Найти координаты фокусов линии второго порядка онлайн. Свойства кривых второго порядка. Эллипс и его каноническое уравнение

Малый дискриминант 5 (§ 66) для эллипса положителен (см. пример 1 § 66), для гиперболы отрицателен, для параболы равен нулю.

Доказательство. Эллипс представляется уравнением . У этого уравнения малый дискриминант При преобразовании координат сохраняет свою величину, а при умножении обеих частей уравнения на какое-либо число дискриминант умножается на (§ 66, замечание). Следовательно, дискриминант эллипса положителен в любой системе координат. В случае гиперболы и в случае параболы доказательство аналогично.

Согласно с этим различают три типа линий второго порядка (и уравнений второй степени):

1. Эллиптический тип, характеризующийся условием

К нему относятся, кроме действительного эллипса, также мнимый эллипс (§ 58, пример 5) и пара мнимых прямых, пересекающихся в действительной точке (§ 58, пример 4).

2. Гиперболический тип, характеризующийся условием

К нему относится, кроме гиперболы, пара действительных пересекающихся прямых (§ 58, пример 1).

3. Параболический тип, характеризующийся условием

К нему относится, кроме параболы, пара параллельных (действительных или мнимых) прямых (они могут совпадать).

Пример 1. Уравнение

принадлежит к параболическому типу, так как

Поскольку большой дискриминант

не равен нулю, то уравнение (1) представляет нераспадающуюся линию, т. е. параболу (ср. §§ 61-62, пример 2).

Пример 2. Уравнение

принадлежит к гиперболическому типу, так как

поскольку

то уравнение (2) представляет пару пересекающихся прямых. Их уравнения можно найти по способу § 65.

Пример 3. Уравнение

принадлежит к эллиптическому типу, так как

Поскольку

то линия не распадается и, значит, является эллипсом.

Замечание. Однотипные линии геометрически связаны так: пара пересекающихся мнимых прямых (т. е. одна действительная точка) есть предельный случай эллипса, «стягивающегося в точку» (рис. 88); пара пересекающихся действительных прямых - предельный случай гиперболы, приближающейся к своим асимптотам (рис. 89); пара параллельных прямых - предельный случай параболы, у которой ось и одна пара точек симметричных относительно оси (рис. 90), неподвижны, а вершина удаляется в бесконечность.

Линии второго порядка.
Эллипс и его каноническое уравнение. Окружность

После основательной проработки прямых на плоскости продолжаем изучать геометрию двухмерного мира. Ставки удваиваются, и я приглашаю вас посетить живописную галерею эллипсов, гипербол, парабол, которые являются типичными представителями линий второго порядка . Экскурсия уже началась, и сначала краткая информация обо всей экспозиции на разных этажах музея:

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической , если в аффинной системе координат её уравнение имеет вид , где – многочлен, состоящий из слагаемых вида ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат , поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где – произвольные действительные числа ( принято записывать с множителем-«двойкой») , причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой , которая представляет собой линию первого порядка .

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.

Например:

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка . Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка , и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат .

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду .

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим . Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола .

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Пример 1

Построить эллипс, заданный уравнением

Решение : сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса , которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

В данном случае :


Отрезок называют большой осью эллипса;
отрезок малой осью ;
число называют большой полуосью эллипса;
число малой полуосью .
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы . И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат . И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:


Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Определение эллипса. Фокусы эллипса и эксцентриситет эллипса

Эллипс – это частный случай овала. Слово «овал» не следует понимать в обывательском смысле («ребёнок нарисовал овал» и т.п.). Это математический термин, имеющий развёрнутую формулировку. Целью данного урока не является рассмотрение теории овалов и различных их видов, которым практически не уделяется внимания в стандартном курсе аналитической геометрии. И, в соответствии с более актуальными потребностями, мы сразу переходим к строгому определению эллипса:

Эллипс – это множество всех точек плоскости, сумма расстояний до каждой из которых от двух данных точек , называемых фокусами эллипса, – есть величина постоянная, численно равная длине большой оси этого эллипса: .
При этом расстояния между фокусами меньше данного значения: .

Сейчас станет всё понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы действительно равно восьми. Мысленно поместите точку «эм» в правую вершину эллипса, тогда: , что и требовалось проверить.

На определении эллипса основан ещё один способ его вычерчивания. Высшая математика, порой, причина напряжения и стресса, поэтому самое время провести очередной сеанс разгрузки. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку… отлично… чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр геометрии.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса .

Вычисления проще пареной репы:

! Со значением «цэ» нельзя отождествлять конкретные координаты фокусов! Повторюсь, что – это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат).
И, следовательно, расстояние между фокусами тоже нельзя привязывать к каноническому положению эллипса. Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты. Пожалуйста, учитывайте данный момент в ходе дальнейшего изучения темы.

Эксцентриситет эллипса и его геометрический смысл

Эксцентриситетом эллипса называют отношение , которое может принимать значения в пределах .

В нашем случае:

Выясним, как форма эллипса зависит от его эксцентриситета. Для этого зафиксируем левую и правую вершины рассматриваемого эллипса, то есть, значение большой полуоси будет оставаться постоянным. Тогда формула эксцентриситета примет вид: .

Начнём приближать значение эксцентриситета к единице. Это возможно только в том случае, если . Что это значит? …вспоминаем про фокусы . Это значит, что фокусы эллипса будут «разъезжаться» по оси абсцисс к боковым вершинам. И, поскольку «зелёные отрезки не резиновые», то эллипс неизбежно начнёт сплющиваться, превращаясь всё в более и более тонкую сосиску, нанизанную на ось .

Таким образом, чем ближе значение эксцентриситета эллипса к единице, тем эллипс более продолговат .

Теперь смоделируем противоположный процесс: фокусы эллипса пошли навстречу друг другу, приближаясь к центру. Это означает, что значение «цэ» становится всё меньше и, соответственно, эксцентриситет стремится к нулю: .
При этом «зелёным отрезкам» будет, наоборот – «становиться тесно» и они начнут «выталкивать» линию эллипса вверх и вниз.

Таким образом, чем ближе значение эксцентриситета к нулю, тем эллипс больше похож на … смотрим предельный случай , когда фокусы успешно воссоединились в начале координат:

Окружность – это частный случай эллипса

Действительно, в случае равенства полуосей каноническое уравнение эллипса принимает вид , который рефлекторно преобразуется к – хорошо известному из школы уравнению окружности с центром в начале координат радиуса «а».

На практике чаще используют запись с «говорящей» буквой «эр»: . Радиусом называют длину отрезка , при этом каждая точка окружности удалена от центра на расстояние радиуса.

Заметьте, что определение эллипса остаётся полностью корректным: фокусы совпали , и сумма длин совпавших отрезков для каждой точки окружности – есть величина постоянная. Так как расстояние между фокусами , то эксцентриситет любой окружности равен нулю .

Строится окружность легко и быстро, достаточно вооружиться циркулем. Тем не менее, иногда бывает нужно выяснить координаты некоторых её точек, в этом случае идём знакомым путём – приводим уравнение к бодрому матановскому виду:

– функция верхней полуокружности;
– функция нижней полуокружности.

После чего находим нужные значения, дифференцируем , интегрируем и делаем другие хорошие вещи.

Статья, конечно, носит справочный характер, но как на свете без любви прожить? Творческое задание для самостоятельного решения

Пример 2

Составить каноническое уравнение эллипса, если известен один из его фокусов и малая полуось (центр находится в начале координат). Найти вершины, дополнительные точки и изобразить линию на чертеже. Вычислить эксцентриситет.

Решение и чертёж в конце урока

Добавим экшена:

Поворот и параллельный перенос эллипса

Вернёмся к каноническому уравнению эллипса , а именно, к условию , загадка которого терзает пытливые умы ещё со времён первого упоминания о данной кривой. Вот мы рассмотрели эллипс , но разве на практике не может встретиться уравнение ? Ведь здесь , однако, это вроде бы как тоже эллипс!

Подобное уравнение нечасто, но действительно попадается. И оно действительно определяет эллипс. Развеем мистику:

В результате построения получен наш родной эллипс, повёрнутый на 90 градусов. То есть, – это неканоническая запись эллипса . Запись! – уравнение не задаёт какой-то другой эллипс, поскольку на оси не существует точек (фокусов), которые бы удовлетворяли определению эллипса.

1. Окружность. 2Окружностью называется геометрическое место точек, равноудаленных от одной фиксированной точки, называемой центром окружности. Расстояние от произвольной точки окружности до его центра называется радиусом окружности .

g Если центр окружности находится в точке , а радиус равен R , то уравнение окружности имеет вид:

4Обозначим через (рис. 3.5) произвольную точку окружности. Используя формулу расстояния между двумя токами (3.1) и определение окружности, получим: . Возводя полученное равенство в квадрат, мы получим формулу (3.13).3

2. Эллипс. 2 Эллипсом называется геометрическое место точек, сумма расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.

Для того, чтобы вывести каноническое (простейшее) уравнение эллипса, примем за ось Ox прямую, соединяющую фокусы F 1 и F 2 . Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Здесь через 2с обозначено расстояние между фокусами. Обозначим через x и y координаты произвольной точки М эллипса (рис 3.6). Тогда по определению эллипса, сумма расстояний от точки М до точек F 1 и F а ).

Уравнение (3.14) является уравнением эллипса. Упростим данное уравнение, избавившись от квадратных корней. Для этого перенесем один из радикалов в правую часть равенства (3.14) и возведем обе части полученного равенства в квадрат:

Возводя последнее равенство в квадрат, получим

Разделим обе части на :

.

Так как сумма расстояний от произвольной точки эллипса до его фокусов больше расстояния между фокусами, т.е. 2а > 2c , то .

Обозначим через b 2 . Тогда простейшее (каноническое) уравнение эллипса будет иметь вид:

где положено

Оси координат являются осями симметрии эллипса, заданного уравнением (3.15). Действительно, если точка с текущими координатами (x ; y ) принадлежит эллипсу, то и точки при любом сочетании знаков принадлежат эллипсу.

2Ось симметрии эллипса, на которой расположены фокусы, называется фокальной осью. Точки пересечения эллипса с его осями симметрии называются вершинами эллипса. Подставляя x = 0 или y = 0 в уравнение эллипса найдем координаты вершин:

А 1 (a ; 0), А 2 (– a ; 0), B 1 (0; b ), B 2 (0; – b ).

2Отрезки А 1 А 2 и B 1 B 2 , соединяющие противоположные вершины эллипса, а также их длины 2a и 2b , называют соответственно большой и малой осями эллипса. Числа a и b , называют соответственно большой и малой полуосями эллипса.


2Эксцентриситетом эллипса называется отношение расстояния между фокусами (2с ) к большой оси (2a ), т.е.

Так как а и с положительны, причем c < a , то эксцентриситет эллипса больше нуля, но меньше единицы ().

Если фокусы эллипса расположены на оси Oy (рис.3.7), то уравнение эллипса останется таким же, как и в предыдущем случае:

Однако в этом случае полуось b будет больше, чем a (эллипс вытянут вдоль оси Oy ). Формулы (3.16) и (3.17) претерпят следующие изменения соответственно:

3. Гипербола. 2Гиперболой называется геометрическое место точек, модуль разности расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.

Выводится каноническое уравнение гиперболы аналогично тому как это делалось в случае эллипса. За ось Ox принимаем прямую, соединяющую фокусы F 1 и F 2 (рис.3.8). Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Через 2с , как и прежде, обозначено расстояние между фокусами.

Обозначим через (x ; y М гиперболы. Тогда по определению гиперболы, разность расстояний от точки М до точек F 1 и F 2 равно константе (обозначим эту константу через 2а ).

Производя преобразования аналогичные тем, которые применялись при упрощении уравнения эллипса, мы придем к каноническому уравнению гиперболы:

, (3.21)
где положено

Оси координат являются осями симметрии гиперболы.

2Ось симметрии гиперболы, на которой расположены фокусы, называется фокальной осью. Точки пересечения гиперболы с ее осями симметрии называются вершинами гиперболы. С осью Oy гипербола не пересекается, т.к. уравнение не имеет решения. Подставляя y = 0 в уравнение (3.21) найдем координаты вершин гиперболы: А 1 (a ; 0), А 2 (– a ; 0).

2Отрезок 2a , длина которого равна расстоянию между вершинами гиперболы, называют действительной осью гиперболы. Отрезок 2b называют мнимой осью гиперболы. Числа a и b , называют соответственно действительной и мнимой полуосями гиперболы.

Можно доказать, что прямые линии

являются асимптотами гиперболы, т.е. такими прямыми, к которым неограниченно приближаются точки гиперболы при их неограниченном удалении от начала координат ().

2Эксцентриситетом гиперболы называется отношение расстояния между фокусами (2с ) к действительной оси (2a ), т.е., как и в случае эллипса

Однако в отличии от эллипса эксцентриситет гиперболы больше единицы.

Если фокусы гиперболы расположены на оси Oy , то в левой части уравнения гиперболы изменятся знаки на противоположные:

. (3.25)

В этом случае полуось b будет действительной, а полуось a – мнимой. Ветви гиперболы будут симметричны относительно оси Oy (рис 3.9). Формулы (3.22) и (3.23) не изменятся, формула (3.24) будет выглядеть следующим образом:

4. Парабола. Параболой называется геометрическое место точек, равноудаленных от данной точки, называемой фокусом и от данной прямой, называемой директрисой (предполагается, что фокус не лежит на директрисе).

Для того, чтобы составить простейшее уравнение параболы примем за ось Ox прямую, проходящую через ее фокус перпендикулярно директрисе, и направленную от директрисы к фокусу. За начало координат примем середину отрезка O от фокуса F до точки А пересечения оси Ox с директрисой. Длина отрезка AF обозначается через p и называется параметром параболы.

В данной системе координат координаты точек А и F будут, соответственно, , . Уравнение директрисы параболы будет . Обозначим через (x ; y ) координаты произвольной точки М параболы (рис. 3.10). Тогда по определению параболы:

. (3.27)

Возведем обе части равенства (3.27) в квадрат:

, или

, откуда

Лекция 8. Линии второго порядка.

План лекции

8.1. Окружность, исследование уравнения окружности.

8.2. Вывод канонического уравнения эллипса.

8.3. Гипербола и парабола, их канонические уравнения.

8.4. Линии второго порядка. Приведение кривых второго порядка к каноническому виду.

8.5. Полярное уравнение кривой второго порядка.

Окружностью называется множество всех точек плоскости, равноудаленных от данной точки (центра окружности) на расстояние, равное радиусу окружности.

Рисунок 8.1.Окружность.

Пусть С (а,в ) – центр окружности, r – радиус окружности, M (x,y ) – произвольная точка окружности (Рисунок 8.1). По определению окружности . Выразим это равенство в координатах: . Возведем обе части в квадрат:

. (8.1)

Таким образом, координаты любой точки, лежащей на окружности, удовлетворяют уравнению (8.1). Покажем, что координаты точки, не лежащей на окружности, не удовлетворяют уравнению (8.1).

Действительно, если точка М - внутри окружности, то расстояние , т.е. , а если точка M - вне окружности, то , т.е. . Следовательно, уравнению (8.1) удовлетворяют координаты всех точек, лежащих на окружности, и не удовлетворяют координаты точек, не лежащих на окружности. Поэтому уравнение (81) и есть уравнение окружности.

Если в уравнении (8.1) раскрыть скобки, то получим уравнение

где , , .

Если , то уравнение (8.2) определяет окружность.

Если , то уравнение (8.2) определяет точку .

Если , то уравнение (8.2) не имеет геометрического смысла. В этом случае говорят о мнимой окружности.

Рисунок 8.2.Окружность, имеющая

каноническое уравнение

Уравнение (8.1) можно упростить, если поместить начало новой системы координат в центр окружности (Рисунок 8.2). Тогда ее уравнение будет иметь вид:

Это уравнение называется каноническим уравнением окружности , т.е. уравнением самого простого вида.

Эллипсом называется множество всех точек плоскости, сумма расстояний которых до двух данных точек F 1 и F 2 , называемых фокусами, есть величина постоянная (ее обозначают ) и большая, чем расстояние между фокусами.

центром эллипса , т.к. относительно этой точки эллипс симметричен.

Длина |F 1 F 2 | называется фокусным расстоянием , обозначим ее , а половина этого расстояния называется полуфокусным расстоянием , оно равно с .

Примем центр эллипса за начало координат, за ось абсцисс примем прямую, проходящую через фокусы (Рисунок 8.3).

Рисунок 8.3. Эллипс

Тогда координаты фокусов будут F 1 (-c;0), F 2 (c;0). Всякий отрезок, соединяющий две точки эллипса, если он проходит через центр, называется диаметром эллипса . Наибольший диаметр проходит через фокусы, этот диаметр A 1 A 2 называется большой осью эллипса . Длина большой оси эллипса |A 1 A 2 |=2a . Действительно, по определению эллипса |F 1 A 2 |+|F 2 A 2 |=2a , но |F 1 A 2 |=|OA 2 |+c , |F 2 A 2 |=|OA 2 |-c . Тогда получаем 2|OA 2 |=2a, или |OA 2 |=a . Аналогично |A 1 O|=a , следовательно, |A 1 A 2 |=2a . Число а называется большой полуосью . Наименьший диаметр эллипса перпендикулярен наибольшему, его называют малой осью эллипса и обозначают через 2b , так что |B 1 B 2 |=2b . Число b называется малой полуосью . Концы осей, т.е. точки A 1 ,A 2 ,B 1 ,B 2 называются вершинами эллипса. Основное свойство эллипса применимо и для вершин В 1 и В 2 . Например, для вершины В 2 получим |F 1 B 2 |+|F 2 B 2 |=2a , а т.к. |F 1 B 2 |=|F 2 B 2 | , то 2|F 2 B 2 |=2a , или |F 2 B 2 |=a . Тогда из прямоугольного ∆OF 2 B 2 получаем важное соотношение:

(8.4)

Форма эллипса при заданном а зависит только от расстояния между фокусами, т.е. от с . При сближении фокусов и при совпадении их с началом координат эллипс постепенно обратится в окружность. Наоборот, если фокусы отодвигаются от начала координат, эллипс постепенно сплющивается и вырождается в прямолинейный отрезок A 1 A 2 . Степень сжатия эллипса определяется его эксцентриситетом , который определяется дробью:

Для эллипса эксцентриситет может изменяться от 0 до 1, причем для окружности , для эллипса, выродившегося в прямолинейный отрезок, .

Для получения канонического уравнения эллипса возьмем произвольную точку эллипса М(x,y). Тогда по определению |MF 1 |+|MF 2 |=2a . Выразим это равенство в координатах:

Для упрощения уравнения (8.6) придется дважды его возводить в квадрат и приводить подобные члены. В результате будет получено уравнение

или после деления на –

Построение эллипса, согласно его определению, можно осуществить посредством нити длиной , закрепленной концами в фокусах. Зацепив нить острием карандаша, и двигая его так, чтобы нить всё время была в натянутом состоянии, мы заставим острие вычертить эллипс.

Гиперболой называется множество всех точек плоскости, абсолютная величина разности расстояний которых до двух данных точек и , называемых фокусами, есть величина постоянная (её обозначают ) и меньшая расстояния между фокусами ().

Середина расстояния между фокусами называется центром гиперболы , так как относительно этой точки гипербола симметрична. Длина - называется фокусным расстоянием , а половина этого расстояния полуфокусным расстоянием . Удобно центр гиперболы принять за начало координат, а за ось абсцисс принять прямую, проходящую через фокусы (Рисунок 8.4).

Всякий отрезок, соединяющий две точки гиперболы и проходящий через центр, называется диаметром гиперболы . Наименьший диаметр лежит на оси абсцисс; этот диаметр называется действительной осью гиперболы, причем . Действительно по определению гиперболы , но , , тогда , или . Аналогично , следовательно, .

Число называется действительной полуосью , точки и называются вершинами гиперболы . Отношение называется эксцентриситетом гиперболы , причем для гиперболы .

Рисунок 8.4. Гипербола

Пусть - произвольная точка гиперболы. Тогда по определению , или в координатной форме

Уравнение (8.8) в результате преобразований, аналогичных проводимым при выводе уравнения эллипса, может быть сведено к виду:

.

Обозначая , получаем каноническое уравнение гиперболы :

Прямые являются асимптотами гиперболы . Это прямые, к которым гипербола приближается в бесконечности, но не пересекает их. С геометрической точки зрения - ордината асимптоты, восстановленной из вершины гиперболы. Для построения асимптот гиперболы целесообразно предварительно построить прямоугольник со сторонами и , параллельными координатным осям и с центром в начале координат (такой прямоугольник называется основным прямоугольником гиперболы). Точки и определяют мнимую ось гиперболы .



Если в уравнении (8.9) , то гипербола называется равнобочной . Ее асимптоты образуют прямой угол. Если за оси принять асимптоты, то уравнение примет вид . Таким образом, равнобочная гипербола является графиком обратной пропорциональности.

Заметим, что уравнение

(8.10)

тоже определяет гиперболу, у которой действительная ось расположена на оси , а мнимая ось – на оси .

Параболой называется множество всех точек плоскости, равноудаленных от данной точки (называемой фокусом параболы) и от данной прямой (называемой директрисой параболы).

Для вывода канонического уравнения параболы проведем ось прямоугольной системы координат через фокус перпендикулярно директрисе, начало координат поместим на равных расстояниях от фокуса и директрисы (Рисунок 8.5). Расстояние от фокуса до директрисы обозначим через (оно называется параметром параболы). Тогда , а директриса задается уравнением . Пусть - произвольная точка параболы. Опустим перпендикуляр на директрису . Тогда по определению . Выразим это условие в координатах:

.

Рисунок 8.5. Парабола.

Возводя в квадрат и приводя подобные, получаем каноническое уравнение параболы :

Вершиной параболы называется точка пересечения параболы с ее осью симметрии. Ось симметрии параболы называется осью параболы. Парабола, определяемая уравнением (8.11), имеет ось, совпадающую с осью .

Заметим, что уравнение определяет параболу, симметричную относительно оси .

Между эллипсом, гиперболой и параболой имеется близкое родство. Это объясняется тем, что все они - линии второго порядка. Все эти линии могут быть получены при пересечении прямого кругового конуса с плоскостью, поворачивающейся вокруг оси, выбранной, например, перпендикулярно к оси конуса (Рисунок 8.6). Пока наклон мал, в сечении получается эллипс. При увеличении наклона эллипс удлиняется, его эксцентриситет растет. Когда плоскость наклонена к оси конуса так же, как образующие, в сечении получается парабола. Наконец, когда плоскость будет пересекать обе половины конуса, в сечении будет гипербола. По этой причине эллипс, гиперболу и параболу иногда называют коническими сечениями.

Рисунок 8.6. Родство кривых второго порядка.

Родство между указанными линиями обусловлено тем, что все они задаются уравнением второй степени, а поэтому и носят общее название линий (или кривых ) второго порядка .

Общим уравнением линий второго порядка называется уравнение вида

. (8.12)

Путем преобразования координат это уравнение можно привести к каноническому виду. Осуществим поворот осей координат на угол по формулам:

(8.13)

Угол выберем таким, чтобы получилось уравнение, не содержащее произведение координат. Для этого подставляем (8.13) в (8.12) и приравниваем коэффициент при к . В результате получаем уравнение для определения угла поворота:

. (8.15)

Формула (8.15) определяет 4 возможных значения для любое из которых позволяет привести уравнение (8.12) к виду:

(8.16)

Если , то уравнение (8.16) может быть приведено к виду:

которое с помощью параллельного переноса начала координат

сводится к каноническому виду.

Если , т.е. или , то уравнение (8.16) может быть приведено к виду.