Вариационный ряд определение. Вариационные ряды и их виды

Вариационный ряд – это ряд числовых значений признака.

Основные характеристики вариационного ряда: v – варианта, р – частота ее встречаемости.

Виды вариационного ряда:

    по частоте встречаемости варианты: простой – варианта встречается один раз, взвешенный – варианта встречается два и более раз;

    по расположению варианты: ранжированный – варианты расположены в порядке убывания и возрастания, неранжированный – варианты записаны без определенного порядка;

    по объединению вариант в группы: сгруппированный – варианты объединены в группы, несгруппированный – варианты необъединены в группы;

    по величине варианты: непрерывный – варианты выражены целым и дробным числом, дискретный – варианты выражены целым числом, сложный – варианты представлены относительной или средней величиной.

Вариационный ряд составляется и оформляется с целью расчета средних величин.

Форма записи вариационного ряда:

8. Средние величины, виды, методика расчета, применение в здравоохранении

Средние величины – совокупная обобщающая характеристика количественных признаков. Применение средних величин :

1. Для характеристики организации работы лечебно-профилактических учреждений и оценки их деятельности:

а) в поликлинике: показатели нагрузки врачей, среднее число посещений, среднее число жителей на участке;

б) в стационаре: среднее число дней работы койки в году; средняя длительность пребывания в стационаре;

в) в центре гигиены, эпидемиологии и общественного здоровья: средняя площадь (или кубатура) на 1 человека, средние нормы питания (белки, жиры, углеводы, витамины, минеральные соли, калории), санитарные нормы и нормативы и т.д.;

2. Для характеристики физического развития (основных антропометрических признаков морфологических и функциональных);

3. Для определения медико-физиологических показателей организма в норме и патологии в клинических и экспериментальных исследованиях.

4. В специальных научных исследованиях.

Отличие средних величин от показателей:

1. Коэффициенты характеризуют альтернативный признак, встречающийся только у некоторой части статистического коллектива, который может иметь место или не иметь место.

Средние величины охватывают признаки, присущие всем членам коллектива, но в разной степени (вес, рост, дни лечения в больнице).

2. Коэффициенты применяются для измерения качественных признаков. Средние величины – для варьирующих количественных признаков.

Виды средних величин:

    средняя арифметическая, ее характеристики – среднее квадратическое отклонение и средняя ошибка

    мода и медиана. Мода (Мо) – соответствует величине признака, который чаще других встречается в данной совокупности. Медиана (Ме) – величина признака, занимающая срединное значение в данной совокупности. Она делит ряд на 2 равные части по числу наблюдений. Средняя арифметическая величина (М) – в отличие от моды и медианы опирается на все произведенные наблюдения, поэтому является важной характеристикой для всего распределения.

    другие виды средних величин, которые применяются в специальных исследованиях: средняя квадратическая, кубическая, гармоническая, геометрическая, прогрессивная.

Средняя арифметическая характеризует средний уровень статистической совокупности.

Для простого ряда, где

∑v – сумма вариант,

n – число наблюдений.

для взвешенного ряда, где

∑vр – сумма произведений каждой варианты на частоту ее встречаемости

n – число наблюдений.

Среднее квадратическое отклонение средней арифметической или сигма (σ) характеризует разнообразие признака

- для простого ряда

Σd 2 – сумма квадратов разности средней арифметической и каждой варианты (d = │M-V│)

n – число наблюдений

- для взвешенная ряда

∑d 2 p – сумма произведений квадратов разности средней арифметической и каждой варианты на частоту ее встречаемости,

n – число наблюдений.

О степени разнообразия можно судить по величине коэффициента вариации
. Более 20% - сильное разнообразие, 10-20% - среднее разнообразие, менее 10% - слабое разнообразие.

Если к средней арифметической величине прибавить и отнять от нее одну сигму (М ± 1σ), то при нормальном распределении в этих пределах будет находиться не менее 68,3% всех вариант (наблюдений), что считается нормой для изучаемого явления. Если к 2 ± 2σ, то в этих пределах будет находиться 95,5% всех наблюдений, а если к М ± 3σ, то в этих пределах будет находиться 99,7% всех наблюдений. Таким образом, среднее квадратическое отклонение является стандартным отклонением, позволяющим предвидеть вероятность появления такого значения изучаемого признака, которое находится в пределах заданных границ.

Средняя ошибка средней арифметической или ошибка репрезентативности. Для простого, взвешенного рядов и по правилу моментов:

.

Для расчета средних величин необходимо: однородность материала, достаточное число наблюдений. Если число наблюдений меньше 30, в формулах расчета σ и m используют n-1.

При оценке полученного результата по размеру средней ошибки пользуются доверительным коэффициентом, которые дает возможность определить вероятность правильного ответа, то есть он указывает на то, что полученная величина ошибки выборки будет не больше действительной ошибки, допущенной вследствие сплошного наблюдения. Следовательно, с увеличением доверительной вероятности увеличивается ширина доверительного интервала, что, в свою очередь повышает доверительность суждения, опорность полученного результата.

Различные выборочные значения назовемвариантами ряда значений и обозначим: х 1 , х 2 , …. Прежде всего произведем ранжирование вариантов, т.е. расположение их в порядке возрастания или убывания. Для каждого варианта указывается свой вес, т.е. число, которое характеризует вклад данного варианта в общую совокупность. В качестве весов выступают частоты или частости.

Частотой n i варианта х i называется число, показывающее сколько раз встречается данный вариант в рассматриваемой выборочной совокупности.

Частостью или относительной частотой w i варианта х i называется число, равное отношению частоты варианта к сумме частот всех вариантов. Частость показывает, какая часть единиц выборочной совокупности имеет данный вариант.

Последовательность вариантов с соответствующими им весами (частотами или частостями), записанная в порядке возрастания (или убывания), называется вариационным рядом .

Вариационные ряды бывают дискретными и интервальными.

Для дискретного вариационного ряда задаются точечные значения признака, для интервального – значения признака задаются в виде интервалов. Вариационные ряды могут показывать распределение частот или относительных частот (частостей), в зависимости от того, какая величина указывается для каждого варианта – частота или частость.

Дискретный вариационный ряд распределения частот имеет вид:

Частости находятся по формуле , i = 1, 2, …, m .

w 1 + w 2 + … + w m = 1.

Пример 4.1. Для данной совокупности чисел

4, 6, 6, 3, 4, 9, 6, 4, 6, 6

построить дискретные вариационные ряды распределения частот и частостей.

Решение . Объем совокупности равен n = 10. Дискретный ряд распределения частот имеет вид

Аналогичную форму записи имеют интервальные ряды.

Интервальный вариационный ряд распределения частот записывается в виде:

Сумма всех частот равна общему числу наблюдений, т.е. объему совокупности: n = n 1 + n 2 + … + n m .

Интервальный вариационный ряд распределения относительных частот (частостей) имеет вид:

Частость находится по формуле , i = 1, 2, …, m .

Сумма всех частостей равна единице: w 1 + w 2 + … + w m = 1.

Наиболее часто на практике применяются интервальные ряды. Если статистических выборочных данных очень много и их значения отличаются друг от друга на сколь угодно малую величину, то дискретный ряд для этих данных будет достаточно громоздким и неудобным для дальнейшего исследования. В этом случае применяют группировку данных, т.е. промежуток, содержащий все значения признака, разбивают на несколько частичных интервалов и, подсчитав частоту для каждого интервала, получают интервальный ряд. Запишем более подробно схему построения интервального ряда, предположив, что длины частичных интервалов будут одинаковыми.

2.2 Построение интервального ряда

Для построения интервального ряда нужно:

Определить число интервалов;

Определить длину интервалов;

Определить расположение интервалов на оси.

Для определения числа интервалов k существует формула Стерджеса, по которой

,

где n - объем всей совокупности.

Например, если имеется 100 значений признака (вариант), то рекомендуется для построения интервального ряда взять число интервалов равным интервалам.

Однако очень часто на практике число интервалов выбирает сам исследователь, учитывая, что это число не должно быть очень большим, чтобы ряд не был громоздким, но и не очень маленьким, чтобы не потерять некоторых свойств распределения.

Длина интервала h определяется по следующей формуле:

,

где x max и x min - это соответственно самое большое и самое маленькое значения вариантов.

Величину называют размахом ряда.

Для построения самих интервалов поступают по-разному. Один из самых простых способов заключается в следующем. За начало первого интервала принимают величину
. Тогда остальные границы интервалов находятся по формуле . Очевидно, что конец последнего интервала a m+1 должен удовлетворять условию

После того как найдены все границы интервалов, определяют частоты (или частости) этих интервалов. Для решения этой задачи просматривают все варианты и определяют число вариант, попавших в тот или иной интервал. Полное построение интервального ряда рассмотрим на примере.

Пример 4.2. Для следующих статистических данных, записанных в порядке возрастания, построить интервальный ряд с числом интервалов, равным 5:

11, 12, 12, 14, 14, 15, 21, 21, 22, 23, 25, 38, 38, 39, 42, 42, 44, 45, 50, 50, 55, 56, 58, 60, 62, 63, 65, 68, 68, 68, 70, 75, 78, 78, 78, 78, 80, 80, 86, 88, 90, 91, 91, 91, 91, 91, 93, 93, 95, 96.

Решение. Всего n =50 значений вариантов.

Число интервалов задано в условии задачи, т.е. k =5.

Длина интервалов равна
.

Определим границы интервалов:

a 1 = 11 − 8,5 = 2,5; a 2 = 2,5 + 17 = 19,5; a 3 = 19,5 + 17 = 36,5;

a 4 = 36,5 + 17 = 53,5; a 5 = 53,5 + 17 = 70,5; a 6 = 70,5 + 17 = 87,5;

a 7 = 87,5 +17 = 104,5.

Для определения частоты интервалов посчитываем число вариантов, попавших в данный интервал. Например, в первый интервал от 2,5 до 19,5 попадают варианты 11, 12, 12, 14, 14, 15. Их число равно 6, следовательно, частота первого интервала равна n 1 =6. Частость первого интервала равна . Во второй интервал от 19,5 до 36,5 попадают варианты 21, 21, 22, 23, 25, число которых равно 5. Следовательно, частота второго интервала равна n 2 =5, а частость . Найдя аналогичным образом частоты и частости для всех интервалов, получим следующие интервальные ряды.

Интервальный ряд распределения частот имеет вид:

Сумма частот равна 6+5+9+11+8+11=50.

Интервальный ряд распределения частостей имеет вид:

Сумма частостей равна 0,12+0,1+0,18+0,22+0,16+0,22=1. ■

При построении интервальных рядов, в зависимости от конкретных условий рассматриваемой задачи, могут применяться и другие правила, а именно

1. Интервальные вариационные ряды могут состоять из частичных интервалов разной длины. Неравные длины интервалов позволяют выделить свойства статистической совокупности с неравномерным распределением признака. Например, если границы интервалов определяют численность жителей в городах, то целесообразно в данной задаче использовать неравные по длине интервалы. Очевидно, что для небольших городов имеет значение и небольшая разница в числе жителей, а для больших городов разница в десятки и сотни жителей не имеет существенного значения. Интервальные ряды с неравными длинами частичных интервалов исследуются, в основном, в общей теории статистики и их рассмотрение выходит за рамки данного пособия.

2. В математической статистике иногда рассматривают интервальные ряды, для которых левую границу первого интервала полагают равной –∞, а правую границу последнего интервала +∞. Это делается для того, чтобы приблизить статистическое распределение к теоретическому.

3. При построении интервальных рядов может оказаться, что значение какого-то варианта совпадает в точности с границей интервала. Лучше всего в этом случае поступить следующим образом. Если такое совпадение только одно, то считать, что рассматриваемый вариант со своей частотой попал в интервал, находящийся ближе к середине интервального ряда, если таких вариантов несколько, то либо все их отнести к правым от этих вариант интервалам, либо все – к левым.

4. После определения числа интервалов и их длины, расположение интервалов можно производить и по другому способу. Находят среднее арифметическое всех рассматриваемых значений вариантов х ср. и строят первый интервал таким образом, чтобы это среднее выборочное находилось бы внутри какого-то интервала. Таким образом, получаем интервал от х ср. – 0,5h до х ср.. + 0,5h . Затем влево и вправо, прибавляя длину интервала, строим остальные интервалы до тех пор, пока x min и x max не попадут соответственно в первый и последний интервалы.

5. Интервальные ряды при большом числе интервалов удобно записывать вертикально, т.е. интервалы записывать не в первой строке, а в первом столбце, а частоты (или частости) во втором столбце.

Выборочные данные могут рассматриваться как значения некоторой случайной величины Х . Случайная величина имеет свой закон распределения. Из теории вероятностей известно, что закон распределения дискретной случайной величины можно задать в виде ряда распределения, а непрерывной – с помощью функции плотности распределения. Однако существует универсальный закон распределения, который имеет место и для дискретной и для непрерывной случайных величин. Этот закон распределения задается в виде функции распределения F (x ) = P (X <x ). Для выборочных данных можно указать аналог функции распределения – эмпирическую функцию распределения.


Похожая информация.


Метод группировок позволяет также измерить вариацию (изменчивость, колеблемость) признаков. При относительно малом числе единиц совокупности вариация измеряется на основе ранжированного ряда единиц, образующих совокупность. Ряд называется ранжированным, если единицы расположены по возрастанию (убыванию) признака.

Однако ранжированные ряды довольно малопоказательны тогда, когда необходима сравнительная характеристика вариации. Кроме того, во многих случаях приходится иметь дело со статистическими совокупностями, состоящими из большого числа единиц, которые практически трудно представить в виде конкретного ряда. В связи с этим для первоначального общего ознакомления со статистическими данными и особенно для облегчения изучения вариации признаков исследуемые явления и процессы обычно объединяют в группы, а результаты группировки оформляют в виде групповых таблиц.

Если в групповой таблице имеется всего две графы - группы по выделенному признаку (варианты) и численности групп (частоты или частости), она называется рядом распределения.

Ряд распределения - простейшая разновидность структурной группировки по одному признаку, отображенная в групповой таблице с двумя графами, в которых содержатся варианты и частоты признака. Во многих случаях с такой структурной группировки, т.е. с составления рядов распределения, начинается изучение исходного статистического материала.

Структурная группировка в виде ряда распределения может быть превращена в подлинную структурную группировку, если выделенные группы будут охарактеризованы не только частотами, но и другими статистическими показателями. Главное предназначение рядов распределения - изучение вариации признаков. Теорию рядов распределения подробно разрабатывает математическая статистика.

Ряды распределения делят на атрибутивные (группировка по атрибутивным признакам, например деление населения по полу, национальности, семейному положению и т.д.) и вариационные (группировка по количественным признакам).

Вариационный ряд представляет собой групповую таблицу, которая содержит две графы: группировку единиц по одному количественному признаку и численность единиц в каждой группе. Интервалы в вариационном ряду образуются обычно равные и закрытые. Вариационным рядом является следующая группировка населения России по величине среднедушевых денежных доходов (табл. 3.10).

Таблица 3.10

Распределение численности населения России по величине среднедушевых доходов в 2004-2009 гг.

Группы населения по величине среднедушевых денежных доходов, руб./мес

Численность населения в группе, в % к итогу

8 000,1-10 000,0

10 000,1-15 000,0

15 000,1-25 000,0

Свыше 25 000,0

Все население

Вариационные ряды в свою очередь подразделяются на дискретные и интервальные. Дискретные вариационные ряды объединяют варианты дискретных признаков, изменяющихся в узких пределах. Примером дискретного вариационного ряда может служить распределение российских семей по числу имеющихся детей.

Интервальные вариационные ряды объединяют варианты либо непрерывных признаков, либо изменяющихся в широких пределах дискретных признаков. Интервальным является вариационный ряд распределения населения России по величине среднедушевых денежных доходов.

Дискретные вариационные ряды на практике применяются не слишком часто. Между тем составление их несложно, поскольку состав групп определяется конкретными вариантами, которыми реально обладают изучаемые группировочные признаки.

Более широко распространены интервальные вариационные ряды. При их составлении возникает сложный вопрос о количестве групп, а также о величине интервалов, которые должны быть установлены.

Принципы решения этого вопроса изложены в главе о методологии построения статистических группировок (см. параграф 3.3).

Вариационные ряды представляют собой средство свертывания или сжатия многообразной информации в компактную форму, по ним можно составить достаточно ясное суждение о характере вариации, изучить различия признаков явлений, входящих в исследуемую совокупность. Но важнейшее значение вариационных рядов состоит в том, что на их основе исчисляются особые обобщающие характеристики вариации (см. главу 7).

Вариационный ряд - это статистический ряд, показывающий распределение изучаемого явления по величине какого-либо количественного признака. Например, больных по возрасту, по срокам лечения, новорожденных по весу и т.п.

Варианта - отдельные значения признака, по которому проводится группировка (обозначается V ) .

Частота- число, показывающее, как часто встречается та или иная варианта (обозначается P ) . Сумма всех частот показывает общее число наблюдений и обозначается n . Разность между наибольшей и наименьшей вариантой вариационного ряда называется размахом или амплитудой .

Различают вариационные ряды:

1. Прерывные (дискретные) и непрерывные.

Ряд считается непрерывным, если группировочный признак может выражаться дробными величинами (вес, рост т.п.), прерывным, если группировочный признак выражается только целым числом (дни нетрудоспособности, число ударов пульса и т.п.).

2.Простые и взвешенные.

Простой вариационный ряд представляет собой ряд, в котором количественное значение варьирующего признака встречается один раз. Во взвешенном вариационном ряду количественные значения варьирующего признака повторяются с определённой частотой.

3. Сгруппированные (интервальные) и несгруппированые.

Сгруппированный ряд имеет варианты, объединённые в группы, объединяющие их по величине в пределах определённого интервала. В несгруппированном ряду каждой отдельной варианте соответствует определённая частота.

4. Четные и нечетные.

В чётных вариационных рядах сумма частот или общее число наблюдений выражено чётным числом, в нечётных ― нечётным.

5. Симметричные и асимметричные.

В симметричном вариационном ряду все виды средних величин совпадают или очень близки (мода, медиана, среднее арифметическое).

В зависимости от характера изучаемых явлений, от конкретных задач и целей статистического исследования, а также от содержания исходного материала, в санитарной статистике применяются следующие виды средних величин:

структурные средние (мода, медиана);

средняя арифметическая;

средняя гармоническая;

средняя геометрическая;

средняя прогрессивная.

Мода (М о ) - величина варьирующего признака, которая более часто встречается в изучаемой совокупности т.е. варианта, соответствующая наибольшей частоте. Находят ее непосредственно по структуре вариационного ряда, не прибегая к каким-либо вычислениям. Она обычно является величиной очень близкой к средней арифметической и весьма удобна в практической деятельности.

Медиана (М е ) - делящая вариационный ряд (ранжированный, т.е. значения вариант располагаются в порядке возрастания или убывания) на две равные половины. Медиана вычисляется при помощи так называемого нечетного ряда, который получают путем последовательного суммирования частот. Если сумма частот соответствует четному числу, тогда за медиану условно принимают среднюю арифметическую из двух средних значений.

Мода и медиана применяются в случае незамкнутой совокупности, т.е. когда наибольшая или наименьшая варианты не имеют точной количественной характеристики (например, до 15 лет, 50 и старше и т.п.). В этом случае среднюю арифметическую (параметрические характеристики) рассчитать нельзя.

Средня я арифметическая - самая распространенная величина. Средняя арифметическая обозначается чаще через М .

Различают среднюю арифметическую простую и взвешенную.

Средняя арифметическая простая вычисляется:

― в тех случаях, когда совокупность представлена простым перечнем знаний признака у каждой единицы;

― если число повторений каждой варианты нет возможности определить;

― если числа повторений каждой варианты близки между собой.

Средняя арифметическая простая исчисляется по формуле:

где V - индивидуальные значения признака; n - число индивидуальных значений;
- знак суммирования.

Таким образом, простая средняя представляет собой отношение суммы вариант к числу наблюдений.

Пример: определить среднюю длительность пребывания на койке 10 больных пневмонией:

16 дней - 1 больной; 17–1; 18–1; 19–1; 20–1; 21–1; 22–1; 23–1; 26–1; 31–1.

койко-дня.

Средняя арифметическая взвешенная исчисляется в тех случаях, когда индивидуальные значения признака повторяются. Ее можно вычислять двояким способом:

1. Непосредственным (среднеарифметическим или прямым способом) по формуле:

,

где P - частота (число случаев) наблюдений каждой варианты.

Таким образом, средняя арифметическая взвешенная представляет собой отношение суммы произведений вариант на частоты к числу наблюдений.

2. С помощью вычисления отклонений от условной средней (по способу моментов).

Основой для вычисления взвешенной средней арифметической является:

― сгруппированный материал по вариантам количественного признака;

― все варианты должны располагаться в порядке возрастания или убывания величины признака (ранжированный ряд).

Для вычисления по способу моментов обязательным условием является одинаковый размер всех интервалов.

По способу моментов средняя арифметическая вычисляется по формуле:

,

где М о - условная средняя, за которую чаще принимают величину признака, соответствующую наибольшей частоте, т.е. которая чаще повторяется (Мода).

i - величина интервала.

a - условное отклонение от условий средней, представляющее собой последовательный ряд чисел (1, 2 и т.д.) со знаком + для вариант больших условной средней и со знаком–(–1, –2 и т.д.) для вариант, которые ниже условной средней. Условное же отклонение от варианты, принятой за условную среднюю равно 0.

P - частоты.

- общее число наблюдений или n.

Пример: определить средний рост мальчиков 8 лет непосредственным способом (таблица1).

Т а б л и ц а 1

Рост в см

мальчиков P

Центральная

варианта V

Центральная варианта ― середина интервала ― определяется как полу сумма начальных значений двух соседних групп:

;
и т.д.

Произведение VP получают путем умножения центральных вариант на частоты
;
и т.д. Затем полученные произведения складывают и получают
, которую делят на число наблюдений (100) и получают среднюю арифметическую взвешенную.

см.

Эту же задачу решим по способу моментов, для чего составляется следующая таблица 2:

Т а б л и ц а 2

Рост в см (V)

мальчиков P

n=100

В качестве М о принимаем 122, т.к. из 100 наблюдений у 33 человек рост был 122см. Находим условные отклонения (a) от условной средней в соответствии с вышесказанным. Затем получаем произведение условных отклонений на частоты (aP) и суммируем полученные величины (
). В итоге получится 17. Наконец, данные подставляем в формулу:

При изучении варьирующего признака нельзя ограничиваться только вычислением средних величин. Необходимо вычислять и показатели, характеризующие степень разнообразия изучаемых признаков. Величина того или иного количественного признака неодинакова у всех единиц статистической совокупности.

Характеристикой вариационного ряда является среднее квадратичное отклонение (), которое показывает разброс (рассеивание) изучаемых признаков относительно средней арифметической, т.е. характеризует колеблемость вариационного ряда. Оно может определяться непосредственным способом по формуле:

Среднее квадратичное отклонение равняется квадратному корню из суммы произведений квадратов отклонений каждой варианты от средней арифметической (V–M) 2 на свои частоты деленной на сумму частот (
).

Пример вычисления: определить среднее число больничных листов, выдаваемых в поликлинике за день (таблица 3).

Т а б л и ц а 3

Число больничных

листов, выданных

врачом за день (V)

Число врачей (Р)

;

В знаменателе при числе наблюдений менее 30 необходимо от
отнимать единицу.

Если ряд сгруппирован с равными интервалами, тогда можно определить среднее квадратичное отклонение по способу моментов:

,

где i - величина интервала;

- условное отклонение от условной средней;

P - частоты вариант соответствующих интервалов;

- общее число наблюдений.

Пример вычисления : Определить среднюю длительность пребывания больных на терапевтической койке (по способу моментов) (таблица 4):

Т а б л и ц а 4

Число дней

пребывания на койке (V)

больных (Р)

;

Бельгийский статистик А. Кетле обнаружил, что вариации массовых явлений подчиняются закону распределения ошибок, открытому почти одновременно К. Гауссом и П. Лапласом. Кривая, отображающая это распределение, имеет вид колокола. По нормальному закону распределения колеблемость индивидуальных значений признака находится в пределах
, что охватывает 99,73% всех единиц совокупности.

Подсчитано, что если к средней арифметической прибавить и отнять 2, то в пределах полученных величин находится 95,45% всех членов вариационного ряда и, наконец, если к средней арифметической прибавить и отнять 1, то в пределах полученных величин будут находиться 68,27% всех членов данного вариационного ряда. В медицине с величиной
1связано понятие нормы. Отклонение от средней арифметической больше, чем на 1, но меньше, чем на 2является субнормальным, а отклонение больше, чем на 2ненормальным (выше или ниже нормы).

В санитарной статистике правило трех сигм применяется при изучении физического развития, оценке деятельности учреждений здравоохранения, оценке здоровья населения. Это же правило широко применяется в народном хозяйстве при определении стандартов.

Таким образом, среднее квадратичное отклонение служит для:

― измерения дисперсии вариационного ряда;

― характеристики степени разнообразия признаков, которые определяются коэффициентом вариации:

Если коэффициент вариации более 20% - сильное разнообразие, от 20 до 10% - среднее, менее 10% - слабое разнообразие признаков. Коэффициент вариации в известной мере является критерием надежности средней арифметической.

Ряды, построенные по количественному признаку , называются вариационным .

Ряды распределений состоят из вариантов (значений признака) и частот (численности групп). Частоты, выраженные в виде относительных величин (долей, процентов) называются частостями . Сумма всех частот называется объёмом ряда распределения.

По виду ряды распределения делятся на дискретные (построены по прерывным значениям признака) и интервальные (построены на непрерывных значениях признака).

Вариационный ряд представляет собой две колонки (или строки); в одной из которых приводятся отдельные значения варьирующего признака, именуемые вариантами и обозначаемые Х; а в другой – абсолютные числа, показывающие сколько раз (как часто) встречается каждый вариант. Показатели второй колонки называются частотами и условно обозначают через f. Еще раз заметим, что во второй колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуются частостями и условно обозначают через ω Сумма всех частостей в этом случае равна единице. Однако частоты можно выражать и в процентах, и тогда сумма всех частостей дает 100%.

Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд именуют дискретным.

Для непрерывных признаков вариационные ряды строятся как интервальные , то есть значения признака в них выражаются «от… до …». При этом минимальны значения признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей.

Интервальные вариационные ряды строят и для дискретных признаков, варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами.

Рассмотрим как определяется величина равных интервалов. Введем следующие обозначения:

i – величина интервала;

- максимальное значение признака у единиц совокупности;

– минимальное значение признака у единиц совокупности;

n – число выделяемых групп.

, если n известно.

Если число выделяемых групп трудно заранее определить, то для расчета оптимальной величины интервала при достаточном объеме совокупности может быть рекомендована формула, предложенная Стерджессом в 1926 году:

n = 1+ 3.322 lg N, где N – число единиц в совокупности.

Величина неравных интервалов определяется в каждом отдельном случае с учетом особенностей объекта изучения.

Статистическим распределением выборки называют перечень ва­риант и соответствующих им частот (или относительных частот).

Статистическое распределение выборки можно задать в виде таблицы, в первой графе которой располагаются варианты, а во второй - соот­ветствующие этим вариантам частоты ni , или относительные частоты Pi .

Статистическое распределение выборки

Интервальными называются вариационные ряды, в которых значе­ния признаков, положенных в основу их образования, выражены в определенных пределах (интервалах). Частоты в этом случае относятся, не к отдельным значениям признака, а ко всему интервалу.

Интервальные ряды распределения строятся по непрерывным количе­ственным признакам, а также по дискретным признакам, варьирующим в значительных пределах.

Интервальный ряд можно представить статистическим распределени­ем выборки с указанием интервалов и соответствующих им частот. При этом в качестве частоты интервала принимают сумму частот вариант, по­павших в этот интервал.

При группировке по количественным непрерывным признакам важ­ное значение имеет определение размера интервала.

Кроме выборочной средней и выборочной дисперсии применяются и другие характеристики вариационного ряда.

Модой называют варианту, которая имеет наибольшую частоту.