Изображение действительных чисел на числовой оси. Интервалы. Геометрическое изображение действительных чисел. Действительные числа ii

ГЛАВА 1. Переменные величины и функции

§1.1. Действительные числа
Первое знакомство с действительными числами происходит в школьном курсе математики. Всякое действительное число представляется конечной или бесконечной десятичной дробью.

Действительные (вещественные) числа делятся на два класса: класс рациональных и класс иррациональных чисел. Рациональными называются числа, которые имеют вид , где m и n – целые взаимно простые числа, но
. (Множество рациональных чисел обознается буквой Q ). Остальные действительные числа называются иррациональными . Рациональные числа представляются конечной или бесконечной периодической дробью (то же, что обыкновенные дроби), тогда иррациональными будут те и только те действительные числа, которые можно представить бесконечными непериодическими дробями.

Например, число
– рациональное, а
,
,
и т.п. – иррациональные числа.

Действительные числа можно также разделить на алгебраические - корни многочлена с рациональными коэффициентами (к ним относятся, в частности, все рациональные числа – корни уравнения
) – и на трансцендентные – все остальные (например, числа
и другие).

Множества всех натуральных, целых, действительных чисел обозначаются соответственно так: N Z , R
(начальные буквы слов Naturel, Zahl, Reel).

§1.2. Изображение действительных чисел на числовой оси. Интервалы

Геометрически (для наглядности) действительные числа изображают точками на бесконечной (в обе стороны) прямой линии, именуемой числовой осью . С этой целью на рассматриваемой прямой берётся точка (начало отсчёта – точка 0), указывается положительное направление, изображаемое стрелкой (обычно направо) и избирается единица масштаба, которую откладывают неограниченно в обе стороны от точки 0. Так изображаются целые числа. Чтобы изобразить число с одним десятичным знаком, надо каждый отрезок разделить на десять частей и т.д. Таким образом, каждое действительное число изобразится точкой на числовой оси. Обратно, каждой точке
соответствует действительное число, равное длине отрезка
и взятое со знаком «+» или «–», в зависимости от того, лежит ли точка правее или левее от начала отсчёта. Таким образом устанавливается взаимнооднозначное соответствие между множеством всех действительных чисел и множеством всех точек числовой оси. Термины «действительное число» и «точка числовой оси» употребляются как синонимы.

Символом будем обозначать и действительное число, и точку, ему соответствующую. Положительные числа располагаются правее точки 0, отрицательные – левее. Если
, то на числовой оси точка лежит левее точки . Пусть точке
соответствует число , тогда число называется координатой точки , пишут
; чаще саму точку обозначают той же буквой , что и число. Точка 0 – начало координат. Ось обозначают тоже буквой (рис.1.1).

Рис. 1.1. Числовая ось.
Совокупность всех чисел, лежащих между данными числами и называется интервалом или промежутком; концы и ему могут принадлежать, а могут и не принадлежать. Уточним это. Пусть
. Совокупность чисел , удовлетворяющих условию
, называется интервалом (в узком смысле) или открытым интервалом, обозначается символом
(рис.1.2).

Рис. 1.2. Интервал
Совокупность чисел таких, что
называется замкнутым интервалом (отрезок, сегмент) и обозначается через
; на числовой оси отмечается так:

Рис. 1.3. Замкнутый интервал
От открытого промежутка он отличается лишь двумя точками (концами) и . Но это отличие принципиальное, существенное, как увидим в дальнейшем, например, при изучении свойств функций.

Опуская слова «множество всех чисел (точек) x таких, что» и т. п., отметим далее:

и
, обозначается
и
полуоткрытые, или полузамкнутые, интервалы (иногда: полуинтервалы);

или
означает:
или
и обозначается
или
;

или
означает
или
и обозначается
или
;

, обозначается
множество всех действительных чисел. Значки
символы «бесконечности»; их называют несобственными или идеальными числами.

§1.3. Абсолютная величина (или модуль) действительного числа
Определение. Абсолютной величиной (или модулем) числа называется само это число, если
или
если
. Обозначается абсолютная величина символом . Итак,

Например,
,
,
.

Геометрически означает расстояние точки a до начала координат. Если имеем две точки и , то расстояние между ними можно представить как
(или
). Например,
то расстояние
.

Свойства абсолютных величин.

1. Из определения следует, что

,
, то есть
.

2. Абсолютная величина суммы и разности не превосходит суммы абсолютных величин:
.

1) Если
, то
. 2) Если
, то . ▲

3.
.

, тогда по свойству 2:
, т.е.
. Аналогично, если представить
,то придём к неравенству

4.
– следует из определения: рассмотреть случаи
и
.

5.
, при условии, что
Так же следует из определения.

6. Неравенство
,
, означает
. Этому неравенству удовлетворяют точки, которые лежат между
и
.

7. Неравенство
равносильно неравенству
, т.е. . Это есть интервал с центром в точке длины
. Он называется
окрестностью точки (числа) . Если
, то окрестность называется проколотой: это или
. (Рис.1.4).

8.
откуда следует, что неравенство
(
) равносильно неравенству
или
; а неравенство
определяет множество точек, для которых
, т.е. это точки, лежащие вне отрезка
, именно:
и
.

§1.4. Некоторые понятия, обозначения
Приведём некоторые широко применяемые понятия, обозначения из теории множеств, математической логики и других разделов современной математики.

1 . Понятие множества является одним из основных в математике, исходным, всеобщим – а потому не поддаётся определению. Его можно лишь описать (заменить синонимами): это есть собрание, совокупность каких-то объектов, вещей, объединённых какими-либо признаками. Объекты эти называются элементами множества. Примеры: множество песчинок на берегу, звёзд во Вселенной, студентов в аудитории, корней уравнения, точек отрезка. Множества, элементы которых суть числа, называются числовыми множествами . Для некоторых стандартных множеств вводятся специальные обозначения, например, N , Z , R - см. § 1.1.

Пусть A – множество и x является его элементом, тогда пишут:
; читается «x принадлежит A » (
знак включения для элементов). Если же объект x не входит в A , то пишут
; читается: «x не принадлежит A ». Например,
N ; 8,51N ; но 8,51R .

Если x является общим обозначением элементов множества A , то пишут
. Если возможно выписать обозначение всех элементов, то пишут
,
и т. п. Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается символом ; например, множество корней (действительных) уравнения
есть пустое.

Множество называется конечным , если оно состоит из конечного числа элементов. Если же какое бы натуральное число N ни взяли, во множестве A найдётся элементов больше, чем N, то A называется бесконечным множеством: в нём элементов бесконечно много.

Если всякий элемент множества ^ A принадлежит и множеству B , то называется частью или подмножеством множества B и пишут
; читается «A содержится в B » (
есть знак включения для множеств). Например, N Z R. Если и
, то говорят, что множества A и B равны и пишут
. В противном случае пишут
. Например, если
, а
множество корней уравнения
, то .

Совокупность элементов обоих множеств A и B называется объединением множеств и обозначается
(иногда
). Совокупность элементов, принадлежащих и A и B , называется пересечением множеств и обозначается
. Совокупность всех элементов множества ^ A , которые не содержатся в B , называется разностью множеств и обозначается
. Схематично эти операции можно изобразить так:

Если между элементами множеств можно установить взаимно-однозначное соответствие, то говорят, что эти множества эквивалентны и пишут
. Всякое множество A , эквивалентное множеству натуральных чисел N = называется счётным или исчислимым. Иначе говоря, множество называется счётным, если его элементы можно пронумеровать, расположить в бесконечную последовательность
, все члены которой различны:
при
, и его можно записать в виде . Прочие бесконечные множества называются несчётными . Счётными, кроме самого множества N, будут, например, множества
, Z. Оказывается, что множества всех рациональных и алгебраических чисел – счётные, а эквивалентные между собой множества всех иррациональных, трансцендентных, действительных чисел и точек любого интервала – несчётные. Говорят, что последние имеют мощность континуума (мощность – обобщение понятия количества (числа) элементов для бесконечного множества).

2 . Пусть есть два утверждения, два факта: и
. Символ
означает: «если верно , то верно и » или «из следует », « имплицирует есть корень уравнения обладает свойством от английского Exist – существовать.

Запись:

, или
, означает: существует (по крайней мере один) предмет , обладающий свойством . А запись
, или
, означает: все обладают свойством . В частности, можем записать:
и .

Геометрически действительные числа, так же как и рациональные числа, изображаются точками прямой.

Пусть l - произвольная прямая, а О - некоторая ее точка (рис. 58). Каждому положительному действительному числу α поставим в соответствие точку А, лежащую справа от О на расстоянии в α единиц длины.

Если, например, α = 2,1356..., то

2 < α < 3
2,1 < α < 2,2
2,13 < α < 2,14

и т. д. Очевидно, что точка А в этом случае должна находиться на прямой l правее точек, соответствующих числам

2; 2,1; 2,13; ... ,

но левее точек, соответствующих числам

3; 2,2; 2,14; ... .

Можно показать, что эти условия определяют на прямой l единственную точку А, которую мы и рассматриваем как геометрический образ действительного числа α = 2,1356... .

Аналогично, каждому отрицательному действительному числу β поставим в соответствие точку В, лежащую слева от О на расстоянии в | β | единиц длины. Наконец, числу «нуль» поставим в соответствие точку О.

Так, число 1 изобразится на прямой l точкой А, находящейся справа от О на расстоянии в одну единицу длины (рис. 59), число - √2 - точкой В, лежащей слева от О на расстоянии в √2 единиц длины, и т. д.

Покажем, как на прямой l с помощью циркуля и линейки можно отыскать точки, соответствующие действительным числам √2, √3, √4, √5 и т. д. Для этого прежде всего покажем, как можно построить отрезки, длины которых выражаются этими числами. Пусть АВ есть отрезок, принятый за единицу длины (рис. 60).

В точке А восставим к этому отрезку перпендикуляр и отложим на нем отрезок АС, равный отрезку АВ. Тогда, применяя теорему Пифагора к прямоугольному треугольнику ABC, получим; ВС = √АВ 2 + АС 2 = √1+1 = √2

Следовательно, отрезок ВС имеет длину √2. Теперь восставим перпендикуляр к отрезку ВС в точке С и выберем на нем точку D так, чтобы отрезок CD был равен единице длины АВ. Тогда из прямоугольною треугольника BCD найдем:

ВD = √ВC 2 + СD 2 = √2+1 = √3

Следовательно, отрезок BD имеет длину √3. Продолжая описанный процесс дальше, мы могли бы получить отрезки BE, BF, ..., длины которых выражаются числами √4, √5 и т. д.

Теперь на прямой l легко найти те точки, которые служат геометрическим изображением чисел √2, √3, √4, √5 и т. д.

Откладывая, например, справа от точки О отрезок ВС (рис. 61), мы получим точку С, которая служит геометрическим изображением числа √2. Точно так же, откладывая справа от точки О отрезок BD, мы получим точку D", которая является геометрическим образом числа √3, и т. д.

Не следует, однако, думать, что с помощью циркуля и линейки на числовой прямой l можно найти точку, соответствующую любому заданному действительному числу. Доказано, например, что, имея в своем распоряжении только циркуль и линейку, нельзя построить отрезок, длина которого выражается числом π = 3,14 ... . Поэтому на числовой прямой l с помощью таких построений нельзя указать точку, соответствующую этому числу Тем не менее такая точка существует.

Итак, каждому действительному числу α можно поставить в соответствие некоторую вполне определенную точку прямой l . Эта точка будет отстоять от начальной точки О на расстоянии в | α | единиц длины и находиться справа от О, если α > 0, и слева от О, если α < 0. Очевидно, что при этом двум неравным действительным числам будут соответствовать две различные точки прямой l . В самом деле, пусть числу α соответствует точка А, а числу β - точка В. Тогда, если α > β , то А будет находиться правее В (рис. 62, а); если же α < β , то А будет лежать левее В (рис. 62,б).

Говоря в § 37 о геометрическом изображении рациональных чисел, мы поставили вопрос: любую ли точку прямой можно рассматривать как геометрический образ некоторого рационального числа? Тогда мы не могли дать ответ на этот вопрос; теперь же мы можем ответить на него вполне определенно. На прямой есть точки, которые служат геометрическим изображением иррациональных чисел (например, √2). Поэтому не всякая точка прямой изображает рациональное число. Но в таком случае напрашивается другой вопрос: любую ли точку числовой прямой можно рассматривать как геометрический образ некоторого действительного числа? Этот вопрос решается уже положительно.

В самом деле, пусть А - произвольная точка прямой l , лежащая справа от О (рис. 63).

Длина отрезка ОА выражается некоторым положительным действительным числом α (см § 41). Поэтому точка А является геометрическим образом числа α . Аналогично устанавливается, что каждая точка В, лежащая слева от О, может рассматриваться как геометрический образ отрицательного действительного числа - β , где β - длина отрезка ВО. Наконец, точка О служит геометрическим изображением числа нуль. Понятно, что две различные точки прямой l не могут быть геометрическим образом одного и того же действительного числа.

В силу изложенных выше причин прямая, на которой указана в качестве «начальной» некоторая точка О (при заданной единице длины), называется числовой прямой .

Вывод. Множество всех действительных чисел и множество всех точек числовой прямой находятся во взаимно однозначном соответствии.

Это означает, что каждому действительному числу соответствует одна, вполне определенная точка числовой прямой и, наоборот, каждой точке числовой прямой при таком соответствии отвечает одно, вполне определенное действительное число.

Числовая прямая, числовая ось, - это прямая на которой изображаются действительные числа. На прямой выбирают начало отсчета – точку О (точка О изображает 0) и точку L, изображающую единицу. Точка L обычно стоит справа от точки О. Отрезок ОL называют единичным отрезком.

Точки, стоящие справа от точки О изображают положительные числа. Точки стоящие слева от точки. О, изображают отрицательные числа. Если точка Х изображает положительное число х, то расстояние ОХ = х. Если точка Х изображает отрицательное число х, то расстояние ОХ = - х.

Число, показывающее положение точки на прямой, называется координатой этой точки.

Точка V изображенная на рисунке имеет координату 2, а точка H имеет координату -2,6.

Модулем действительного числа называется расстояние от начала отсчета до точки, соответствующей этому числу. Обозначают модуль числа х, так: | х |. Очевидно, что | 0 | = 0.

Если число х больше 0, то | х | = х, а если х меньше 0, то | х | = - х. На этих свойствах модуля, основано решение многих уравнений и неравенств с модулем.

Пример: Решить уравнение | х – 3 | = 1.

Решение: Рассмотрим два случая – первый случай, когда х -3 > 0, и второй случай, когда х - 3 0.

1. х - 3 > 0, х > 3.

В этом случае | х – 3 | = х – 3.

Уравнение принимает вид х – 3 = 1, х = 4. 4 > 3 – удовлетворят первому условию.

2. х -3 0, х 3.

В этом случае | х – 3 | = - х + 3

Уравнение принимает вид х + 3 = 1, х = - 2. -2 3 – удовлетворят второму условию.

Ответ: х = 4, х = -2.

Числовые выражения.

Числовое выражение – это совокупность одного или нескольких чисел и функций, соединенных знаками арифметических операций и скобками.
Примеры числовых выражений:

Значением числового выражения является число.
Операции в числовом выражении выполняются в следующей последовательности:

1. Действия в скобках.

2. Вычисление функций.

3. Возведение в степень

4. Умножение и деление.

5. Сложение и вычитание.

6. Однотипные операции выполняются слева на право.

Так значением первого выражения будет само число 12,3
Для того чтобы вычислить значение второго выражения, действия будем выполнять в следующей последовательности:



1. Выполним действия в скобках в следующей последовательности - сначала 2 возведем в третью степень, затем от полученного числа отнимем 11:

3 4 + (23 - 11) = 3 4 + (8 - 11) = 3 4 + (-3)

2. Умножим 3 на 4:

3 4 + (-3) = 12 + (-3)

3. Выполним последовательно операции слева направо:

12 + (-3) = 9.
Выражение с переменными – это совокупность одного или нескольких чисел, переменных и функций, соединенных знаками арифметических операций и скобками. Значения выражений с переменными зависят от значений, входящих в него переменных. Последовательность выполнения операций здесь та же, что и для числовых выражений. Выражения с переменными иногда бывает полезно упрощать, выполняя различные действия – вынесение за скобки, раскрытие скобок, группировки, сокращение дробей, приведение подобных и т.д. Так же для упрощения выражений часто используют различные формулы, например, формулы сокращенного умножения, свойства различных функций и т. д.

Алгебраические выражения .

Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности этих действий (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение должно быть конечным.

Пример алгебраического выражения:

«Алгебраическое выражение» - понятие синтаксическое, то есть нечто является алгебраическим выражением тогда и только тогда, когда подчиняется некоторым грамматическим правилам (см. Формальная грамматика). Если же буквы в алгебраическом выражении считать переменными, то алгебраическое выражение обретает смысл алгебраической функции.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА II

§ 44 Геометрическое изображение действительных чисел

Геометрически действительные числа, так же как и рациональные числа, изображаются точками прямой.

Пусть l - произвольная прямая, а О - некоторая ее точка (рис. 58). Каждому положительному действительному числу α поставим в соответствие точку А, лежащую справа от О на расстоянии в α единиц длины.

Если, например, α = 2,1356..., то

2 < α < 3
2,1 < α < 2,2
2,13 < α < 2,14

и т. д. Очевидно, что точка А в этом случае должна находиться на прямой l правее точек, соответствующих числам

2; 2,1; 2,13; ... ,

но левее точек, соответствующих числам

3; 2,2; 2,14; ... .

Можно показать, что эти условия определяют на прямой l единственную точку А, которую мы и рассматриваем как геометрический образ действительного числа α = 2,1356... .

Аналогично, каждому отрицательному действительному числу β поставим в соответствие точку В, лежащую слева от О на расстоянии в | β | единиц длины. Наконец, числу «нуль» поставим в соответствие точку О.

Так, число 1 изобразится на прямой l точкой А, находящейся справа от О на расстоянии в одну единицу длины (рис. 59), число - √2 - точкой В, лежащей слева от О на расстоянии в √2 единиц длины, и т. д.

Покажем, как на прямой l с помощью циркуля и линейки можно отыскать точки, соответствующие действительным числам √2 , √3 , √4 , √5 и т. д. Для этого прежде всего покажем, как можно построить отрезки, длины которых выражаются этими числами. Пусть АВ есть отрезок, принятый за единицу длины (рис. 60).

В точке А восставим к этому отрезку перпендикуляр и отложим на нем отрезок АС, равный отрезку АВ. Тогда, применяя теорему Пифагора к прямоугольному треугольнику ABC, получим; ВС = √АВ 2 + АС 2 = √1+1 = √2

Следовательно, отрезок ВС имеет длину √2 . Теперь восставим перпендикуляр к отрезку ВС в точке С и выберем на нем точку D так, чтобы отрезок CD был равен единице длины АВ. Тогда из прямоугольною треугольника BCD найдем:

ВD = √ВC 2 + СD 2 = √2+1 = √3

Следовательно, отрезок BD имеет длину √3 . Продолжая описанный процесс дальше, мы могли бы получить отрезки BE, BF, ..., длины которых выражаются числами √4 , √5 и т. д.

Теперь на прямой l легко найти те точки, которые служат геометрическим изображением чисел √2 , √3 , √4 , √5 и т. д.

Откладывая, например, справа от точки О отрезок ВС (рис. 61), мы получим точку С, которая служит геометрическим изображением числа √2 . Точно так же, откладывая справа от точки О отрезок BD, мы получим точку D", которая является геометрическим образом числа √3 , и т. д.

Не следует, однако, думать, что с помощью циркуля и линейки на числовой прямой l можно найти точку, соответствующую любому заданному действительному числу. Доказано, например, что, имея в своем распоряжении только циркуль и линейку, нельзя построить отрезок, длина которого выражается числом π = 3,14 ... . Поэтому на числовой прямой l с помощью таких построений нельзя указать точку, соответствующую этому числу Тем не менее такая точка существует.

Итак, каждому действительному числу α можно поставить в соответствие некоторую вполне определенную точку прямой l . Эта точка будет отстоять от начальной точки О на расстоянии в | α | единиц длины и находиться справа от О, если α > 0, и слева от О, если α < 0. Очевидно, что при этом двум неравным действительным числам будут соответствовать две различные точки прямой l . В самом деле, пусть числу α соответствует точка А, а числу β - точка В. Тогда, если α > β , то А будет находиться правее В (рис. 62, а); если же α < β , то А будет лежать левее В (рис. 62,б).

Говоря в § 37 о геометрическом изображении рациональных чисел, мы поставили вопрос: любую ли точку прямой можно рассматривать как геометрический образ некоторого рационального числа? Тогда мы не могли дать ответ на этот вопрос; теперь же мы можем ответить на него вполне определенно. На прямой есть точки, которые служат геометрическим изображением иррациональных чисел (например, √2 ). Поэтому не всякая точка прямой изображает рациональное число. Но в таком случае напрашивается другой вопрос: любую ли точку числовой прямой можно рассматривать как геометрический образ некоторого действительного числа? Этот вопрос решается уже положительно.

В самом деле, пусть А - произвольная точка прямой l , лежащая справа от О (рис. 63).

Длина отрезка ОА выражается некоторым положительным действительным числом α (см § 41). Поэтому точка А является геометрическим образом числа α . Аналогично устанавливается, что каждая точка В, лежащая слева от О, может рассматриваться как геометрический образ отрицательного действительного числа - β , где β - длина отрезка ВО. Наконец, точка О служит геометрическим изображением числа нуль. Понятно, что две различные точки прямой l не могут быть геометрическим образом одного и того же действительного числа.

В силу изложенных выше причин прямая, на которой указана в качестве «начальной» некоторая точка О (при заданной единице длины), называется числовой прямой .

Вывод. Множество всех действительных чисел и множество всех точек числовой прямой находятся во взаимно однозначном соответствии.

Это означает, что каждому действительному числу соответствует одна, вполне определенная точка числовой прямой и, наоборот, каждой точке числовой прямой при таком соответствии отвечает одно, вполне определенное действительное число.

Упражнения

320. Выяснить, какая из двух точек находится на числовой прямой левее и какая правее, если эти точки соответствуют числам:

а) 1,454545... и 1,455454...; в) 0 и - 1,56673...;

б) - 12,0003... и - 12,0002...; г) 13,24... и 13,00....

321. Выяснить, какая из двух точек находится на числовой прямой дальше от начальной точки О, если эти точки соответствуют числам:

а) 5,2397... и 4,4996...; .. в) -0,3567... и 0,3557... .

г) - 15,0001 и - 15,1000...;

322. В этом параграфе было показано, что для построения отрезка длиной в √n с помощью циркуля и линейки можно поступить следующим образом: сначала построить отрезок длиной √2 , затем отрезок длиной √3 и т. д., пока не дойдем до отрезка длиной √n . Но при каждом фиксированном п > 3 этот процесс можно ускорить. Как бы, например, вы стали строить отрезок длиной √10 ?

323*. Как с помощью циркуля и линейки найти на числовой прямой точку, соответствующую числу 1 / α , если положение точки, соответствующей числу α , известно?

Выразительное геометрическое представление системы рациональных чисел может быть получено следующим образом.

На некоторой прямой линии, "числовой оси", отметим отрезок от О до 1 (рис. 8). Тем самым устанавливается длина единичного отрезка, которая, вообще говоря, может быть выбрана произвольно. Положительные и отрицательные целые числа тогда изображаются совокупностью равноотстоящих точек на числовой оси, именно положительные числа отмечаются вправо, а отрицательные - влево от точки 0. Чтобы изобразить числа со знаменателем n, разделим каждый из полученных отрезков единичной длины на n равных частей; точки деления будут изображать дроби со знаменателем n. Если сделаем так для значений n, соответствующих всем натуральным числам, то каждое рациональное число будет изображено некоторой точкой числовой оси. Эти точки мы условимся называть "рациональными"; вообще, термины "рациональное число" и "рациональная точка" будем употреблять как синонимы.

В главе I, § 1 было определено соотношение неравенства Алюбой пары рациональных точек, то естественно пытаться обобщить арифметическое отношение неравенства таким образом, чтобы сохранить этот геометрический порядок для рассматриваемых точек. Это удается, если принять следующее определение: говорят, что рациональное число А меньше , чем рациональное число В (Абольше, чем число А (В>А), если разность В-А положительна. Отсюда следует (при Aмежду А и В - это те, которые одновременно >A и сегментом (или отрезком ) и обозначается [А, В] (а множество одних только промежуточных точек - интервалом (или промежутком ), обозначаемым (А, В)).

Расстояние произвольной точки А от начала 0, рассматриваемое как положительное число, называется абсолютной величиной А и обозначается символом

Понятие "абсолютная величина" определяется следующим образом: если A≥0, то |А| = А; если A

|А + В|≤|А| + |В|,

которое справедливо независимо от знаков А и В.

Факт фундаментальной важности выражается следующим предложением: рациональные точки расположены на числовой прямой всюду плотно. Смысл этого утверждения тот, что внутри всякого интервала, как бы он ни был мал, содержатся рациональные точки. Чтобы убедиться в справедливости высказанного утверждения, достаточно взять число n настолько большое, что интервал будет меньше, чем данный интервал (A, В); тогда по меньшей мере одна из точек вида окажется внутри данного интервала. Итак, не существует такого интервала на числовой оси (даже самого маленького, какой только можно вообразить), внутри которого не было бы рациональных точек. Отсюда вытекает дальнейшее следствие: во всяком интервале содержится бесконечное множество рациональных точек. Действительно, если бы в некотором интервале содержалось лишь конечное число рациональных точек, то внутри интервала, образованного двумя соседними такими точками, рациональных точек уже не было бы, а это противоречит тому, что только что было доказано.