Матрицы как решать примеры. Хосин Канри. Развертывание корпоративной политики. Роман Партин Директор по развитию практики. Х-матрица состоит из четырех основных блоков

Занятие № 1. Матрицы. Операции над матрицами.

1. Что называется матрицей.

2. Какие две матрицы называются равными.

3. Какая матрица называется квадратной, диагональной, единичной.

4. Как выполнить операции сложения матриц и умножение матрицы на число.

5. Для каких матриц вводится операция умножения и правило ее выполнения.

6. Какие преобразования над матрицами являются элементарными.

7. Какую матрицу называют канонической.

Типовые примеры Действия над матрицами

Задача № 1. Даны матрицы

Найти матрицу D=
(1)

Решение. По определению произведения матрица на число получаем:

D=

Задача № 2 . Найти произведение АВ двух квадратных матриц:

Решение. Обе матрицы являются квадратными матрицами 2-го порядка. Такие матрицы можно умножить, используя формулу

Формула (2) имеет следующий смысл: чтобы получить элемент матрицы С = АВ, стоящий на пересечении строки истолбца нужно взять сумму произведений элементов-ой строки матрицы А на соответствующие элементы-го столбца матрицы В.

В соответствии с формулой (2) найдем:

Следовательно, произведение С = АВ будет иметь вид:

Задача № 3. Найти произведение АВ и ВА матриц:

Решение. Согласно формуле (2),элементы матриц АВ и ВА будут иметь вид:

Вывод: Сравнивая матрицы АВ и ВА и пользуясь определением равенства матриц, делаем вывод, что АВВА, т. е. умножение матриц не подчиняется переместительному закону.

Задача № 4 (устно). Даны матрицы
Существуют ли произведения (в скобках даны правильные ответы): АВ (да), ВА (нет), АС (да), СА (нет), АВС (нет), АСВ (да), СВА (нет).

Задача № 5. Найти произведение АВ и ВА двух матриц вида:

Решение. Приведенные матрицы вида
следовательно, существуют произведения АВ и ВА данных матриц, которые будут иметь вид:

Задача № 6 . Найти произведение АВ матриц:

Ответ:

Задачи для самостоятельного решения:

    Даны матрицы

Найти матрицу D=2А-4В+3С.

2. Найти произведения АВ и ВА квадратных матриц:

    Найти произведение матриц:

    Найти произведение матриц:



7. Найти произведение матриц:

8.Найти матрицу: В=6А 2 +8А, если
.

9. Дана матрица
.Найти все матрицы В, перестановочные с матрицей А.

10. Доказать, что если А - диагональная матрица и все элементы ее главной диагонали различны между собой, то любая матрица, перестановочная с А, тоже диагональная.

Занятие 2. Определители квадратных матриц и их вычисление. Обратная матрица.

Для усвоения практического материала нужно ответить на следующие теоретические вопросы:

    Что называется определителем n-го порядка? Правила вычисления приn=1,2,3.

    Свойства определителей.

    Какая матрица называется невырожденной?

    Какая матрица называется единичной?

    Какая матрица называется обратной по отношению к данной?

    Что является необходимым и достаточным условием для существования обратной матрицы?

    Сформулировать правило нахождения обратной матрицы.

    Ранг матрицы. Правила нахождения.

Типовые примеры Вычисление определителей

Задача № 1. Вычислить определитель
:

а) по правилу треугольника;

б) с помощью разложения по первой строке;

в) преобразованием, используя свойства определителей.

в)

Задача № 2 . Найти минор и алгебраическое дополнение элементаa 23 определителя
и вычислить его разложением по элементам строки или столбца.

Решение.

М 23
; А 23

Задача № 3. Вычислить определитель с помощью разложения по 2 строке:

Ответ:

Задача № 4. Решить уравнение

Задача № 5. Вычислить определитель 4-го порядка разложением по элементам строки или столбца:

Матричным уравнением называется уравнение вида

A X = B

X A = B ,

где A и B - известные матрицы, X - неизвестная матрица, которую требуется найти.

Как решить матричное уравнение в первом случае? Для того, чтобы решить матричное уравнение вида A X = B , обе его части следует умножить на обратную к A матрицу слева:

По определению обратной матрицы, произведение обратной матрицы на данную исходную матрицу равно единичной матрице: , поэтому

.

Так как E - единичная матрица, то E X = X . В результате получим, что неизвестная матрица X равна произведению матрицы, обратной к матрице A , слева, на матрицу B :

Как решить матричное уравнение во втором случае? Если дано уравнение

X A = B ,

то есть такое, в котором в произведении неизвестной матрицы X и известной матрицы A матрица A находится справа, то нужно действовать аналогично, но меняя направление умножения на матрицу, обратную матрице A , и умножать матрицу B на неё справа:

,

Как видим, очень важно, с какой стороны умножать на обратную матрицу, так как . Обратная к A матрица умножается на матрицу B с той стороны, с которой матрица A умножается на неизвестную матрицу X . То есть с той стороны, где в произведении с неизвестной матрицей находится матрица A .

Как решить матричное уравнение в третьем случае? Встречаются случаи, когда в левой части уравнения неизвестная матрица X находится в середине произведения трёх матриц. Тогда известную матрицу из правой части уравнения следует умножить слева на матрицу, обратную той, которая в упомянутом выше произведении трёх матриц была слева, и справа на матрицу, обратную той матрице, которая располагалась справа. Таким образом, решением матричного уравнения

A X B = C ,

является

.

Решение матричных уравнений: примеры

Пример 1. Решить матричное уравнение

.

A X = B A и неизвестной матрицы X матрица A B A A .

A :

.

A :

.

A :

Теперь у нас есть всё, чтобы найти матрицу, обратную матрице A :

.

Наконец, находим неизвестную матрицу:

Решить матричное уравнение самостоятельно, а затем посмотреть решение

Пример 3. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X A = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A B на матрицу, обратную матрице A A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

A :

.

Находим неизвестную матрицу:

До сих пор мы решали уравнения с матрицами второго порядка, а теперь настала очередь матриц третьего порядка.

Пример 4. Решить матричное уравнение

.

Решение. Это уравнение первого вида: A X = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A , и делаем это легко, так как определитель матрицы A равен единице:

.

Находим неизвестную матрицу:

Пример 5. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X A = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A .

Ответ на этот вопрос компания «Тойота», мировой лидер не только в автомобилестроении, но и в создании эффективных бизнес-систем, нашла для себя в инструменте Хосин Канри еще в 1950-1960-х годах. Это словосочетание можно перевести с японского языка как компас, а в более широком смысле — управление политикой. Практически все крупные мировые компании уже давно переняли этот инструмент и успешно его используют, в том числе в компании «Альстом». В качестве примера можно привести ОАО «РЖД», которое еще в прошлом году применило методику Хосин Канри на Октябрьской железной дороге.

Хосин Канри — это структурированный, регулярно повторяющийся процесс, результатом которого является документ, называемый Х-матрица, формулирующий основные направления развития компании. Развертывание стратегии происходит через встроенные друг в друга планы мероприятий (PDCA).

Схематически процесс Хосин Канри применительно для отдельного завода ТМХ может быть представлен на рис. 1.

Х-матрица каждого уровня состоит из четырех основных блоков: глобальные цели, стратегия, тактики и количественные цели. При этом стратегии и глобальные цели нижестоящих уровней неразрывно связаны с тактиками и количественными целями вышестоящих уровней.

Поэтому изменение, произведенное на одном из уровней, быстро транслируется и вызывает перемены на всех остальных. Принцип заполнения Х-матрицы схематически представлен на рис. 3 .

Внедрение Х-матриц на заводах холдинга

В настоящее время в холдинге происходит формирование технической стратегии развития предприятий. В эту работу также вовлечено и высшее руководство «Альстом Транспорт». Для всех заводов актуальными являются следующие стратегии: осуществление прорыва в области качества выпускаемой продукции, развитие персонала, внедрение проектного менеджмента и управление затратами, завершение реструктуризации предприятий.

Для обеспечения эффективного внедрения стратегии развития холдинга на предприятиях в феврале — апреле 2014 года группой по производственной системе были проведены двухдневные семинары по практическому обучению руководства заводов методологии работы с Х-матрицами. К сегодняшнему моменту обучен высший менеджмент семи предприятий: БМЗ, НЭВЗ, ТВЗ, КЗ, ЦСМ, ДМЗ, МВМ.

В рамках подготовки к семинару с каждым генеральным директором прорабатывалась Х-матрица уровня завода (уровень L1), которая основывалась в свою очередь на входящих данных из матрицы уровня холдинга. Обозначенные выше стратегии были дополнены тактическими инициативами завода. Так, для ЗАО «УК «БМЗ» были определены 19 тактик уровня завода, среди которых создание двух эталонных линий сборки основных продуктов, создание новой платформы (ТЭМ23), совершенствование системы производственного планирования, пересмотр системы мотивации персонала. Сам проект трансформации завода, реализация которого была начата ранее, получил громкий лозунг «БМЗ — первый в любом составе!».

В ходе семинара были построены Х-матрицы основных дирекций предприятия: дирекции по производству, технические дирекции и дирекции по материально-техническому обеспечению и логистике (уровень L2). Затем руководители представили стратегии развития их подразделений начальникам отделов (цехов), которые в свою очередь составили Х-матрицы уровня L3 с тактическими задачами отделов. Далее начальники отделов (цехов) «каскадировали» задачи начальникам бюро, которые составили очень конкретные планы мероприятий для достижения общей стратегии дирекции. Если в Х-матрицах дирекций и отделов горизонт планирования равен одному году, то в случае плана мероприятий для руководителей бюро — три месяца. Завершающим этапом семинара стало формирование стендов с индикаторами для управления деятельностью подразделения на каждом уровне.

Таким образом, была выстроена система управления трансформацией завода, включающая взаимосвязанные планы тактических и операционных задач, а также индикаторов, позволяющих оценить как процессы, так и степень реализации задач.

В настоящий момент заводы дорабатывают Х-матрицы, добиваясь полной взаимосвязанности между матрицами разных уровней. Особое внимание уделено работе с индикаторами процессов, большинство из которых можно найти в будущей единой панели индикаторов завода.

Связь Х-матриц и панели индикаторов

Для принятия обоснованных решений руководителям различных уровней необходимо полагаться на достоверную и своевременную бизнес-информацию. Панели индикаторов хранят данные о результативности и эффективности протекающих в организации бизнес-процессов. Эти данные используются для мониторинга, анализа, управления.

В 2013 году на НЭВЗ была проведена работа по внедрению ключевых показателей эффективности, и в качестве пилотного участка был выбран цех, где происходит сборка электропоездов ЭП20 «Олимп». Опыт оказался успешным, и руководство завода получило перекрестную систему КПЭ, благодаря которой можно быстро и эффективно проанализировать данные.

С начала 2014 года в холдинге ведется активная работа по формированию стандартной панели индикаторов для заводов, которая включит в себя все наиболее важные КПЭ предприятия и будет ежемесячно обновляться. Планируется официально включить в бизнес-план 2015 года помимо показателей результативности еще и показатели эффективности деятельности заводов.

Среди наиболее важных КПЭ , которые будут включены в панель, можно выделить следующие: эффективность производственных рабочих, отношение РСС и вспомогательных рабочих к основным рабочим, оборачиваемость сырья и материалов, оборачиваемость незавершенного производства, выработка нормо-часов в год с 1 м2 производственных площадей .

В 2014 году работа по построению Х-матриц была проведена под руководством группы по производственной системе, в следующем году такая работа должна стать обычной задачей по планированию деятельности предприятия на год.

Следующие шаги по развертыванию стратегии на заводах

Большинство российских предприятий, и заводы Трансмашхолдинга не исключение, имеют очень сложную иерархическую структуру с множеством уровней. Это значит, что каскадирование задач — долгий процесс, при котором важно обеспечить полную открытость и прозрачность направлений развития компании. Поэтому ключевым этапом в развертывании стратегии становится информирование всех сотрудников о предстоящих переменах. Информированность, понимание и вовлеченность — вот цепочка действий коллектива каждого предприятия. И здесь немаловажно участие корпоративных газет, которые должны регулярно транслировать ключевые решения руководства, работы по Х-матрицам, рассказывать о преобразованиях, происходящих на заводах.

Для успешной реализации стратегии нужна полная поддержка всех уровней, поэтому сейчас заводы работают над поиском запоминающегося названия проекта и его лозунга. Через заводские газеты, в ходе коллективных собраний, а главное — от непосредственных руководителей работники заводов должны не только узнать о планах предприятия, но и понять свою роль в этом процессе.

Александр Альбертович Василенко, генеральный директор ЗАО «УК «БМЗ»:

Для достижения указанных целей руководством предприятия определены тактические задачи, которые необходимо решить в 2014 году. Далее директора по направлениям на основании матрицы стратегии развития завода разработали матрицы по каждой службе и так до уровня отделов. Это позволило довести глобальные цели и тактические задачи ТМХ, определенные руководством, до конкретных исполнителей. Таким образом, все сотрудники стали понимать свою личную роль и вклад в стратегическое развитие предприятия. В настоящее время перед руководителями завода всех уровней стоит задача по ежемесячному анализу исполнения тактических задач и планов мероприятий для оперативного реагирования на возможные отклонения. Такой подход позволил систематизировать деятельность различных подразделений в рамках целей завода, установил целевые состояния процессов.

Дмитрий ДЬЯКОВ, заместитель начальника отдела производства ЗАО «УК «БМЗ»:

Можно предположить, что несколько веков назад Суворов уже занимался выстраиванием производственной системы… в армии. Ведь ему приписывают слова «Каждый солдат должен понимать свой маневр». Это как раз и есть принцип каскадирования. Когда командующий ставит цели, каждый солдат должен не только знать, но и понимать свой маневр. Применительно к нашему производству: оператор не просто пришел и сделал деталь, но и знает, почему сегодня такой уровень заказов, почему требуется оптимизация площадей, рационализация техпроцессов, внедрение системы 5С на рабочих местах и т. д. Это один из методов производственной системы, который позволяет создать команду, способную улавливать и видеть изменения обстановки, уметь их анализировать, вырабатывать на эти изменения комплекс действий и претворять их в жизнь.

Марк-Антуан Жювин, финансовый контролер Трансмашхолдинга, уже имевший опыт работы с данным инструментом, отмечает:

Использование в ТМХ Х-матриц именно сегодня отвечает на вызовы современной экономической среды, которая отличается высокой изменчивостью и непредсказуемостью. Вследствие этого нужно действовать коллективно, не нарушая равновесия всей системы.

Это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица - таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n .

Общий вид матрицы:

Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:

  • Главная диагональ, состоящая из элементов а 11 ,а 22 …..а mn .
  • Побочная диагональ, состоящая из элементов а 1n ,а 2n-1 …..а m1 .

Основные виды матриц:

  • Квадратная - такая матрица, где число строк = числу столбцов (m=n ).
  • Нулевая - где все элементы матрицы = 0.
  • Транспонированная матрица — матрица В , которая была получена из исходной матрицы A путем замены строк на столбцы.
  • Единичная - все элементы главной диагонали = 1, все остальные = 0.
  • Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.

Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 , то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.

Методы решения матриц.

Почти все методы решения матрицы заключаются в нахождении ее определителя n -го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.

Нахождение определителей 2-го порядка.

Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:

Методы нахождения определителей 3го порядка.

Ниже приведены правила для нахождения определителя 3го порядка.

Упрощенно правило треугольника, как одного из методов решения матриц , можно изобразить таким образом:

Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "+"; так же, для 2го определителя - соответствующие произведения берутся со знаком "-", то есть по такой схеме:

При решении матриц правилом Саррюса , справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком "+"; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком "-":

Разложение определителя по строке или столбцу при решении матриц.

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.

Приведение определителя к треугольному виду при решении матриц.

При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.

Теорема Лапласа при решении матриц.

Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ - это определитель n -го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k n - 1 . В таком случае сумма произведений всех миноров k -го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы :

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Вычисляем алгебраические дополнения.
  3. Составляем союзную (взаимную, присоединённую) матрицу C .
  4. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  5. Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.

Решение систем матриц.

Для решения систем матриц наиболее часто используют метод Гаусса.

Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.

Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.

Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный - метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.