Геометрические места точек

Задачи с линиями 2-го порядка.
Как найти геометрическое место точек?

Данный практикум представляет собой логическое продолжение лекции о линиях второго порядка и её популярных представителях – эллипсе , гиперболе и параболе . Сегодня мы закрепим пройденный материал многочисленными задачами, и, кроме того, дополним теоретический багаж знаниями, которые я намеренно скрыл на первых занятиях, чтобы не перегружать «чайников» новой информацией. Признаюсь честно, ненавижу вымучивать первые абзацы своих статей (особенно, когда готов чёткий план урока), поэтому разольём кофе по чашкам, сядем в круг и перейдём к обсуждению вопросов по существу.

В самостоятельных и контрольных работах наиболее часто встречаются следующие задания:

Найти геометрическое место точек (или составить уравнение множества точек ), каждая из которых удовлетворяет определённым аналитическим условиям. Безусловно, данная формулировка является общей и не факт, что в итоге должна получиться обязательно линия, и обязательно второго порядка. Однако в контексте рассматриваемой темы эти магические слова практически всегда вызывают к жизни уравнение эллипса, окружности , гиперболы либо параболы .

Ответ : искомая линия представляет собой окружность с центром в точке радиуса . Каноническое уравнение: (либо в зависимости от способа приведения).

Аналогичный пример для самостоятельного решения:

Задача 2

Составить уравнение множества точек, для каждой из которых сумма квадратов расстояний от точек равна 20. Определить тип линии, выполнить чертёж и привести уравнение к каноническому виду. Указать координаты фокусов, записать уравнение асимптот, если они есть. Вычислить эксцентриситет кривой.

Краткое оформление и чертёж в конце урока.

Систематизируем порядок решения данной задачи:

На первом шаге необходимо рассмотреть точку с неизвестными координатами, которая принадлежит искомому множеству точек, и разобраться в условии задачи . Как правило, в нём говорится о расстояниях от точки «эм» до других точек и/или других линий, а также о соотношениях этих длин.

На втором шаге следует найти длины нужных отрезков и в соответствии с аналитическим условием задачи составить уравнение.

На третьем шаге осуществляем упрощение полученного уравнения. Сначала приводим его к общему виду, а затем к форме, которая близкА к канонической. В некоторых задачах сразу получается каноническое уравнение.

На четвёртом шаге – чертёж.

На пятом – приведение к каноническому виду.

На шестом – фокусы, асимптоты, эксцентриситет. Напоминаю, что находить их гораздо удобнее именно из канонической записи.

На практике чаще всего заданий меньше, так, в некоторых случаях не надо приводить уравнение к каноническому виду, а в самой компактной версии не требуется и чертёжа – достаточно лишь упростить уравнение и назвать линию. Я специально «нагружаю» условия задач, чтобы образцы решений годились «на все случаи жизни». Но, тем не менее, надрываться тоже не будем, и разогреемся парой новых коктейлей:

Задача 3

Составить уравнение множества точек, для каждой из которых квадрат расстояния до точки на 16 больше квадрата расстояния до оси ординат.

Решение : Пусть точка принадлежит искомому множеству. Тогда:

Примечание : строго говоря, в соответствии с формулировкой условия нужно рассмотреть (та же самая длина), но в этой и других задачах мы пренебрежём данной логической неточностью.

Чему равно расстояние от точки до оси ординат? Можно воспользоваться стандартной формулой расстояния от точки до прямой , но если немного подключить воображение, то легко понять, что расстояние от любой точки до оси равно модулю её «иксовой» координаты:

По условию на 16 больше , чем , следовательно, справедливо следующее равенство:

(либо )

Таким образом:

Раскручиваем гайки:

«Икс квадрат» сокращается, и, очевидно, уравнение нужно максимально приблизить к каноническому виду :


парабола с вершиной в точке , фокальным параметром .

Ответ : искомое множество точек представляет собой параболу

Если дополнительно требуется привести уравнение линии к каноническому виду , то в данном примере это осуществляется элементарно:

1) Приведём уравнение параболы к каноническому виду путём её параллельного переноса центром в начало координат:

2) Перейдём к новой прямоугольной системе координат с центром в точке , тогда уравнение параболы примет вид: .

Чертёж приводить не буду, поскольку параболу мы уже вертели, как хотели.

Задача 4

Составить уравнение множества точек, для каждой из которых расстояние до точки равно расстоянию до оси абсцисс. Выполнить чертёж. Привести уравнение к каноническому виду.

В образце решения последний пункт реализован обоими способами.

Разобранные задачи с окружностями (особенно часто), параболами встречаются и в школьной программе. Ну а на нашей тусовке 18+ становится всё жарче – снимайте джемперы и пиджаки:

Задача 5

Найти уравнение геометрического места точек, для каждой из которых отношение расстояния до точки к расстоянию до прямой постоянно и равно . Сделать чертеж. Привести уравнение линии к каноническому виду, найти фокусы, эксцентриситет, асимптоты и директрисы (если они существуют).

Решение : пусть точка принадлежит искомому множеству точек. В задаче говорится о расстоянии:
,

В результате:
эллипс с центром в начале координат, полуосями .

Обратите внимание, что такая формулировка однозначно определяет эллипс и добавлять что-либо излишне.

Изобразим на чертеже найденный эллипс, точку и прямую :


Геометрическая проверка тут затруднена, но с другой стороны и не сверхъестественна. Возьмём какую-нибудь точку эллипса, проще всего рассмотреть .
Для неё: .
По условию отношение должно равняться .
Проверяем:
, что и требовалось проверить.

На практике можно выбрать любую точку эллипса, измерить расстояния линейкой, разделить на с помощью калькулятора и удостовериться, что получилось примерно .

В данной задаче уравнение линии нарисовалось сразу в каноническом виде, что облегчает решение. Осталось разобраться с фокусами, эксцентриситетом, асимптотами и директрисами.

Очевидно, что у эллипса отсутствуют асимптоты.

Вычислим и запишем фокусы эллипса :

.

Первый фокус совпал с точкой .

Найдём эксцентриситет: . По ещё одному странному совпадению эксцентриситет оказался равен отношению .

…однако, совпадения ли это?

Директриса, как вы помните из материалов о параболе , – это прямая . Причём прямая с армией горячих поклонников. Сейчас изучал статистику запросов Яндекса – за месяц около 1000 человек искали поpnо с директрисой и примерно 600 любителей геометрии изъявили желание её тpа)(нyть =) Ну что же, шалуны, завидуйте, у эллипса две директрисы!

Канонически расположенный эллипс имеет две директрисы, которые задаются уравнениями , где «эпсилон» – эксцентриситет данного эллипса.

Для нашего героя :

Так и есть, первая директриса полностью совпала с прямой «дэ». Более того, в условии задачи фактически сформулирована следующая теорема аналитической геометрии:

Эллипс отношение


То есть, для любой точки эллипса отношение её расстояния от фокуса к расстоянию от неё же до ближайшей директрисы в точности равно эксцентриситету: .

Со вторым фокусом и второй директрисой аналогичная история, какую бы точку эллипса мы ни взяли – будет справедливо отношение:

Ответ : искомое геометрическое место точек представляет собой эллипс с фокусами и эксцентриситетом . Уравнения директрис: .

Похожий пример для самостоятельного решения:

Задача 6

Найти уравнение геометрического места точек, для каждой из которых отношение расстояния до точки к расстоянию до прямой постоянно и равно . Выполнить чертеж. Привести уравнение линии к каноническому виду, найти фокусы, эксцентриситет, асимптоты и директрисы, если они существуют.

В образце решения концовка реализована обоими способами, выбирайте версию, которая более уместна в вашем курсе высшей математики.

Наша вечеринка в самом разгаре, и вокруг происходит столько интересного, что, порой, и говорить об этом неловко =) Зажигаем дальше!

Задача 7

Составить уравнение линии, для каждой из которых разность расстояний до точек и по модулю равна 8. Привести уравнение к каноническому виду и выполнить чертёж. Найти асимптоты, фокусы, эксцентриситет и директрисы, если они существуют.

Решение : пусть точка принадлежит искомой линии. Тогда:

По условию:

Кстати, ничего не напоминает? Внимательные читатели уже определили линию;-)

Корни? Модуль ? Застрелитесь! Ерунда!

Сначала нужно избавиться от радикалов. Поскольку возводить в квадрат сразу – идея плохая (экспериментаторы могут попробовать), разведём корни по углам ринга:

Ну вот, теперь совсем другое дело:

Успехи есть, но один корень остался. Оставим нашего зловреда в одиночестве и максимально упростим левую часть уравнения:

Возводим в квадрат обе части ещё раз, заметьте, как попутно и совершенно спокойно завершается расправа с модулем:

Перебросим всё направо и «развернём» уравнение:

Получено уравнение линии 2-го порядка в общем виде . Выделяем полный квадрат при переменной «игрек», для этого вынесем «минус девять» за скобку:

Хорошо осмыслите выполненное действие – фишка распространённая.

Собираем квадрат разности и допиливаем константы:

Вот тебе и раз. По всем признакам мыльная опера должна была закончиться гиперболой , но у нас «лишний» минус. Выполним проверку и раскроем скобки (что желательно сделать в любом случае)… нет, всё верно – получается исходное общее уравнение .

Изменим знаки у обеих частей:

Уже ближе к правде, но «минус» оказался «не на своём месте». В главе о повороте и параллельном переносе гиперболы я рассказывал, что это признак поворота данной кривой на 90 градусов относительно своего канонического положения.

Но давайте сначала доведём до ума уравнение. Делим обе части на 144:

И завершающий тонкий тюнинг:

– вот она, долгожданная гипербола, удовлетворяющая условию задачи, ...которое фактически представляет собой определение гиперболы =)

По условию требуется сначала привести уравнение к каноническому виду, и только потом выполнить чертёж. Дабы не превысить точку кипения серого вещества, применим упрощенную схему. Однако случай всё равно не самый простой. Центр симметрии нашей подопечной находится в точке , и, кроме того, она повёрнута на 90 градусов вокруг этой точки

На первом шаге осуществим параллельный перенос гиперболы ТАК – чтобы её центр оказался в начале координат. В результате получится уравнение: .

Вторым действием повернём гиперболу вокруг начала координат на 90 градусов, при этом меняем местами значения полуосей и перебрасываем «минус» к переменной «игрек» :

В принципе, операции перестановочны, т.е. сначала можно было повернуть вокруг точки , а потом перенести центр в начало координат.

Не забывая про асимптоты , выполним чертёж:


Еще раз: как расположена исходная гипербола ? Она получена поворотом канонической гиперболы на 90 градусов вокруг начала координат и дальнейшим переносом вдоль оси на 5 единиц вверх центром симметрии в точку .

Но работать гораздо удобнее с приведённым уравнением. Найдём фокусы:

В случае перечисленных выше преобразований они как раз и «переезжают» в точки условия задачи.

Вычислим эксцентриситет:

У гиперболы, точно так же, как у эллипса, две директрисы. В каноническом случае они расположены между ветвями гиперболы и задаются такими же уравнениями , где «эпсилон» эксцентриситет данной гиперболы.

В рассматриваемом примере:

Более того, для гиперболы справедлива абсолютно такая же теорема:

Гипербола – есть множество всех точек плоскости, таких, что отношение расстояния до каждой точки от фокуса к расстоянию от неё до соответствующей (ближайшей) директрисы равно эксцентриситету:


То есть, для любой точки гиперболы отношение её расстояния от фокуса к расстоянию от неё же до ближайшей директрисы равно эксцентриситету: .

Для пары и любой точки гиперболы (ради разнообразия я выбрал демонстрационную точку дальней ветви) отношение такое же:

К слову, у параболы с её единственным фокусом и единственной директрисой по определению эти длины относятся «один к одному», поэтому эксцентриситет любой параболы и равен единице.

Ответ : искомая линия представляет собой гиперболу с центром симметрии в точке и повёрнутую на 90 градусов относительно своего канонического положения. Канонический вид уравнения: , фокусы: , эксцентриситет: , асимптоты: , директрисы: .

Очень хотелось упростить пример, но он взят из конкретной работы, поэтому пришлось с упорным занудством разобрать все-все-все тонкости и технические приёмы. Налью всем по стакану молока за вредность и подкину задание для самостоятельного решения:

Задача 8

Найти уравнение геометрического места точек, для каждой из которых отношение расстояния до точки к расстоянию до прямой постоянно и равно . Сделать точный чертеж.

Подумайте, о какой это точке и о какой прямой шепчет условие;-)

Героически разбираемся с решением и чертежом, после чего с чистой душой и лёгким сердцем засыпаем на раскладушках возле мониторов, чтобы проснуться к следующиму занятию со свежими головами и розовыми лицами.

Спокойной ночи!

Решения и ответы:

Пример 2: Решение : Пусть точка принадлежит искомому множеству точек. Тогда:


По условию:

Или:

Упростим уравнение:

Выделим полные квадраты:

– окружность с центром в точке радиуса
Выполним чертеж:

Приведём уравнение к каноническому виду.
1) Способ первый . Осуществим параллельный перенос окружности центром в начало координат: .
2) Способ второй . С помощью параллельного переноса перейдём от исходной к новой прямоугольной системе координат с началом в точке . Таким образом, уравнение окружности запишется в каноническом виде: .
Ответ : уравнение искомого множества точек задаёт окружность с центром в точке радиуса . Канонический вид уравнения: (или в зависимости от способа). Фокусы окружности совпадают и находятся в её центре. У окружности отсутствуют асимптоты. Эксцентриситет любой окружности равен нулю.


Подписи к слайдам:

Тема урока:
«Геометрическое место точек».9 классУчитель Гордеева Н.М.
Скажи мне – и я забуду,Покажи мне – и я запомню,Вовлеки меня – и я пойму. (Древняя китайская мудрость)
Цель урока:
систематизировать и углубить знания по теме «Метод координат».
“Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия”. (Дьердье Пойа)
Задача:
найти геометрическое место точек, обладающих определенным свойством (совершить открытие).
Определение:
Геометрическим местом точек называется фигура, которая состоит из всех точек плоскости, обладающих определенным свойством.
Геометрическое место точек,
равноудаленных от данной точки, есть
окружность.
Геометрическое место точек,
равноудаленных от концов данного отрезка, есть
серединный перпендикуляр к этому отрезку.
Геометрическое место точек,
равноудаленных от сторон данного угла, есть
биссектриса этого угла.
Геометрическое место точек,
равноудаленных от двух параллельных прямых, есть
параллельная им прямая, проходящая через середину их общего перпендикуляра (на ней лежат центры окружностей, касающихся данных прямых).
Геометрическое место точек,
являющихся вершинами прямоугольных треугольников с данной гипотенузой, есть
окружность, построенная на гипотенузе как на диаметре (исключая концы гипотенузы).
Геометрическое место точек,
отношение расстояний от которых до двух данных точек – величина постоянная, есть
окружность
(которую называют окружностью Аполлония).
Задание 1
На рисунке AD=DB=2 см.Что представляет собой геометрическое место точек, принадлежащих данной прямой, которые удалены от точки D на расстояние: а) равное 2см; б) более 2см; в) не более 2см.
a
b
A
D
B
Решение:

A
D
B
a
b
A
D
B
a
b
A
D
B
a
b
Задание 2
По тому же рисунку определите, что представляет собой геометрическое место точек плоскости, которые удалены от точки D на расстояниеа) равное 2см; б) более 2см; в) не более 2см.
A
D
B
a
b
Решение:
а) Расстояние от D равно 2см:
A
D
B
a
b
Решение:
б) Расстояние от D более 2см:
A
D
B
a
b
Решение:
в) Расстояние от D не более 2см:
A
D
B
a
b
Задание 3
Используя метод координат, найдите пару чисел, удовлетворяющих условию
Задание 4
Используя метод координат, докажите, что система уравнений имеет единственное решение:
Задание 5
Определите ГМТ, удовлетворяющих уравнению: а)
Задание 5
Определите ГМТ, удовлетворяющих уравнению: б)
Задание 5
Определите ГМТ, удовлетворяющих уравнению: в)
Задание 5
Определите ГМТ, удовлетворяющих уравнению: г)
Задание 5
Определите ГМТ, удовлетворяющих уравнению: д)
Парабола как геометрическое место точек.
Парабола есть геометрическое место точек, равноудаленных от заданной точки и от заданной прямой.
Построение параболы.
Как разбить клумбу?
Геометрическое место точек,
сумма расстояний от которых до двух заданных точек F1, F2 есть величина постоянная; большая, чем F1F2.
План построения ГМТ.
Прикрепим концы нити с помощью кнопок к точкам F1 и F2. Карандашом натянем нить так, чтобы его острие касалось бумаги. Будем перемещать карандаш по бумаге так, чтобы нить оставалась натянутой. Вычерчиваем карандашом линию.
Построение ГМТ
Что будет происходить с эллипсом, если фокусы: а) приближаются друг к другу; б) удаляются друг от друга.
Найти геометрическое место точек, для которых сумма расстояний до двух заданных точек F1 и F2: а) меньше заданной величины 2а; б) больше заданной величины 2а.
Уравнение ГМТ
Определите ГМТ, удовлетворяющих уравнению:
Уравнение ГМТ
, тогда
- уравнение эллипса
Ответ: F1 , F2
Конические сечения
Конические сечения
Аполлоний Пергский (II-III вв. до н. э.) - древнегреческий математик. Важнейший труд - “Конические сечения”
Конические сечения
Их изучали еще древнегреческие геометры. Теория конических сечений была одной из вершин античной геометрии.Уравнения этих линий были выведены гораздо позднее, когда стал применяться метод координат.
Кривые второго порядка
y
0
x
Метод координат в соединении с алгеброй составляет раздел геометрии, который называется аналитической геометрией.
Эксцентриситет эллипса
характеризует степень его вытянутости.
Еще Иоганн Кеплер (1571 – 1630) – немецкий астроном обнаружил, что планеты Солнечной системы движутся вокруг Солнца не по окружностям, как думали раньше, а по эллипсам, причем Солнце находится в одном из фокусов этих эллипсов.
Орбиты движения небесных тел
ВенераНептунЗемляПлутонКомета Галлея
0,0068 0,0086 0,0167 0,253 0,967
Решали задачу о множестве точек, а это ГМТ имеет отношение к Вселенной, (а это была всего лишь только задача!).
Домашнее задание
Составить уравнение геометрического места точек, произведение расстояний от которых до двух данных точек F1(-c; 0), F2(c; 0) есть постоянная величина a2. Такое геометрическое место точек называется овалом Кассини.
Домашнее задание
Составить уравнение геометрического места точек, произведение расстояний от которых до двух данных точек F1(-а; 0), F2(а; 0) есть постоянная величина а2. Такое геометрическое место точек называется лемнискатой (см. рис.). (Уравнение лемнискаты сначала найти непосредственно, потом – рассматривая ее как частный вид овала Кассини).
Подведение итогов урока

Обладающих некоторым свойством.

Примеры [ | ]

Формальное определение [ | ]

В общем случае, геометрическое место точек формулируется предикатом , аргументом которого является точка данного линейного пространства. Параметры предиката могут носить различный тип. Предикат называется детерминантом геометрического места точек. Параметры предиката называются дифференциалами геометрического места точек (не путать с дифференциалом в анализе).

Роль дифференциалов во введении видовых различий в фигуру. Количество дифференциалов может быть любым; дифференциалов может и вовсе не быть.

Если заданы детерминант , где M {\displaystyle M} - точка, - дифференциалы, то искомую фигуру A {\displaystyle A} задают в виде: « A {\displaystyle A} - геометрическое место точек M {\displaystyle M} , таких, что P (M , a , b , c , …) {\displaystyle P(M,\;a,\;b,\;c,\;\ldots)} ». Далее обычно указывается роль дифференциалов, им даются названия применительно к данной конкретной фигуре. Под собственно фигурой понимают совокупность (множество) точек M {\displaystyle M} , для которых для каждого конкретного набора значений a , b , c , … {\displaystyle a,\;b,\;c,\;\ldots } высказывание P (M , a , b , c , …) {\displaystyle P(M,\;a,\;b,\;c,\;\ldots)} обращается в тождество. Каждый конкретный набор значений дифференциалов определяет отдельную фигуру, каждую из которых и всех их в совокупности именуют названием фигуры, которая задаётся через ГМТ.

В словесной формулировке предикативное высказывание озвучивают литературно, то есть с привлечением различного рода оборотов и т. д. с целью благозвучия. Иногда, в случае простых детерминантов, вообще обходятся без буквенных обозначений.

Пример : параболу зададим как множество всех таких точек M {\displaystyle M} , что расстояние от M {\displaystyle M} до точки F {\displaystyle F} равно расстоянию от M {\displaystyle M} до прямой l {\displaystyle l} . Тогда дифференциалы параболы - F {\displaystyle F} и l {\displaystyle l} ; детерминант - предикат P (M , F , l) = (ρ (M , F) = ρ l (M , l)) {\displaystyle P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l))} , где ρ {\displaystyle \rho } - расстояние между двумя точками (метрика), ρ l {\displaystyle \rho _{l}} - расстояние от точки до прямой. И говорят: «Парабола - геометрическое место точек M {\displaystyle M} , равноудалённых от точки F {\displaystyle F} и прямой l {\displaystyle l} . Точку F {\displaystyle F} называют фокусом параболы, а прямую l {\displaystyle l} - директрисой».

Геометрическим местом точек (в дальнейшем ГМТ), называется фигура плоскости, состоящая из точек обладающих некоторым свойством, и не содержащая ни одной точки, не обладающей этим свойством.

Мы будем рассматривать только те ГМТ, которые можно построить с помощью циркуля и линейки.

Рассмотрим ГМТ на плоскости, обладающие простейшими и наиболее часто выражающимися свойствами:

1) ГМТ, отстоящих на данном расстоянии r от данной точки О, есть окружность с центром в точке О радиуса r.

2) ГМТ равноудаленных от двух данных точек А и В, есть прямая, перпендикулярная к отрезку АВ и проходящая через его середину.

3) ГМТ равноудаленных от двух данных пересекающихся прямых, есть пара взаимно перпендикулярных прямых, проходящих через точку пересечения и делящих углы между данными прямыми пополам.

4) ГМТ, отстоящих на одинаковом расстоянии h от прямой, есть две прямые, параллельные этой прямой и находящиеся по разные стороны от нее на данном расстоянии h.

5) Геометрическое место центров окружностей, касающихся данной прямой m в данной на ней точке М, есть перпендикуляр к АВ в точке М (кроме точки М).

6) Геометрическое место центров окружностей, касающихся данной окружности в данной на ней очке М, есть прямая, проходящая через точку М и центр данной окружности (кроме точек М и О).

7) ГМТ, из которых данный отрезок виден под данным углом, составляет две дуги окружностей, описанных на данном отрезке и вмещающих данный угол.

8) ГМТ, расстояния от которых до двух данных точек А и В находятся в отношении m: n, есть окружность (называемая окружностью Аполлония).

9) Геометрическое место середин хорд, проведенных из одной точки окружности, есть окружность, построенная на отрезке, соединяющем данную точку с центром данной окружности, как на диаметре.

10) Геометрическое место вершин треугольников равновеликих данному и имеющих общее основание, составляет две прямые, параллельные основанию и проходящие через вершину данного треугольника и ему симметричного относительно прямой, содержащей основание.

Приведем примеры отыскания ГМТ.

ПРИМЕР 2. Найти ГМТ, являющихся серединами хорд, проведенных из одной точки данной окружности (ГМТ № 9).

Решение . Пусть дана окружность с центром О и на этой окружности выбрана точка А из которой проводятся хорды. Покажем, что искомое ГМТ есть окружность, построенная на АО как на диаметре (кроме точки А) (рис. 3).

Пусть АВ - некоторая хорда и М - ее середина. Соединим М и О. Тогда МО ^ АВ (радиус, делящий хорду пополам, перпендикулярен этой хорде). Но, тогда ÐАМО = 90 0 . Значит М принадлежит окружности с диаметром АО (ГМТ № 7). Т.к. эта окружность проходит через точку О, то О принадлежит нашему ГМТ.


Обратно, пусть М принадлежит нашему ГМТ. Тогда, проведя через М хорду АВ и соединив М и О, получим, что ÐАМО = 90 0 , т.е. МО ^ АВ, а, значит, М - середина хорды АВ. Если же М совпадает с О, то О - середина АС.

Часто метод координат позволяет находить ГМТ.

ПРИМЕР 3. Найти ГМТ, расстояние от которых до двух данных точек А и В находятся в данном отношении m: n (m ≠ n).

Решение . Выберем прямоугольную систему координат так, чтобы точки А и В располагались на оси Ох симметрично относительно начала координат, а ось Оу проходила через середину АВ (рис.4). Положим АВ = 2a. Тогда точка А имеет координаты А (a, 0), точка В - координаты В (-a, 0). Пусть С принадлежит нашему ГМТ, координаты С(х, у) и CB/CA = m/n. Но Значит

(*)

Преобразуем наше равенство. Имеем