Направление напряженности поля. Определение напряженности в любой точке электрического поля. Правила вычерчивания силовых линий

Инструкция

Если в электрическое поле, создаваемое зарядом Q, поместить еще один заряд Q0, то оно будет воздействовать на него с определенной силой. Это называется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на положительный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

В зависимости от конкретной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Поэтому напряженность электрического поля относится к векторным физическим величинам.

Поскольку напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E одинаков с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по , которая соединяет эти заряды.

Видео по теме

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Чтобы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора или нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба применяются для графического изображения различных или действий, например, физических сил, движения элементарных частиц и пр.

Местоположение вектора в двухмерном или трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, однако модуль и направление останутся прежними. Эта независимость позволяет использовать векторной алгебры в различных вычислениях, например, углов между пространственными прямыми и плоскостями.

Каждый вектор можно задать координатами его концов. Рассмотрим для начала двухмерное пространство: пусть начало вектора находится в точке А (1, -3), а – в точке В (4, -5). Чтобы найти их проекции, опустите перпендикуляры на ось абсцисс и ординат.

Определите проекции самого вектора , которые можно вычислить по формуле:АВх = (xb - xa) = 3;ABy = (yb - ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую нужно вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|² = ABx² + ABy² → |AB| = √((xb - xa)² + (yb – ya)²) = √13.

Пусть в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = √(9 + 4 + 25) = √38.

Видео по теме

Для того чтобы определить модуль точечных зарядов одинаковой величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же нужно найти модуль заряда отдельных точечных тел, вносите их в электрическое поле с известной напряженностью и измеряйте силу, с которой поле действует на эти заряды.

Как мы обнаруживаем любую силу или взаимодействие? По результату воздействия. Мы стукнули по мячу у мяча изменилась скорость. Земля притягивает нас мы не можем оттолкнуться ногами и улететь, а всегда приземляемся обратно. К сожалению:)

Так и с электрическим полем недостаточно просто знать, что оно есть, необходимо найти какую-то его характеристику, которая будет описывать результат его воздействия.

Мы знаем, что поле воздействует на заряд. Собственно, мы и можем обнаружить электрическое поле только по его действию на заряд. Соответственно, мы должны ввести величину, характеризующую силу этого воздействия.

Напряженность как характеристика электрического поля

При помещении в постоянное электрическое поле различных зарядов удалось обнаружить, что величина действия на заряд силы всегда прямо пропорциональна величине этого заряда.

По закону Кулона все верно. Ведь поле создается зарядом q_1, следовательно, при неизменной величине заряда q_1, созданное им поле будет действовать на помещенный в него заряд q_2 кулоновской силой, пропорциональной величине заряда q_2.

Поэтому отношение силы действия поля на помешенный в него заряд к этому заряду будет величиной, не зависящей от величины заряда, создающего это поле.

Такую величину можно рассматривать в качестве характеристики поля. Ее назвали напряженностью электрического поля:

где E напряженность электрического поля, F сила, действующая на точечный заряд, q помещенный в поле заряд.

Напряженность поля величина векторная, направлен вектор напряженности в любой точке поля всегда вдоль прямой, соединяющей эту точку и помещенный в поле заряд. Вектор напряженности всегда совпадает по направлению с вектором силы, действующей на заряд.

Принцип суперпозиции полей

Мы знаем, что если на тело действует несколько различных сил, направленных в разные стороны, то результирующая этих сил будет равна их геометрической сумме: F =F_1+F_2+...+F_n.

Направление воздействия этой силы находится по правилу сложения векторов. В случае, когда мы имеем заряд, находящийся в зоне действия нескольких электрических полей, то на него будут действовать несколько сил.

Величина и направление каждой отдельно взятой силы будет зависеть от напряженности каждого поля в отдельности. Результирующая же этих сил, как и в случае с телом, будет равна их геометрической сумме.

Логично предположить, что тогда и результирующая напряженность поля для нашего заряда будет складываться из напряженностей всех полей, присутствующих в этой точке. В этом суть принципа суперпозиции полей.

Этот принцип был подтвержден экспериментально: если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых E_1,E_2,…,E_n, то результирующая напряженность поля в этой точке равна сумме напряженностей этих полей.

Заряженные тела могут воздействовать друг на друга без соприкосновения через электрическое поле. Поле, которое создается неподвижными электрическими частицами, называется электростатическим.

Инструкция

Если в электрическое поле, создаваемое зарядом Q, поместить еще один заряд Q0, то оно будет воздействовать на него с определенной силой. Это характеристика называется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на положительный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

В зависимости от конкретной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Поэтому напряженность электрического поля относится к векторным физическим величинам.

Поскольку напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E одинаков с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по прямой линии, которая соединяет эти заряды.

Майкл Фарадей предложил наглядно изображать напряженность поля электрического заряда с помощью линий напряженности. Эти линии совпадают с вектором напряженности во всех точках по касательной. На чертежах их принято обозначать стрелками.

В том случае, если электрическое поле однородно и вектор его напряженности постоянен по своему модулю и направлению, то линии напряженности параллельны с ним. Если электрическое поле создается положительно заряженным телом, линии напряженности направлены от него, а в случае с отрицательно заряженной частицей - по направлению к нему.

Обратите внимание

Вектор напряженности имеет лишь одно направление в каждой точке пространства, поэтому линии напряженности никогда не пересекаются.

Цель урока: дать понятие напряжённости электрического поля и ее определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r 2 в решении несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно судить только по ее действию. Экспериментально доказано, что существуют два рода зарядов, вокруг которых существуют электрические поля, характеризующиеся силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.

Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая обозначается буквой Е и имеет единицы измерения или . Напряженность является векторной величиной, так как определяется отношением силы Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности имеем зависимость напряженности поля от расстояния, на котором она определяется относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда.

В системе СИ Н·м 2 /Кл 2 ,

где ε 0 – электрическая постоянная, равная 8,85·10 -12 Кл 2 /Н·м 2 ;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным. В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряженность поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна геометрической сумме векторов напряженности, в чем и заключается принцип суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный положительный заряд между ними, тогда в данной точке будут действовать два вектора напряженности, направленные в одну сторону:

Согласно принципу суперпозиции полей общая напряженность поля в данной точке равна геометрической сумме векторов напряженности Е 31 и Е 32 .

Напряженность в данной точке определяется по формуле:

Е = kq 1 /x 2 + kq 2 /(r – x) 2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной на расстояние а от второго заряда. Если учесть, что поле первого заряда больше, чем поле второго заряда, то напряженность в данной точке поля равна геометрической разности напряженности Е 31 и Е 32 .

Формула напряженности в данной точке равна:

Е = kq1/(r + a) 2 – kq 2 /a 2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в некоторой удаленности и от первого и от второго заряда, в данном случае на расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные заряды отталкиваются, а разноименные притягиваются, имеем два вектора напряженности исходящие из одной точки, то для их сложения можно применить метод противоположному углу параллелограмма будет являться суммарным вектором напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е 31 2 +Е 32 2) 1/2

Следовательно:

Е = ((kq 1 /r 2) 2 + (kq 2 /b 2) 2) 1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно определить, зная величины взаимодействующих зарядов, расстояние от каждого заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

Задачи на дом:

1. Два заряда q 1 = +3·10 -7 Кл и q 2 = −2·10 -7 Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите напряженность поля в точке С, расположенной на линии, соединяющей заряды, на расстоянии 0,05 м вправо от заряда q 2 .

2. В некоторой точке поля на заряд 5·10 -9 Кл действует сила 3·10 -4 Н. Найти напряженность поля в этой точке и определите величину заряда, создающего поле, если точка удалена от него на 0,1 м.

Заряженные тела могут влиять друг на друга без соприкосновения через электрическое поле. Поле, которое создается статичными электрическими частицами, именуется электростатическим.

Инструкция

1. Если в электрическое поле, создаваемое зарядом Q, разместить еще один заряд Q0, то оно будет влиять на него с определенной силой. Это колляция именуется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на правильный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

2. В зависимости от определенной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Следственно напряженность электрического поля относится к векторным физическим величинам.

3. От того что напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E идентичен с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по прямой линии, которая соединяет эти заряды.

4. Майкл Фарадей предложил наглядно изображать напряженность поля электрического заряда с поддержкой линий напряженности. Эти линии совпадают с вектором напряженности во всех точках по касательной. На чертежах их принято обозначать стрелками.

5. В том случае, если электрическое поле однородно и вектор его напряженности непрерывен по своему модулю и направлению, то линии напряженности параллельны с ним. Если электрическое поле создается правильно заряженным телом, линии напряженности направлены от него, а в случае с негативно заряженной частицей – по направлению к нему.

Совет 2: Как обнаружить напряженность электрического поля

Для того дабы обнаружить напряженность электрического поля , внесите в него вестимый пробный заряд. Измерьте силу, которая действует на него со стороны поля и рассчитайте значение напряженности. Если электрическое поле создается точечным зарядом либо конденсатором, рассчитайте его по особым формулам.

Вам понадобится

  • электрометр, динамометр, вольтметр, линейку и транспортир.

Инструкция

1. Определение напряженности произвольного электрического поля Возьмите заряженное тело, размеры которого незначительны по сопоставлению размерами тела, генерирующего электрическое поле. Отлично подойдет заряженный металлический шар с малой массой. Измерьте величину его заряда электрометром и внесите в электрическое поле. Уравновесьте силу, действующую на заряд со стороны электрического поля динамометром и снимите с него показания в ньютонах. Позже этого значение силы, поделите на величину заряда в Кулонах (E=F/q). Итогом будет напряженность электрического поля в вольтах на метр.

2. поля точечного заряда Если электрическое поле генерируется зарядом, величина которого знаменита, для определения его напряженности в некоторой точке пространства удаленной от него, измерьте это расстояние между избранной точкой и зарядом в метрах. Позже этого величину заряда в Кулонах, поделите на измеренное расстояние, возведенное во вторую степень (q/r?). Полученный итог умножьте на показатель 9*10^9.

3. Определение напряженности электрического поля конденсатора Измерьте разность потенциалов (напряжение) между пластинами конденсатора. Для этого параллельно ним присоедините вольтметр, итог зафиксируйте в вольтах. После этого измерьте расстояние между этими пластинами в метрах. Поделите значение напряжения на расстояние между пластинами, итогом будет напряженность электрического поля . Если между пластинами размещен не воздух, определите диэлектрическую проницаемость данной среды и поделите итог не ее значение.

4. Определение электрического поля , сделанного несколькими поля ми Если поле в данной точке является итогом наложения нескольких электрических полей, обнаружьте векторную сумму значений этих полей, с учетом их направления (тезис суперпозиции полей). Если надобно обнаружить электрическое поле, образованное двумя поля ми, постройте их векторы в данной точке, измерьте угол между ними. После этого возведите всякое из их значений в квадрат, обнаружьте их сумму. Вычислите произведение значений напряженности полей, умножьте его на косинус угла, тот, что равен 180? минус угол между векторами напряженностей, а итог умножьте на 2. Позже этого от суммы квадратов напряженностей отнимите полученное число (E=E1?+E2?-2E1E2*Cos(180?-?)). При построении полей рассматривайте, что силовые линии выходят из правильных зарядов и входят в негативные.

Видео по теме

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Дабы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

1. Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора именуется модулем либо нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба свойства используются для графического изображения разных величин либо действий, скажем, физических сил, движения элементарных частиц и пр.

2. Местоположение вектора в двухмерном либо трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, впрочем модуль и направление останутся бывшими. Эта автономность разрешает применять средства векторной алгебры в разных вычислениях, скажем, определения углов между пространственными прямыми и плоскостями.

3. Весь вектор дозволено задать координатами его концов. Разглядим для начала двухмерное пространство: пускай предисловие вектора находится в точке А (1, -3), а конец – в точке В (4, -5). Дабы обнаружить их проекции, опустите перпендикуляры на ось абсцисс и ординат.

4. Определите проекции самого вектора , которые дозволено вычислить по формуле:АВх = (xb – xa) = 3;ABy = (yb – ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

5. В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую необходимо вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|? = ABx? + ABy? ? |AB| = ?((xb – xa)? + (yb – ya)?) = ?13.

6. Видимо, что для трехмерного пространства формула усложняется путем добавления третьей координаты – аппликат zb и za для концов вектора :|AB| = ?((xb – xa)? + (yb – ya)? + (zb – za)?).

7. Пускай в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = ?(9 + 4 + 25) = ?38.

Видео по теме

Для того дабы определить модуль точечных зарядов идентичной величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же необходимо обнаружить модуль заряда отдельных точечных тел, вносите их в электрическое поле с вестимой напряженностью и измеряйте силу, с которой поле действует на эти заряды.

Вам понадобится

Инструкция

1. Если есть два идентичных по модулю заряда, измерьте силу их взаимодействия при помощи крутильных весов Кулона, которые единовременно являются эмоциональным динамометром. Позже того, как заряды придут в баланс, и проволока весов скомпенсирует силу электрического взаимодействия, на шкале весов зафиксируйте значение этой силы. Позже этого при помощи линейки, штангенциркуля, либо по особой шкале на весах обнаружьте расстояние между этими зарядами. Рассматривайте, что разноименные заряды притягиваются, а одноименные отталкиваются. Силу измеряйте в Ньютонах, а расстояние в метрах.

2. Рассчитайте значение модуля одного точечного заряда q. Для этого силу F, с которой взаимодействуют два заряда, поделите на показатель 9 10^9. Из полученного итога извлеките квадратный корень. Итог умножьте на расстояние между зарядами r, q=r ?(F/9 10^9). Заряд получите в Кулонах.

3. Если заряды неодинаковые, то один из них должен быть предварительно знаменит. Силу взаимодействия знаменитого и неведомого заряда и расстояние между ними определите при помощи крутильных весов Кулона. Рассчитайте модуль неведомого заряда. Для этого силу взаимодействия зарядов F, поделите на произведение показателя 9 10^9 на модуль знаменитого заряда q0. Из получившегося числа извлеките квадратный корень и умножьте итог на расстояние между зарядами r; q1=r ?(F/(9 10^9 q2)).

4. Определите модуль незнакомого точечного заряда, внеся его в электростатическое поле. Если его напряженность в данной точке заблаговременно незнакома, внесите в нее датчик измерителя электростатического поля. Напряженность измеряйте в вольтах на метр. Внесите в точку с вестимой напряженностью заряд и с поддержкой эмоционального динамометра измерьте силу в Ньютонах, действующую на него. Определите модуль заряда, поделив значение силы F на напряженность электрического поля E; q=F/E.

Видео по теме

Обратите внимание!
Вектор напряженности имеет лишь одно направление в всякой точке пространства, следственно линии напряженности никогда не пересекаются.