ 2 /m).

Их разность - нормальная величина со средним и дисперсией , так что

~ (23).

Допустим на время, что основная гипотеза Н 0 верна: μ x –μ y =0. Тогда и, деля величину на ее стандартное отклонение, получим стандартную нормальную сл. Величину ~N(0,1).

Раньше отмечалось, что сл. величина распределена по закону с (n-1)-ой степенью свободы, a - по закону с (m-1) степенью свободы. С учетом независимости этих двух сумм, получаем, что их общая сумма распределена по закону с n+m-2 степенями свободы.

Вспоминая п.7, видим, что дробь подчиняется t-распределенню (Стьюдента) с ν=m+n-2 степенями свободы: Z=t. Этот факт имеет место только тогда, когда истинна гипотеза Н 0 .

Заменяя ξ и Q их выражениями, получим развернутую форнулу для Z:

(24)

Сл.величина Z, называемая статистикой критерия, позволяет принять решение при такой последовательности действий:

1. Устанавливается область D=[-t β,ν , +t β,ν ], содержащая β=1–α площади под кривой t ν –распределения (табл.10).

2. Вычисляется по формуле (24) опытное значение Z on статистики Z, для чего вместо X 1 и Y 1 подставляются значения x 1 и y 1 конкретных выборок, а также их выборочные средние и .

3. Если Z on D, то гипотеза Н 0 считается не противоречащей опытным данным и принимается.

Если Z on D, то принимается гипотеза Н 1 .

Если гипотеза Н 0 верна, то Z подчиняется известному t ν –распределению с нулевым средним и с высокой вероятностью β=1–α попадает в D-область принятия гипотезы Н 0 . Когда наблюдаемое, опытное значение Z on попадает в D. Мы рассматриваем это как свидетельство в пользу гипотезы Н 0 .

Когда жe Z 0 n лежит за пределами D (как говорят, лежит в критической области К), что естественно, если верна гипотеза Н 1 , но маловероятно, если верна Н 0 , то нам остается отклонить гипотезу Н 0 , приняв H 1 .

Пример 31.

Сравниваются две марки бензина: А и В. На 11 автомашинах одинаковой мощности по кольцевому шассе испытан по разу Бензин марки А и В. Одна машина в пути вышла из строя н для нее данные по бензину В отсутствуют.

Расход бензина в пересчете на 100 км пути

Таблица 12

i
X i 10,51 11,86 10,5 9,1 9,21 10,74 10,75 10,3 11,3 11,8 10,9 n=11
У i 13,22 13,0 11,5 10,4 11,8 11,6 10,64 12,3 11,1 11,6 - m=10

Дисперсия расхода бензина марок А и В неизвестна и предполагается одинаковой. Можно ли при уровне значимости α=0,05 принять гипотезу о том, что истинные средние расходы μ А и μ В этих видов бензина одинаковы?

Решение. Проверку гипотезы Н 0: μ А -μ В =0 при конкурирующей. Н 1:μ 1 μ 2 делаем по пунктам:

1. Находим выборочные средние и сумму квадратов откло­нений Q.

;

;

2. Вычисляем опытное значение статистики Z

3. Находим из таблицы 10 t-распределения предел t β,ν , для числа степеней свободы ν=m+n–2=19 и β=1–α=0.95. В таблице 10 есть t 0.95.20 =2,09 и t 0.95.15 =2,13, но нет t 0.95.19 . Находим интерполяцией t 0.95.19 =2,09+ =2,10.

4. Проверяем, в какой из двух областей D или К лежит число Z on . Zon=-2,7 D=[-2,10; -2,10].

Поскольку наблюденное значение Z on лежит в критической области, К=R\D, то отбрасываем. Н 0 и приникаем гипотезу Н 1 . В этом случае про и говорят, что их разность значима. Если бы при всех условиях этого примера изменилось бы лишь Q, скажем, Q вдвое возросло, то изменился бы и наш вывод. Увеличение Q вдвое привело бы к уменьшению в раза величины Z on и тогда число Zon попало бы в допустимую область D, так что гипотеза H 0 выдержала бы проверку и была принята. В этом случае расхождение между и объяснялось бы естественным разбросом данных, а не тем, что μ А μ В.

Теория проверки гипотез весьма обширна, гипотезы могут быть о виде закона распределения, об однородности выборок, о независимости сл.величины и т.д.

КРИТЕРИЙ c 2 (ПИРСОНА)

Самый распространенный на практике критерий проверки простой гипотезы. Применяется, когда закон распределения неизвестен. Рассмотрим случайную величину X, над которой проведено n независимых испытаний. Получена реализация x 1 , x 2 ,...,x n . Необходимо проверить гипотезу о законе распределения этой случайной величины.

Рассмотрим случай простой гипотезы. Простая гипотеза проверяет согласование выборки с генеральной совокупностью, имеющей нормальное распределение (известное). По выборкам строим вариационный ряд x (1) , x (2) , ..., x (n) . Интервал разбиваем на подинтервалы. Пусть этих интервалов r. Тогда найдем вероятность попадания X в результате испытания в интервал Di, i=1 ,..., r в случае истинности проверяемой гипотезы.

Критерий проверяет не истинность плотности вероятности, а истинность чисел

С каждым интервалом Di свяжем случайное событие A i - попадание в этот интервал (попадание в результате испытания над X ее результата реализации в Di). Введем случайные величины. m i - количество испытаний из n проведенных, в которых произошло событие A i . m i распределены по биномиальному закону и в случае истинности гипотезы

Dm i =np i (1-p i)

Критерий c 2 имеет вид

p 1 +p 2 +...+p r =1

m 1 +m 2 +...+m r =n

Если проверяемая гипотеза верна, то m i представляет частоту появления события, имеющего в каждом из n проведенных испытаний вероятность p i , следовательно, мы можем рассматривать m i как случайную величину, подчиняющуюся биномиальному закону с центром в точке np i . Когда n велико, то можно считать, что частота распределена асимптотически нормально с теми же параметрами. При правильности гипотезы следует ожидать, что будут асимптотически нормально распределены

связанные между собой соотношением

В качестве меры расхождения данных выборки m 1 +m 2 +...+m r с теоретическими np 1 +np 2 +...+np r рассмотрим величину

c 2 - сумма квадратов асимптотически нормальных величин, связанных линейной зависимостью. Мы ранее встречались уже с аналогичным случаем и знаем, что наличие линейной связи привело к уменьшению на единицу числа степеней свободы.

Если проверяемая гипотеза верна, то критерий c 2 имеет распределение, стремящееся при n®¥ к распределению c 2 с r-1 степенями свободы.

Допустим, что гипотеза неверна. Тогда существует тенденция к увеличению слагаемых в сумме, т.е. если гипотеза неверна, то эта сумма будет попадать в некую область больших значений c 2 . В качестве критической области возьмем область положительных значений критерия


В случае неизвестных параметров распределения каждый параметр уменьшает на единицу количество степеней свободы для критерия Пирсона

Пример . Доходы аптек одного из микрорайонов города за некоторый период составили 128; 192; 223; 398; 205; 266; 219; 260; 264; 98 (условных единиц). В соседнем микрорайоне за то же время они были равны 286; 240; 263; 266; 484; 223; 335.
Для обеих выборок вычислите среднее, исправленную дисперсию и среднее квадратическое отклонение. Найдите размах варьирования, среднее абсолютное (линейное) отклонение, коэффициент вариации, линейный коэффициент вариации, коэффициент осцилляции.
Предполагая, что данная случайная величина имеет нормальное распределение, определите доверительный интервал для генеральной средней (в обоих случаях).
По критерию Фишера проверьте гипотезу о равенстве генеральных дисперсий. По критерию Стьюдента проверьте гипотезу о равенстве генеральных средних (альтернативная гипотеза – об их неравенстве).
Во всех расчётах уровень значимости α = 0,05.

Решение проводим с помощью калькулятора Проверка гипотезы о равенстве дисперсий .
1. Находим показатели вариации для первой выборки .

x |x - x ср | (x - x ср) 2
98 127.3 16205.29
128 97.3 9467.29
192 33.3 1108.89
205 20.3 412.09
219 6.3 39.69
223 2.3 5.29
260 34.7 1204.09
264 38.7 1497.69
266 40.7 1656.49
398 172.7 29825.29
2253 573.6 61422.1


.



Показатели вариации .
.

R = X max - X min
R = 398 - 98 = 300
Среднее линейное отклонение


Каждое значение ряда отличается от другого в среднем на 57.36
Дисперсия


Несмещенная оценка дисперсии


.

Каждое значение ряда отличается от среднего значения 225.3 в среднем на 78.37
.

.

Коэффициент вариации

Поскольку v>30% ,но v или

Коэффициент осцилляции

.
.


По таблице Стьюдента находим:
T табл (n-1;α/2) = T табл (9;0.025) = 2.262

(225.3 - 59.09;225.3 + 59.09) = (166.21;284.39)

2. Находим показатели вариации для второй выборки .
Проранжируем ряд. Для этого сортируем его значения по возрастанию.
Таблица для расчета показателей.

x |x - x ср | (x - x ср) 2
223 76.57 5863.18
240 59.57 3548.76
263 36.57 1337.47
266 33.57 1127.04
286 13.57 184.18
335 35.43 1255.18
484 184.43 34013.9
2097 439.71 47329.71

Для оценки ряда распределения найдем следующие показатели:
Показатели центра распределения .
Простая средняя арифметическая


Показатели вариации .
Абсолютные показатели вариации .
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = X max - X min
R = 484 - 223 = 261
Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.


Каждое значение ряда отличается от другого в среднем на 62.82
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии (исправленная дисперсия).


Среднее квадратическое отклонение .

Каждое значение ряда отличается от среднего значения 299.57 в среднем на 82.23
Оценка среднеквадратического отклонения .

Относительные показатели вариации .
К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.
Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v ≤ 30%, то совокупность однородна, а вариация слабая. Полученным результатам можно доверять.
Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Интервальное оценивание центра генеральной совокупности .
Доверительный интервал для генерального среднего .

Определяем значение t kp по таблице распределения Стьюдента
По таблице Стьюдента находим:
T табл (n-1;α/2) = T табл (6;0.025) = 2.447

(299.57 - 82.14;299.57 + 82.14) = (217.43;381.71)
С вероятностью 0.95 можно утверждать, что среднее значение при выборке большего объема не выйдет за пределы найденного интервала.
Проводим проверку гипотезы о равенстве дисперсий:
H 0: D x = D y ;
H 1: D x Найдём наблюдаемое значение критерия Фишера:

Поскольку s y 2 > s x 2 , то s б 2 = s y 2 , s м 2 = s x 2
Числа степеней свободы:
f 1 = n у – 1 = 7 – 1 = 6
f 2 = n x – 1 = 10 – 1 = 9
По таблице критических точек распределения Фишера–Снедекора при уровне значимости α = 0.05 и данным числам степеней свободы находим F кр (6;9) = 3.37
Т.к. F набл Проводим проверку гипотезы о равенстве генеральных средних:


Найдём экспериментальное значение критерия Стьюдента:


Число степеней свободы f = n х + n у – 2 = 10 + 7 – 2 = 15
Определяем значение t kp по таблице распределения Стьюдента
По таблице Стьюдента находим:
T табл (f;α/2) = T табл (15;0.025) = 2.131
По таблице критических точек распределения Стьюдента при уровне значимости α = 0.05 и данному числу степеней свободы находим t кр = 2.131
Т.к. t набл

Пусть требуется проверить нулевую гипотезу о нормальном законе распределения случайной величины. Уровень значимости принять =0,001 .

Обычно точные параметры гипотетического нормального закона нам неизвестны, поэтому нулевую гипотезу (Н0) словесно можно сформулировать следующим образом: F(х) является функцией нормального распределения с параметрами М(X) =а = и D(X) = .

Для проверки этой нулевой гипотезы найдем точечные оценки математического ожидания и среднего квадратического отклонения нормально распределенной случайной величины:

При проверке гипотезы о нормальном распределении генеральной совокупности сравниваются эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормальности распределения) частоты. Для этого используются статистика 2 - Пирсона с =k-r-1 степенями свободы (k - число групп, r - число оцениваемых параметров, в настоящем примере оценивались математическое ожидание и среднее квадратическое отклонение, следовательно, r = 2). Если 2расч. 2кр., то нулевая гипотеза отвергается и считается, что предположение о нормальности распределения не согласуется с опытными данными. В противном случае (2расч. < 2кр.) нулевая гипотеза принимается.

Вычисляются теоретические вероятности рi, попадания СВ ХN в частичные интервалы }