Гипотеза римана о нулях дзета функции. Математик представил решение гипотезы Римана. Почему научное сообщество его критикует. Две гипотезы Харди-Литтлвуда

Отрывок из книги «Величайшие математические задачи» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта о важнейших нерешенных математических задачах и их месте в общем контексте математики и естественных наук.


В 1859 году немецкий математик Бернхард Риман взял давнюю идею Эйлера и развил ее совершенно по-новому, определив так называемую дзета-функцию. Одним из результатов этой работы стала точная формула для количества простых чисел до заданного предела. Формула представляла собой бесконечную сумму, но специалистам по анализу к этому не привыкать. И это не было бесполезной игрой ума: благодаря этой формуле удалось получить новые подлинные знания о мире простых чисел. Мешала только одна маленькая неувязка. Хотя Риман мог доказать, что его формула точна, самые важные потенциальные следствия из нее полностью зависели от одного простого утверждения, касающегося дзета-функции, и вот это то простое утверждение Риман никак не мог доказать. И сегодня, полтора столетия спустя, мы все еще не сумели сделать это. Сегодня это утверждение называется гипотезой Римана и представляет собой, по сути, священный Грааль чистой математики.

Теорема о распределении простых чисел была ответом на евклидову теорему о том, что простые числа уходят в бесконечность и могут быть сколь угодно большими. Другая фундаментальная евклидова теорема говорит о единственности разложения на простые множители: каждое положительное целое число есть произведение простых чисел, причем только одного их набора. В 1737 году Эйлер понял, что первую теорему можно переформулировать в виде поразительной формулы из действительного анализа, и тогда второе утверждение становится простым следствием этой формулы. Для начала я представлю формулу, а затем попытаюсь разобраться в ней. Вот она:


Здесь принимает все простые значения, а - константа. Эйлера интересовал в основном случай, при котором - целое число, но его формула работает и для действительных чисел, в случае если больше единицы. Это условие необходимо для того, чтобы ряд в правой части сошелся, т. е., будучи продолжен до бесконечности, принял бы осмысленное значение.

Это необыкновенная формула. В левой части мы перемножаем бесконечно много выражений, которые зависят только от простых чисел. В правой - складываем бесконечное число выражений, которые зависят от всех положительных целых чисел. Эта формула выражает, на языке анализа, некоторое отношение между целыми и простыми числами. Главное отношение такого рода - это единственность разложения на простые множители, именно она оправдывает существование формулы.

Вот теперь сцена была готова к появлению Римана. Он тоже понял, что дзета-функция - это ключ к теореме о распределении простых чисел, но для реализации этого подхода ему пришлось предложить смелое расширение: определить дзета-функцию не только действительной, но и комплексной переменной. А начать можно с ряда Эйлера. Он сходится для любых действительных больше единицы, и если использовать для комплексного в точности ту же формулу, то ряд будет сходиться при любых , у которых действительная часть больше . Однако Риман обнаружил, что можно сделать и лучше. Применив процедуру так называемого аналитического продолжения, он расширил определение на все комплексные числа, за исключением . Это значение s исключено потому, что при значение дзета-функции становится бесконечным.

В 1859 году Риман собрал все свои мысли о дзета-функции в одну статью, заголовок которой можно перевести как «О количестве простых чисел, не превышающих заданной величины». В ней он привел полную и точную формулу . Я опишу более простую формулу, эквивалентную римановой, чтобы показать, как появляются нули дзета-функции. Идея заключается в том, чтобы подсчитать, сколько простых чисел, или степеней простых чисел, укладывается до любого заданного предела. Однако вместо того чтобы сосчитать каждое число по одному разу, как функция делает с простыми числами, мы придаем большим простым числам дополнительный вес. Более того, любая степень простого числа учитывается в соответствии с логарифмом этого простого числа. Так, для предела мы имеем следующие степени простых чисел:

Поэтому взвешенный подсчет дает

Что составляет примерно .

Воспользовавшись методами анализа, информацию об этом более хитроумном способе подсчета простых чисел можно превратить в информацию об обычном способе. Однако этот метод приводит к более простым формулам, и присутствие логарифма - не слишком дорогая цена за это. В этих терминах точная формула Римана говорит о том, что взвешенный подсчет до предела эквивалентен


где обозначает сумму по всем числам , для которых равна нулю, исключая отрицательные четные целые числа. Эти значения называются нетривиальными нулями дзета-функции. Тривиальные нули - это отрицательные четные целые числа Во всех этих точках дзета-функция равняется нулю из за формулы, которая используется в определении аналитического продолжения, но, как выяснилось, для римановой формулы эти нули несущественны (как и почти везде в других местах).

На случай, если формула вас немного пугает, я укажу главное: хитрый способ подсчета простых чисел до заданного предела , который при помощи кое каких аналитических фокусов можно превратить в обычный способ, в точности эквивалентен сумме по всем нетривиальным нулям дзета-функции простого выражения плюс некая несложная функция от . Если вы специалист по комплексному анализу, вы сразу увидите, что доказательство теоремы о распределении простых чисел эквивалентно доказательству того, что взвешенный подсчет до предела асимптотически сходится к . Воспользовавшись комплексным анализом, получим: это утверждение верно, если у всех нетривиальных нулей дзета-функции действительная часть лежит между и . Чебышев не смог этого доказать, но подошел достаточно близко, чтобы извлечь полезную информацию.

Почему нули дзета-функции так важны? Одна из базовых теорем комплексного анализа утверждает, что при некоторых формальных условиях функция комплексной переменной полностью определяется значениями переменной, при которых функция равна нулю или бесконечности, плюс некоторая дополнительная информация о поведении функции в этих точках. Эти особые точки известны как нули и полюсы функции. В действительном анализе эта теорема не работает - и это одна из причин, по которым комплексный анализ завое­вал такую популярность, несмотря на необходимость извлекать корень квадратный из . У дзета-функции один полюс (при ), так что все ее характеристики определяются нулями (если, конечно, не забывать о существовании этого единственного полюса).

Для удобства Риман работал в основном с зависимой кси-функцией , которая тесно связана с дзета-функцией и получается из метода аналитического продолжения. Он заметил:

«Весьма вероятно, что все [нули кси-функции] действительны. Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких бесплодных попыток я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования».


Это заявление о кси-функции эквивалентно аналогичному заявлению о зависимой от нее дзета-функции. А именно: все нетривиальные нули дзета-функции представляют собой комплексные числа вида: они лежат на критической линии «действительная часть равна » (см. рис.). Эта версия замечания и есть знаменитая гипотеза Римана.

Замечание Римана звучит достаточно небрежно, как будто высказано между делом и эта гипотеза не имеет особого значения. И это действительно так, если говорить только о программе Римана по доказательству теоремы о распределении простых чисел. Но во многих других вопросах верно обратное. Многие считают гипотезу Римана важнейшим из остающихся на сегодняшний день открытыми математических вопросов.

Чтобы понять, почему это так, мы должны последовать за рассуждениями Римана чуть дальше. В тот момент ученый был нацелен на теорему о распределении простых чисел. Его точная формула предлагала верный путь к этому достижению: нужно было разобраться в нулях дзета-функции или эквивалентной ей кси-функции. Полная риманова гипотеза для этого не нужна, достаточно доказать, что у всех нетривиальных нулей дзета-функции действительная часть лежит в промежутке от до , т. е. что сами комплексные корни лежат на расстоянии не более от римановой критической линии - в так называемой критической полосе. Это свойство нулей подразумевает, что сумма по всем нулям дзета-функции, фигурирующая в приведенной выше точной формуле, представляет собой конечную константу. Асимптотически для больших она вообще может потеряться. Единственный член формулы, который сохранит свое значение при очень больших , это сам . Все остальные сложные слагаемые асимптотически пропадают в сравнении с . Следовательно, взвешенная сумма асимптотически стремится к , и это доказывает теорему о распределении простых чисел. Так что, по иронии судьбы, роль нулей дзета-функции заключается в том, чтобы доказать, что они не вносят существенного вклада в точную формулу.

Риман так и не довел свою программу до логического конца. Более того, он никогда больше ничего не писал по этому вопросу.

Но два других математика, приняв у него эстафету, показали, что догадка Римана верна. В 1896 году Жак Адамар и Шарль-Жан де ла Валле Пуссен независимо друг от друга вывели теорему о распределении простых чисел, доказав, что все нетривиальные нули дзета-функции лежат в пределах критической полосы. Доказательства у обоих получились очень сложными и техничными, но тем не менее свою задачу они выполнили. Возникла новая мощная область математики - аналитическая теория чисел. Применение ей нашлось в самых разных уголках теории чисел: с ее помощью решали давние задачи и выявляли новые закономерности. Другие математики позже нашли несколько более простых доказательств теоремы о числе простых, а Атле Сельберг и Пал Эрдеш открыли даже очень сложное доказательство, вовсе не требовавшее применения комплексного анализа. Но к тому моменту при помощи идеи Римана было доказано бесчисленное множество важных теорем, включая аппроксимации многих функций теории чисел. Так что это новое доказательство хоть и добавило в эту историю каплю иронии, но ни на что, в сущности, не повлияло. В 1980 году Дональд Ньюман нашел гораздо более простое доказательство, для которого достаточно оказалось всего лишь одной из самых базовых теорем комплексного анализа - теоремы Коши.

Хотя Риман объявил свою гипотезу ненужной для достижения ближайших целей, оказалось, что она жизненно необходима для разрешения многих других вопросов теории чисел. Прежде чем обсуждать гипотезу Римана, нам стоит взглянуть на некоторые теоремы, которые - если бы гипотеза была доказана - из нее следуют.

Одно из важнейших следствий - это величина погрешности в теореме о распределении простых чисел. Теорема, как вы помните, утверждает, что для большого отношение к приближается к , причем чем дальше, тем сильнее. Иными словами, разница между двумя функциями снижается до нуля относительно величины x. Однако реальная разница при этом может расти (и растет). Просто она делает это медленнее, чем растет сам . Компьютерные расчеты позволяют предположить, что величина погрешности примерно пропорциональна . Если гипотеза Римана верна, это утверждение можно доказать. В 1901 году Хельге фон Кох доказал, что гипотеза Римана логически эквивалентна оценке


для всех . Здесь вертикальными линиями обозначена абсолютная величина: разность, умноженная на , чтобы сделать ее положительной. Эта формула дает наилучшие возможные ограничения для разницы между и .

Из гипотезы Римана можно получить немало других оценок для функций теории чисел. К примеру, из нее прямо следует, что сумма делителей меньше


для всех , где - постоянная Эйлера (). Эти утверждения могут показаться случайными и странными фактами, но хорошая оценка для важной функции жизненно важна во многих приложениях, и большинство специалистов по теории чисел отдали бы свою правую руку ради того, чтобы доказать любую из них.

Кроме того, гипотеза Римана говорит нам, насколько велико может быть расстояние между последовательными простыми числами. Типичный размер промежутка между ними можно вывести на основании теоремы о распределении простых чисел: в среднем промежуток между простым числом и следующим простым числом сравним с . Некоторые промежутки могут быть меньше, некоторые больше, но математикам жилось бы легче, если бы можно было сказать наверняка, насколько велики могут быть самые большие из них. Харальд Крамер доказал в 1936 г., что если гипотеза Римана верна, то промежуток при простом числе не может превышать величины , домноженной на некую константу.

Но подлинное значение гипотезы Римана куда глубже. Существуют далеко идущие обобщения и сильное подозрение, что тот, кто сумеет доказать гипотезу Римана, сможет, вероятно, доказать и связанную с ней обобщенную гипотезу Римана. А это, в свою очередь, даст математикам власть над обширными областями теории чисел.

Обобщенная гипотеза Римана вырастает из более подробного описания простых чисел. Все простые числа, кроме двойки, нечетные, и в главе 2 мы видели, что все нечетные простые можно разделить на два типа: те, что на больше числа, кратного , и те, что на больше числа, кратного . Говорят, что это числа вида или , где - число, на которое вы умножаете , чтобы получить данное простое число. Приведем короткий список первых нескольких простых чисел того и другого типа, вместе с соответствующими числами, кратными :


Прочерки указывают на то, что соответствующее число не простое.

Сколько существует простых чисел того и другого типа? Как они распределены среди всех простых чисел или среди всех целых чисел? Евклидово доказательство того факта, что простых чисел существует бесконечно много, можно без больших усилий модифицировать, доказав при этом, что существует бесконечно много простых чисел вида .

Доказать, что простых чисел вида тоже бесконечно много, гораздо сложнее, - это можно сделать, но лишь при помощи некоторых достаточно сложных теорем. Разница в подходах обусловлена тем, что любое число вида имеет делитель того же вида, а в отношении чисел вида это не всегда верно.

В числах этих двух видов нет ничего чудесного или священного. Все простые числа, кроме и , имеют вид или , и мы можем задать в отношении них аналогичные вопросы. Если уж на то пошло, все простые числа, кроме , имеют вид , , , . Мы оставляем в стороне числа вида , поскольку они кратны и, соответственно, все, кроме , не являются простыми.

Кстати говоря, на любой из подобных вопросов нетрудно выдвинуть разумное предположение - простые числа в арифметической последовательности. Случай с достаточно типичен. Эксперимент быстро показывает, что числа приведенных выше четырех видов имеют примерно равные шансы оказаться простыми. Вот похожая таблица:


Так что должно существовать бесконечное количество простых чисел каждого вида, и в среднем к каждому виду должна относиться четверть всех простых чисел до заданного предела.

Для некоторых видов доказать, что простых чисел такого вида существует бесконечно много, совсем несложно. Для других видов требуются более изощренные рассуждения. Но до середины XIX века никому не удавалось доказать, что существует бесконечно много простых чисел каждого возможного вида, не говоря уже о том, чтобы доказать их более или менее равномерное распределение. Лагранж в 1785 году в работе, посвященной закону квадратичной взаимности - глубокому свойству квадратов простых модулей, - принимал этот факт без доказательства. Результаты дали очевидно полезные следствия, и пора было кому-нибудь это доказать. В 1837 году Дирихле выяснил, как применить идеи Эйлера, связанные с теоремой о распределении простых чисел, для доказательства обоих этих утверждений. Первым делом следовало определить аналоги дзета-функции для этих типов простых чисел. То, что получилось, называется -функциями Дирихле. К примеру, в случае возникает следующая функция:

Где коэффициенты равны для чисел вида , для чисел вида и 0 для остальных. Греческую букву называют характером Дирихле, и это напоминает нам о том, какие именно знаки следует использовать.

Для римановой дзета-функции важен не только ряд, но и его аналитическое продолжение, придающее функции значения во всех комплексных точках.

То же относится и к -функции, и Дирихле определил подходящее аналитическое продолжение. Приспособив к случаю идеи, которые использовались для доказательства теоремы о распределении простых чисел, он сумел доказать аналогичную теорему о простых числах особых видов. К примеру, число простых чисел вида , меньших или равных , асимптотически приближается к ; то же относится и к остальным трем случаям , , . Это означает, что простых чисел каждого вида бесконечно много.

Риманова дзета-функция - это особый случай -функции Дирихле для простых чисел вида , т. е. для всех простых чисел. Обобщенная гипотеза Римана представляет собой очевидное обобщение оригинальной гипотезы: нули любой -функции Дирихле либо имеют действительную часть, равную , либо являются тривиальными нулями, действительная часть которых отрицательна или больше единицы.

Если обобщенная гипотеза Римана верна, то верна и обычная его гипотеза. Многие следствия обобщенной гипотезы Римана аналогичны следствиям обычной. К примеру, схожие границы ошибки можно доказать для аналогичных версий теоремы о распределении простых чисел в применении к простым числам любого конкретного вида. Однако обобщенная гипотеза Римана подразумевает много такого, что совершенно отличается от всего, что мы можем вывести из обычной гипотезы Римана. Так, в 1917 году Годфри Харди и Джон Литтлвуд доказали, что из обобщенной гипотезы Римана следует гипотеза Чебышева, в том смысле, что (буквально) простые числа вида встречаются чаще, чем числа вида . Согласно теореме Дирихле, оба вида равновероятны в конечном итоге, но это не мешает простым числам вида выигрывать у чисел , конечно, в правильной игре.

Имеется множество косвенных свидетельств того, что гипотеза Римана - как оригинальная, так и обобщенная - справедлива. Много хорошего следовало бы из истинности этих гипотез. Ни одно из этих следствий за все время не удалось опровергнуть, а ведь сделать это - то же самое, что опровергнуть гипотезу Римана. Но ни доказательства, ни опровержения пока нет. Широко распространено мнение, что доказательство оригинальной гипотезы Римана открыло бы дорогу и к доказательству обобщенного ее варианта. Но на самом деле, возможно, лучше было бы атаковать сразу обобщенную гипотезу Римана во всей ее грозной красе - воспользоваться всем арсеналом доступных на сегодняшний день методов, доказать, а затем вывести оригинальную гипотезу Римана как ее частный случай.

Сегодня у исследователей появился новый стимул к борьбе за доказательство гипотезы Римана: крупный приз.

В математике не существует Нобелевской премии. Самой престижной наградой в этой области является Филдсовская премия за выдающиеся открытия, вместе с которой вручается медаль. Эта премия названа в честь канадского математика Джона Филдса, который и завещал на нее средства. Раз в четыре года на Международном конгрессе математиков двум, трем или четырем молодым ученым не старше 40 лет вручают золотую медаль и денежную премию (в настоящее время это $15 000).

Многие представители математической науки считают правильным, что в их области не присуждается Нобелевская премия. В настоящее время она составляет чуть больше миллиона долларов, а такая сумма легко может исказить цели исследователей и породить споры о приоритетах. Однако отсутствие крупной математической премии также может исказить представления общества о значимости и полезности этой науки. Можно подумать, что открытия, за которые никто не хочет платить, не так уж важны. Возможно, поэтому не так давно появились две очень престижные новые математические премии. Одна из них - Абелевская - присуждается ежегодно Норвежской академией науки и словесности и названа в честь великого норвежского математика Нильса Хенрика Абеля. Вторая награда - это премии за решение семи «проблем тысячелетия», объявленные Математическим институтом Клэя. Этот институт основали в 1998 году в Кембридже (штат Массачусетс) американский бизнесмен Лэндон Клэй и его жена Лавиния. Лэндон Клэй активно занимается паевыми инвестиционными фондами и при этом любит и уважает математику. Его организация проводит встречи, выделяет гранты на исследования, организует публичные лекции и присуждает ежегодную премию за математические исследования.

В 2000 году сэр Майкл Атья и Джон Тейт, ведущие математики Великобритании и США, объявили, что Математический институт Клэя учредил новую премию, которая должна будет стимулировать работу над семью важнейшими нерешенными задачами математики. Эти задачи будут известны как «проблемы тысячелетия», а надлежащим образом опубликованное и отреферированное решение любой из них будет вознаграждено денежной суммой в $1 млн. Все вместе эти задачи призваны привлечь внимание к некоторым центральным для математики вопросам, до сих пор не имеющим ответов. Вопросы эти были тщательно отобраны лучшими математиками мира. Немалый приз должен ясно показать обществу: математика имеет огромную ценность. Всякий, кто имеет отношение к науке, прекрасно знает, что интеллектуальная ценность вполне может быть выше любых денег, но все же деньги помогают сосредоточиться. Самой известной и давней из задач тысячелетия является гипотеза Римана. Это единственный вопрос, который вошел одновременно и в список Гильберта (1900), и в список задач тысячелетия. Остальные шесть проблем тысячелетия обсуждаются далее в главах 10–15. Тем не менее математики не особенно гонятся за призами, и работа над гипотезой Римана продолжалась бы и без обещанной премии. Все, что для этого нужно, - новая перспективная идея.

Стоит также помнить о том, что гипотезы, даже освященные временем, иногда оказываются ошибочными. Сегодня большинство математиков, судя по всему, считает, что когда-нибудь гипотеза Римана будет доказана. Некоторые, однако, думают, что она, возможно, все-таки неверна, и где-то в дебрях очень больших чисел может скрываться нуль дзета-функции, который не лежит на критической линии. Если такой «контрпример» существует, то он, скорее всего, окажется очень-очень большим.

Однако на переднем крае математики просто мнение стоит немного. Интуиция зачастую очень помогает ученым, но известно немало случаев, когда это замечательное чувство ошибалось. Житейский здравый смысл может лгать, оставаясь при этом и общепризнанным, и здравым. Литтлвуд, один из лучших знатоков комплексного анализа, выразился вполне однозначно: в 1962 году он сказал, что уверен в ошибочности гипотезы Римана, и добавил, что нет никаких мыслимых причин, по которым она была бы верна. Кто прав? Поживем, увидим.

Иэн Стюарт
Emeritus Professor of Mathematics at the University of Warwick, England

Гипотеза Римана является одной из семи «проблем тысячелетия», за её доказательство Институт математики Клея (Clay Mathematics Institute, Кембридж, Массачусетс) выплатит приз в 1 млн. долларов. К рассмотрению принимаются решения, которые были опубликованы в известном математическом журнале, причём не ранее, чем через 2 года после публикации (для всестороннего рассмотрения математическим сообществом)(http://www.claymath.org/millennium/).
Я имел свои соображения и подходы, как всегда, сильно отличающиеся от известных. Мне хотелось написать художественно о гипотезе Римана. В процессе своих выкладок и сбора материала я обнаружил прекрасно написанную книгу Джона Дербишира: Джон ДЕРБИШИР «Простая одержимость.Бернхард Риман и величайшая нерешенная проблема в математике»(John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics). Издательство «Астрель», 2010 г.
После прочтения этой книги мне оставалось дать только эту ссылку.
«В августе 1859 года Бернхард Риман стал членом-корреспондентом Берлинской академии наук; это была большая честь для тридцатидвухлетнего математика. В согласии с традицией Риман по такому случаю представил академии работу по теме исследований, которыми он был в то время занят. Она называлась «О числе простых чисел, не превышающих данной величины». В ней Риман исследовал простой вопрос из области обычной арифметики. Чтобы понять этот вопрос, сначала выясним, сколько имеется простых чисел, не превышающих 20. Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих тысячи? Миллиона? Миллиарда? Существует ли общий закон или общая формула, которые избавили бы нас от прямого пересчета?
Риман взялся за эту проблему, используя самый развитый математический аппарат своего времени - средства, которые даже сегодня изучаются только в продвинутых институтских курсах; кроме того, он для своих нужд изобрел математический объект, сочетающий в себе мощь и изящество одновременно. В конце первой трети своей статьи он высказывает некоторую догадку относительно этого объекта, а далее замечает:
«Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких недолгих бесплодных попыток я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования».
Эта высказанная по случаю догадка оставалась почти незамеченной в течение десятилетий. Но затем, по причинам, которые я поставил себе целью описать в данной книге, она постепенно завладела воображением математиков, пока не достигла статуса одержимости, непреодолимой навязчивой идеи.
Гипотеза Римана, как стали называть эту догадку, оставалась навязчивой идеей в течение всего XX столетия и остается таковой по сей день, отразив к настоящему моменту все без исключения попытки доказать ее или опровергнуть. Эта одержимость Гипотезой Римана стала сильна как никогда после того, как в последние годы были успешно решены другие великие проблемы, долгое время остававшиеся открытыми: Теорема о четырех красках (сформулирована в 1852 году, решена в 1976), Последняя теорема Ферма (сформулирована, по-видимому, в 1637 году, доказана в 1994), а также многие другие, менее известные за пределами мира профессиональных математиков. Гипотеза Римана поглощала внимание математиков в течение всего XX века. Вот что говорил Давид Гильберт, один из виднейших математических умов своего времени, обращаясь ко второму международному конгрессу математиков:«В теории распределения простых чисел в последнее время Адамаром, де ля Валле Пуссеном, фон Мангольдтом и другими сделаны существенные сдвиги. Но для полного решения проблемы, поставленной в исследовании Римана «О числе простых чисел, не превышающих данной величины», необходимо прежде всего доказать справедливость исключительно важного утверждения Римана <...>».
Далее Гильберт приводит формулировку Гипотезы Римана. А вот как сто лет спустя высказался Филип А. Гриффитс, директор Института высших исследований в Принстоне, а ранее - профессор математики в Гарвардском университете. В своей статье, озаглавленной «Вызовы исследователям XXI века», в январском номере Journal of the American Mathematical Society за 2000 год он пишет:
«Несмотря на колоссальные достижения XX века, десятки выдающихся проблем все еще ожидают своего решения. Наверное, большинство из нас согласится, что следующие три проблемы относятся к числу наиболее вызывающих и интересных.
Первой из них является Гипотеза Римана, которая дразнит математиков уже 150 лет <...>».
Интересным явлением в Соединенных Штатах в последние годы XX века стало появление частных математических исследовательских институтов, финансируемых богатыми любителями математики. И Математический институт Клея (основанный в 1998 году бостонским финансистом Лэндоном Т. Клеем), и Американский математический институт (основан в 1994 году калифорнийским предпринимателем Джоном Фраем) ориентировали свои исследования на Гипотезу Римана. Институт Клея установил премию в миллион долларов за ее доказательство или опровержение. Американский математический институт обращался к Гипотезе на трех полномасштабных конференциях (в 1996, 1998 и 2000 годах), собравших исследователей со всего мира. Помогут ли эти новые подходы и инициативы в конце концов победить Гипотезу Римана, пока не ясно.
В отличие от Теоремы о четырех красках или Последней теоремы Ферма Гипотезу Римана нелегко сформулировать так, чтобы сделать ее понятной для нематематика, потому что она составляет самую суть одной трудной для понимания математической теории. Вот как она звучит:
Гипотеза Римана.
Все нетривиальные нули дзета-функции
имеют вещественную часть, равную одной второй».
Когда соприкасаешься с трудами вокруг гипотезы Римана, приходит мистическая идея не только об эволюции идей и мышления, не только о закономерностях развитии математики, не только об устройстве самого плана развёртывания вселенной, но и об изначальном знании, абсолютной истине, логосе как программе Единого.
Математические абстракции правят миром, управляют поведением элементарных частиц, высоких энергий, математические операторы порождают и уничтожают всё что угодно. После ряда веков доминирования материального, поклонения материальному, снова стала проявляться сила мирового духа в виде математических абстракций, пифагореизм, платонизм стали методологическими ориентирами современной науки.
Я с детства находил ошибки в трудах великих математиков. Не из зависти или вредности, а просто было интересно, могу ли я превзойти Пифагора,Диофанта, Евклида,Ферма, Мерсенна, Декарта, Гаусса, Эйлера, Лежандра,Римана,Дирихле, Дедекинда, Кляйна, Пуанкаре. И как ни странно, превосходил. Формулировал новые проблемы, доказывал новые теоремы. Но оказалось, что математический мир устроен, несмотря на требования точности и доказательности, как-то бюрократически. Оказалось, что твоим доказательствам просто не верят. Вопреки логике и объективности. А верят сказкам прессы, радио и телевидения. При этом средства массовой информации так сильно искажают действительное положение дел, что с удивлением узнаёшь, как переделаны твои фразы. Поэтому я стал избегать интервью.
Хочу заметить наличие множества ошибок вокруг гипотезы и дзета-функции Римана, а также в попытках доказать или опровергнуть гипотезу. Риман не придал большого значения поиску нулей дзета-функции. Но хор "выдающихся" последователей невероятно раздул значение гипотезы. Я показываю даже элементарными выкладками, что гипотеза неверна, что есть другие решения. Во-первых, дзета-функция не обладает той симметрией, о которой твердят, - симметрию решений имеет совсем другая функция. Во-вторых, если не лениться и уметь вычислять корни уравнений для функций с комплексными переменными, можно увидеть, что дело обстоит на самом деле несколько иначе. Хотите убедиться? Прочтите внимательно формулы на приложенном рисунке. Более подробно исчерпывающие примеры и вычисления можно найти в заметке "The Riemann"s Hypothesis Refutation Formulae" Можете добавить свои обобщения (особенно самой функции) и соответствующие вычисления. "А ларчик просто открывался!"
Успехов Вам!

Логическое доказательство гипотезы Римана. СЕ ВИД МИРА.

Логическое доказательство гипотезы Римана есть также богодоказательство.
Гипотеза Римана есть предположение о существовании закономерности в распределении простых чисел. Логическое доказательство гипотезы Римана есть, собственно говоря, сущность того, что известно под именем «логика». Отныне эта сущность получает известность в том виде, в каком она есть сама по себе, в своем собственном виде Науки Риторики.

Информация для размышления:
«Простые числа «похоронят» криптографию» (НГ-ТЕЛЕКОМ, 5.10.04): «Математики близки к доказательству так называемой «гипотезы Римана», признанной одной из нерешенных проблем математики. Если гипотеза, согласно которой в характере «распределения» простых чисел имеются закономерности, будет доказана, возникнет необходимость пересмотра фундаментальных принципов всей современной криптографии, лежащей в основе многих механизмов электронной коммерции.
«Гипотеза Римана» была сформулирована немецким математиком Г. Ф. Б. Риманом в 1859 году. Согласно ей, характер распределения простых чисел может существенно отличаться от предполагаемого в настоящее время. Дело в том, что математикам до сих пор не удавалось обнаружить какой-либо системы в характере распределения простых чисел. Так, считается, что в окрестности целого числа х среднее расстояние между последовательными простыми числами пропорционально логарифму х. Тем не менее, уже давно известны так называемые простые числа-близнецы, разность между которыми равна 2: 11 и 13, 29 и 31, 59 и 61. Иногда они образуют целые скопления, например 101, 103, 107, 109 и 113. У математиков давно существовало подозрение, что такие скопления существуют и в области очень больших простых чисел, однако ни доказать, ни опровергнуть это утверждение до сих пор не удавалось. Если такие «кластеры» будут найдены, стойкость криптографических ключей, используемых в настоящее время, может в одночасье оказаться под большим вопросом.
Как сообщил ряд изданий, на днях американский математики Луи де Бранже из университета Пердью заявил, что сумел доказать гипотезу Римана. Ранее, в 2003 году, о наличии доказательства этой теоремы уже заявляли математики Дэн Голдстон из университета Сан-Хосе (Калифорния) и Кем Илдирим из университета Богазичи в Стамбуле.
Доказательство, казалось бы, отвлеченной и абстрактной математической задачи может в корне изменить концепции, лежащие в основе современных криптографических систем - в частности, системы RSA. Обнаружение системы в распределении простых чисел, полагает профессор Оксфордского университета Маркус дю Сатой, привело бы не просто к снижению стойкости криптографических ключей, но и к полной невозможности обеспечивать безопасность электронных транзакций с помощью шифрования. Последствия этого трудно переоценить, учитывая ту роль, которую криптография играет в современной обществе - от охраны государственных секретов до обеспечения функционирования онлайновых финансовых и торговых систем».

ИСЧИСЛЕНИЕ ПРОСТЫХ ЧИСЕЛ. СУЩНОСТЬ МАТЕМАТИЧЕСКОГО
16.01.2003 HTTP://LIB.RU/POLITOLOG/SHILOW_S/CHISLA.TXT

1. Феномен развития есть исчисление.

2. Универсальное исчисление в корне отлично от дифференциального,
интегрального и иных аналитических исчислений.

3. Универсальное исчисление исходит из понятия (формулы) единицы.

4. Идея бесконечно малой величины, лежащая в основе современных частных исчислений, идея флюксии Ньютона-Лейбница, подлежит фундаментальной
рефлексии.

5. Преобразования Лоренца, употребленные впервые Эйнштейном в качестве
проекта нового, синтетического исчисления, представляют на деле стратегию
поиска оснований теории чисел.

6. Теория множеств является дескрипцией, описанием теории чисел, что не
тождественно экспликации оснований теории чисел.

7. Теория относительности Эйнштейна на деле выявляет числовые основания
физических процессов.

8. Идея наблюдателя есть лексическое описание проекта синтетического
исчисления.

9. В синтетическом исчислении измеримость тождественна исчислению,
значение тождественно процессу, значение образует процесс, которого до
значения не было в "природе", в действительности числового ряда.

10. Проблема современного научного знания, таким образом, - это
проблема создания синтетического исчисления.

11. Основная операция синтетического исчисления - представление числа
цифрой.

12. Представление числа цифрой есть результат рефлексии числа. Подобно
тому, как представление слова понятием (образом) есть результат рефлексии
слова.

13. Рефлексия слова осуществляется посредством чтения письма. Рефлексия
числа осуществляется посредством математизации физики.

14. Книга природы (физики) написана на языке математики (читается
математикой). "Книга природы", Наука, таким образом, есть представление,
изложение, описание чисел цифрами. Подобно тому, как книга есть
представление, формализация слов буквами, лексическими и грамматическими
формами.

15. Таким образом, теория чисел и есть, собственно говоря, универсальная теория природы.

16. Исчисление есть, таким образом, универсальный процесс природы
(природа как процесс), Развитие, процесс, представленный в цифровой форме.

17. Представление числа цифрой есть фундаментальная технология
исчисления, существо феноменологии развития, основание Техники как таковой.
Так и представление слова образом (понятием) есть фундаментальная технология
мышления, есть, собственно говоря, Рефлексия.

18. Раскроем существо, феномен представления числа цифрой. Такова и
будет технология синтетического исчиcления.

19. Феномен представления числа в истинной теории чисел раскрывается
как феномен фундаментального различия чисел в современной теории чисел.

20. Фундаментальное различие чисел в современной теории чисел есть
экспликация множества простых чисел. Так фундаментальное различие слов в
риторике есть, прежде всего, экспликация первичных понятий риторики.

21. Простое число есть возможность представления числа цифрой, а
представленное в виде цифры оно есть реализация, результат представления
числа цифрой, поскольку существуют числа, не представимые в виде конечной
цифры-знака.

22. Фундаментальное положение синтетического исчисления есть, в самом
безусловном и необходимом смысле, формула единицы.

23. Бесконечно малая величина аналитических исчислений есть, собственно
говоря, также единица, как нечто одно, фиксируемое посредством анализа.

24. Формула единицы есть дефиниция единицы, так как само понятие
формулы единицы есть результат рефлексии числа.

25. Поскольку формула единицы есть понятие языка науки, способа
представления числа цифрой, то единица есть ни что иное, как совокупность,
множество простых чисел:

26. Множества простых чисел в действительности числового ряда и есть, собственно говоря, явления природы, измеримость которых тождественна их бытию во времени и в пространстве в качестве синтетического исчисления,
исчисления, производящего числа.

27. Простое число есть истинный предел аналитических исчислений,
зафиксированный в виде физических констант опосредованно.

28. Суть синтетического исчисления, единичного акта исчислимости синтетического исчисления, который может быть охарактеризован как измерение, производящее физический объект, так вот, суть синтетического исчисления - такое различие множеств простых чисел на единицу множества, которая также есть конкретное множество простых чисел. Так суть формирования риторики в диалоге - такое явление нового базового понятия (единицы смысла, осмысленности), не включенного в круг употребленных первичных понятий, которое (новое понятие) есть также совокупность первичных понятий.

29. Делимость как технология определения простого числа образует до конца не отрефлектированную сегодня сущность аналитических исчислений.

30. Деление есть путь цифры, энтропия как формальное представление о
действительности числового ряда.

31. Таким образом, непосредственное правило определения простого числа
посредством делимости есть формула формулы, генезис и структура физического формулы как результата рефлексии представимости числа цифрой.

32. Правило определения простого числа определяет механизм
синтетического исчисления.

33. Правило определения простого числа есть одновременная делимость
цифровых частей числа на делитель. В аспекте целочисленной делимости число
образует две цифровые части, единство которых обусловлено его положением
относительно своих (всех) простых чисел. Происходит работа делителя -
одновременное деление "с двух сторон" (цифровых) числа.

34. Переход от аналитического исчисления к синтетическому выглядит в
самой непосредственной форме как одновременность двух операций одного
делителя в цифровой форме числа.

35. Последовательностью целых делителей число определяется как простое,
либо непростое, то есть вычисляется.

36. Число вычисляется в исчислении.

37. Вычисление числа есть определения качества числа.

38. В числовом двигателе число исчисляется.

39. Работа числового двигателя: происходит последовательное определение
(вычисление) простых чисел.

40. Механизм определения простоты числа на основе делимости: "делим
первоначально делимое (для начальной последовательности делителей) цифровое начало числа на начальную последовательность делителей, взятых, умноженных на целое число до максимально целого значения цифрового начала числа, и смотрим - делится ли целым образом (без остатка) оставшаяся цифра числа на настоящий делитель, пока цифровое начало числа не будет меньше делителя".

41. Физический мир таким образом имеет цифровую форму.

42. Измерения времени в системе измерения числа тождественны измерениям
пространства и представлены как цифровые формы: число цифр (и цифра) первой части числа (начальной цифровой формы), число цифр (и цифра) второй части числа (средней цифровой формы), число цифр (и цифра) третьей части числа (заключительной цифровой формы).

43. Измеримость физического мира - выражение начальной последовательности делителей в цифровом начале числа с одновременным выставлением отношения делителя к цифровому продолжению числа (целое, нецелое).

44. Основой аналитического исчисления является деление как
фундаментальная операция теории чисел.

45. Деление есть структура представления числа цифрой.

46. Произведение же есть генезис представления числа в форме цифры.

47. Произведение есть четвертое измерение, измерение времени как
четвертая операция теории чисел в отношении к триаде "деление - сумма -
вычитание", образующей единое правило вычисления простого числа
(доказательства его простоты).

48. Произведение есть дефиниция-рефлексия триады операций.

49. Произведение - значение генезиса числа.

50. Деление - значение структуры числа.

51. 1. Число в виде Cилы числа (значения числа) есть прежде всего квадрат
цифры числа (первое произведение).
51. 2. С другой стороны, число в качестве единицы есть множество простых
чисел: 1 = Sp.
51.3. Простое число есть делитель целого непростого числа.
Таким образом, правило определения простого числа записывается в виде
теоремы Ферма, которая при этом становится доказанной:
xn + yn = zn , выполняется для целых
х, у, z только при целых n > 2 , а именно:
Квадрат цифры числа есть единичное множество простых чисел.

52. Суть теоремы Ферма:
Определение силы числа мощностью множества простых чисел.

53. С другой стороны, геометрия теоремы Ферма - взаимоконвертация пространства и времени в решении проблемы квадратуры круга: Проблема квадратуры круга сводится таким образом к проблеме взаимоконвертации квадрата числа в конкретное множество простых чисел, имеющей "внешний вид" знаменитой ленты Мебиуса. Геометрия Евклида (недоказанность пятого постулата - как непосредственное следствие недоопределенности точки, отсутствия рефлексии точки) и геометрия Лобачевского (геометризация цифровой формы числа вне числа) вместе преодолены в геометрии теоремы Ферма. Центральный постулат геометрии теоремы Ферма - постулат точки, раскрываемый формулой единицы.

54. Таким образом, рефлексия следующих операций теории чисел на основе
формулы единицы - возведения в степень, извлечения корня - приведет к созданию физической теории управления временем-пространством.

55. Число есть, число есть единицей, имеющей силу числа. Репрезентант
числа - простое число. Такова универсальная структура физического объекта,
незавершенность рефлексии которого приводила к корпускулярно-волновому
дуализму, к различию физики элементарных частиц и физики макромира.

56. Квантовое исчисление должно быть дорефлектировано в синтетическое
исчисление, постоянная Планка выражает обнаружение в цифре силы числа.
Излучение есть феномен представления числа цифрой, раскрываемый в формуле единицы в качестве разрешения парадокса физики абсолютно черного тела.

57. Формула единицы есть, таким образом, всеобщая теория поля.

58. Формула единицы выражает интеллектуальную сущность Вселенной,
является основой концепции Вселенной как действительности действительных
рядов действительных чисел.

59. Развитие Вселенное есть синтетическое исчисление, исчисление простых чисел, значимость которых образует предметность Вселенной.

60. Формула единицы доказывает, показывает силу Слова. Формула единицы
есть устройство Вселенной в соответствии с принципом Слова, когда самооформление слова есть произведение бытия, Книги Бытия. Так самооформление числа есть произведение природы, Книги Вселенной. Формула
единицы в самом безусловном и необходимом смысле есть формула времени.
Синтетическое исчисление есть форма риторики.

СЛЕДСТВИЕ ЛОГИЧЕСКОГО ДОКАЗАТЕЛЬСТВА ГИПОТЕЗЫ РИМАНА:

ЧТО ЕСТЬ ЭЛЕКТРОН? НАЧАЛА ЭЛЕКТРОННОЙ ЭНЕРГЕТИКИ
15.06.2004 HTTP://LIB.RU/POLITOLOG/SHILOW_S/S_ELEKTRON.TXT

1. 20-ый и 21-ый века - соответственно Атомный и Электронный века - образуют две последовательные ступени, две сущности перехода от Истории Нового времени к Истории Нового бытия.

2. История, как имевшее, имеющее и будущее иметь «место», - с точки зрения Науки философии, есть тождество-различие бытия и сущего. Само место, как нечто предоставляющее возможность и действительность чему-либо существовать во времени, и есть феномен, который получается из тождества-различия бытия и сущего.
Сущее есть действительное, возникшее из бытия, существующее Теперь и исчезающее в небытии. Бытие есть то, что создает Теперь, создает «здесь и сейчас». Как самостоятельное, существующее в себе, отдельно от бытия, сущее есть время. Бытие есть то, что создает Время. Время стремится к Бытию, как недобытие, как предметность бытия, как сущее. Время попадает в Бытие, становится бытием через путь двух сущностей сущего. Аристотель рассматривал этот путь от бытия ко времени и видел две сущности, как спуск от бытия к сущему, ко времени. Метафизика Аристотеля, как начало европейской рациональности, прописывает две сущности сущего, как то, что делает возможной науку. Наука возникает, как перводеление сущего на две сущности - на необходимое и достаточное основания, которые вместе определяют бытие сущего в целом, как оно есть. Наука, по Аристотелю, является именованием пути (Логикой) от бытия к сущему. Мы, в нашем историческом положении, рассматриваем этот же путь с другой стороны, как путь от времени, от сущего - к бытию. И Аристотель, и я (мы) видим одни и те же две сущности (необходимую и достаточную) сущего, которые связывают сущее и бытие, но Аристотель видит их со стороны бытия, а мы - с другой стороны, со стороны сущего, со стороны времени. Такова природа «нового аристотелизма». Между Бытием и Временем таким образом находятся, располагаются две сущности - необходимое и достаточное основания, которые и создают все то, что вообще бывает, что действительно.

3. Бытие, необходимое основание, достаточное основание, Время. Время, достаточное основание, необходимое основание, Бытие. Это описание и представление ленты мебиуса, которую, по мнению «современных ученых», невозможно представить. Цитируем «современных ученых»: «Геометрия Лобачевского - это геометрия псевдосферы, т.е. поверхности отрицательной кривизны, а геометрия сферы, т.е. поверхности положительной кривизны, это Риманова геометрия. Эвклидова геометрия, т.е. геометрия поверхности нулевой кривизны, считается ее частным случаем. Эти три геометрии пригодны только как геометрии двумерных поверхностей, определенных в трехмерном Эвклидовом пространстве. Тогда в них возможно параллельное построение всего того огромного здания из аксиом и теорем (описываемого также в зримых образах), которое нам известно из геометрии Эвклида. И действительно очень примечательно, что принципиальное отличие всех этих трех совершенно разных «сооружений» только в одной 5-й аксиоме Эвклида. Что же касается листа мебиуса, то этот геометрический объект не может быть вписан в трехмерное, а только лишь не менее чем в 4-х мерное пространство, и он тем более не может быть представлен как поверхность постоянной кривизны. Поэтому ничего похожего на предыдущее на его поверхности построить нельзя. Кстати, именно поэтому зримо мы его представить себе во всей красе не можем».
Умозрение, открытое Парменидом и Платоном, как зрение «эйдосов», Аристотелем употребляется непосредственно, а нами, умо-зрящими с другой стороны, нежели Аристотель, употребляется, достигается опосредованно. С этой, другой, нежели у Аристотеля, стороны, мы видим формулу того бытия, с которым Аристотель имеет дело непосредственно. Мы же с этим бытием не имеем непосредственного отношения, но можем его получать посредством некоторой формулы, деопосредования. Лента Мебиуса есть представление движения от бытия ко времени и от времени к бытию, то есть, точка ленты мебиуса принадлежит как времени, так и бытию - создает себя самое. 5-ый «недоказанный» постулат Эвклида и есть указание на то, что помимо сущего существует и бытие, порождающее сущее, и что сущее есть не что иное, нежели время. Пятый постулат Эвклида возникает, как следствие недоаксиоматизации точки, как признак-следствие отсутствия субстанционального понимания точки. По существу, правильная аксиоматизация аксиомы точки является единственной необходимой аксиомой всеобщей геометрии, универсальной геометрии сущего, и других аксиом (постулатов) не требуется, они являются излишними. Иначе говоря, в геометрии Эвклида зафиксирована только первая необходимая сущность аксиомы точки, которая подвергнута проблематизации в других геометриях, проблематизации с точки зрения сущего, геометрия которого не редуцируема к геометрии Эвклида. Вторая, достаточная сущность аксиомы точки заключается в том, что ТОЧКА ВСЕГДА ЕСТЬ ТОЧКА ЛЕНТЫ МЕБИУСА (НЕ СУЩЕСТВУЕТ ТОЧКИ, КОТОРАЯ НЕ ЯВЛЯЕТСЯ ТОЧКОЙ ЛЕНТЫ МЕБИУСА). Такова единственная аксиома геометрии Шилова, как универсальной геометрии сущего. Как видно, эта геометрия совпадает с сущим, как бытие сущего: запрещенные в этой геометрии объекты есть несуществующие объекты. Таков первичный замысел геометрии, как закона формирования сущего, действительного.

4. Субстанциональная точка есть и существо, и проблематизация закона тождества. Здесь логика и геометрия совпадают в своем общем истоке, основании. Здесь логика и геометрия открывают себя, как две сущности сущего, как произведенного бытием времени. Геометрия является необходимой сущностью сущего. Логика является достаточной сущностью сущего. Так основал европейскую науку Аристотель. Основывая ее так, Аристотель непосредственно владел темой субстанциональности точки, мы же владеем этой темой опосредованно (точнее, эта тема владеет нам с такой мощью, что мы уже не думаем о субстанциональности точки). Мы должны таким образом вернуться от логики к геометрии, формализуя непосредственное аристотелевское понимание субстанциональности точки. Как мы это делаем? Мы проблематизируем закон тождества (А=А), как процесс, становление, событие того, как А есть, становится А, как А удерживается, фиксируется, схватывается, как А. В этой проблематизации участвует все бытие логики, и в таком понимании закон тождества также становится единственным законом логики, когда все иные законы (противоречия, исключенного третьего, достаточного основания) становятся измерениями, участниками процесса тождества, процесса становления, осуществимости тождества. Логика, как достаточное, и геометрия, как необходимое, совпадают в одной существенной сущности, в имени единого закона тождества - закона субстанциональности точки.

5. Что есть субстанциональная точка, как действительное? Это главный вопрос Науки, в ответе на который она становится единой наукой не только в сфере оснований науки, но и внешне, «эйдетически». В чем корень всех «-логий», как «отдельных научных дисциплин»? В логико-геометрическом единстве, прежде всего. Что изучает логико-геометрическое единство? Субстанцию точки. Логико-геометрическое единство, слабо рефлексируемое современными науками, это теория субстанциональной точки. Теория субстанциональной точки - это основание генезиса и структуры научного знания, рациональности. В полевой теории истина, как истина теории субстанциональной точки скрывается, уклоняется от ученого. «Полевая теория», теория поля есть научный миф. Миф о действительном бытии субстанциональной точки.

6. Действительное бытие субстанциональной точки есть ЧИСЛО. ВРЕМЯ СУБСТАНЦИОНАЛЬНОЙ ТОЧКИ, ТОЧКИ ЛЕНТЫ МЕБИУСА, И ЕСТЬ ЕДИНСТВЕННО ВОЗМОЖНОЕ И СУЩЕСТВУЮЩЕЕ ВРЕМЯ, ИСТИННЫЙ МОМЕНТ ВРЕМЕНИ. НЕТ, НЕ СУЩЕСТВУЕТ ТАКОГО ВРЕМЕНИ, КОТОРОЕ НЕ БЫЛО БЫ, КАК ВРЕМЯ СУБСТАНЦИОНАЛЬНОЙ ТОЧКИ. Логико-геометрическое единство, которое, с одной логической стороны, есть закон субстанционального тождества, а с другой геометрической стороны, есть закон субстанциональной точки, в своей единственной существенной сущности, априорной логике и геометрии, есть ЗАКОН ЧИСЛА. Бытие создает сущее, действительное в виде числа, в пространстве действительного числового ряда, как материального бытия времени. Число есть место, создающееся между временем и бытием, между бытием и временем, - есть сущее.

7. Истинная наука о числе есть, таким образом, механика времени (Математика есть наука о цифре, о представлении числа цифрой). Вот что позволяет понять новый аристотелизм, «разоблачая» «полевой миф» современной физики. Пространство сущего раскрывает себя как пространство действительного числового ряда. Теория поля, представление о поле - это миф в отношении логико-геометрического единства и его истинной природы. Квантово-механическая интерпретация есть некоторый миф в отношении механики времени. Квантово-механическая интерпретация не знает еще «природу», как действительный числовой ряд, не знает еще универсальный (универсальный для взаимодействий любого «уровня») физический объект, как число. Современная физика еще не познала «природу», как исчисление. Квантово-механическая интерпретация застряла в логико-геометрическом единстве, как в неопределенной двойственности (принцип Гейзенберга).

8. Таким образом возникает возможность «неполевого» определения-понимания энергии. Полевое понимание-представление энергии исходит из закона сохранения энергии и незыблемости начал термодинамики. ЧИСЛОВОЕ ПОНИМАНИЕ ЭНЕРГИИ ЕСТЬ ПОНИМАНИЕ МЕХАНИЗМА ДЕЙСТВИЯ ЧИСЛА, КАК ДЕЙСТВИТЕЛЬНОГО И ЕДИНСТВЕННОГО ВОЗМОЖНОГО МОМЕНТА ВРЕМЕНИ. ЭНЕРГИЯ ЕСТЬ ЭНЕРГИЯ ДВИЖЕНИЯ (СУЩЕСТВОВАНИЯ) ЛЕНТЫ МЕБИУСА. ЛЕНТА МЕБИУСА ЕСТЬ ФОРМА СУЩЕСТВОВАНИЯ ЭНЕРГИИ. ЭНЕРГИЯ В САМОМ НЕОБХОДИМОМ И БЕЗУСЛОВНОМ СМЫСЛЕ ЕСТЬ ТО, ЧТО НАРУШАЕТ ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И НАЧАЛА ТЕРМОДИНАМИКИ, И ЭТО НАРУШЕНИЕ И ОБРАЗУЕТ ФИЗИЧЕСКУЮ СУЩНОСТЬ ВРЕМЕНИ, ВОЗМОЖНОСТЬ И ДЕЙСТВИТЕЛЬНОСТЬ МОМЕНТА ВРЕМЕНИ, КАК МОМЕНТА ДЕЙСТВИТЕЛЬНОСТИ.

9. Энергию можно определить как Силу Единицы (Силу числа), сила которой состоит в исчислимом нарушении закона сохранения энергии (начал термодинамики). По существу, атомная энергетика продвинула человечество к числовому пониманию энергии, но остановилась в своем научном развитии, будучи неспособной осмыслить атомную энергию, как необходимую предпосылку пересмотра начал термодинамики и закона сохранения энергии. Наука оказалась тут в совершенно том же положении перед необходимостью осмысления собственных оснований, в котором оказалась церковь перед лицом достижений науки. Так же как и церковь, наука сохранила «верность» закону сохранения энергии (началам термодинамики), не взирая на необходимость осмысления существа оснований атомной науки САМОСТОЯТЕЛЬНО, вне термодинамического согласования. Атомная наука в деле использования атомной энергии вышла на идею-представление о субстанциональной точке. Использование атомной энергии есть, по существу, самораскрытие субстанции точки, как числа, растущего по всему пространству действительного числового ряда (представление о «цепной реакции»). Более того, это представление вполне зримо: потому-то атомный взрыв есть атомный гриб, есть РОСТ, метафизический рост, пробегание числа по своему пространству, месту числового ряда.

10. Электронная наука определит лицо 21-го века. И возникнет эта наука из истинного определения того, ЧТО ЕСТЬ ЭЛЕКТРОН. Все предшествующие мысли, а также рассмотрение атомной науки (атомной энергии), как чистого феномена, имеющего собственную истину - ПЕРВУЮ СТУПЕНЬ, ПЕРВУЮ НЕОБХОДИМУЮ СУЩНОСТЬ РАСКРЫТИЯ ЧИСЛОВОЙ ПРИРОДЫ ЭНЕРГИИ, как физическую фиксацию силы и бытия числа, способствуют тому, чтобы понять электрон уже непосредственно, как число, как объект, проявляющий себя физически. Не случайно говорят о том, что «электрон есть самая таинственная частица в физике». Электрон есть вторая ступень, вторая ДОСТАТОЧНАЯ СУЩНОСТЬ ЧИСЛОВОЙ ПРИРОДЫ ЭНЕРГИИ. Атом, электрон располагаются между бытием и временем (сущим), как соответственно первая необходимая и вторая достаточная сущность сущего. Переход от бытия ко времени и обратный переход от времени к бытию есть не «делимость материи» сущего, а субстанциональная точка, Число, и, в этом смысле Числа как «неделимости материи», ЭЛЕКТРОН ЕСТЬ ПРОСТОЕ ЧИСЛО (неделимое число). Простое число есть физическая сущность электрона как пространственно-временного феномена времени.

11. Электронная наука завершает переход от времени к бытию, необходимым образом начатый атомной наукой. Электронная наука открывает Формулу Единицы: Единица есть множество простых чисел. Формула Единицы раскрывает устройство, сущность времени, механику времени. Электронная наука открывает человеку доступ к ЭЛЕКТРОННОЙ ЭНЕРГИИ, НЕПОСРЕДСТВЕННОЙ ЭНЕРГИИ ЧИСЛОВОГО РЯДА, ЭНЕРГИИ ТВОРЕНИЯ. Электронная наука решит те проблемы, перед которыми остановилась атомная наука и тем самым невероятно изменит энергетику, зафиксировав «принципиально новый», а, на самом деле, истинный источник мегаэнергии - число, числовой ряд. Понимая, ЧТО ЕСТЬ ЭЛЕКТРОН, мы создадим ЭЛЕКТРОННУЮ ЭНЕРГЕТИКУ, как механику времени, прежде всего. Математическая процедура станет частью физико-технического процесса, той частью, которая выведет этот процесс в новое сверхфизическое, сверхфизико-константное качество.

12. Задача создания электронной энергетики - есть главная задача формирования нового технотронного уклада. Это задача начала Истории нового бытия, завершения переходного периода от Истории Нового времени к Истории Нового бытия, первым необходимым основанием, первой необходимой ступенью которого и стал прошедший 20-ый Атомный век. Научная революция 20-х годов 20-го века, произведенная Эйнштейном, создала необходимую предпосылку для Мегауначной революции начала 21-го века, результатом которой и будет электронная наука, электронная энергетика. Возникновение же электронной науки, электронной энергетики есть, прежде всего, открытие того, что есть электрон. Открытие «тайны электрона» есть, прежде всего, понимание, осмысление, путь которого представлен в данной последовательности тезисов, как путь «нового аристотелизма».

13. С каким опытом работал Аристотель, когда осмысливал истину мира, как переход от бытия ко времени, когда открывал ту возможность, которая реализовалась, как Логика? Представлением о чем, известном человеку, как о самом ближнем круге его сущего, определяющем его, как собственно человеческое существо, была лента мебиуса. Где человек видел и знал ленту мебиуса? Откуда человек черпал опыт субстанциональности точки? Ведь, все это те знания, «врожденные идеи», которые и делают некоторое живое существо человеком, ведь, человека человеком делает его человеческое восприятие (человек, говоря словами Гете, «видит то, что знает»). Откуда «ранний-древний» человек знал все то, к чему современная наука, вооруженная могущественными средствами техники, эксперимента, математического аппарата, приходит только в 21-м веке, при том, что человек всегда располагает этим знаниями именно как человек? Ответ: из речи, из человеческой речи, как непосредственной действительности мышления. Речь и есть то движение от бытия ко времени и от времени к бытию (в движении от времени к бытию речь становится мышлением), которым и есть человек, как некоторое движение и опыт настоящего движения. Точка, как субстанциональная точка, известна, ведома человеку, как точка речи, как момент истины, как суждение. Время, как предметность, дана человеку, как предметность речи (мышления). Смысл современного исторического момента развития науки и состоит в самом главном эксперименте - в поверке современной науки опытом речи, в пути радикального логического переосмысления науки, как научной речи, в выявлении необходимого и достаточного оснований истинности научного суждения. Речь содержит в себе программу истинности, для раскрытия которой понадобилась вся мощь современной науки, направленной вовне человека, но требующей осмысления полученных результатов в языке науки. Речь для человека не только находится «между» бытием и временем, но и охватывает лентой мебиуса бытие, как бытие человека, и время, как время человека. Речь - это нечто больше, чем филологический набор слов и правил, речь - это бытие, которое входит в мир таким временем, как человек, создает такое сущее, как человек. Речь создает число как сущность человека, число, которое и есть человек.
Потому меганаучная революция есть гуманитарно-технотронная революция, которая начинается с раскрытия тайны сущности электрона, как простого числа, СРЕДСТВАМИ МЫШЛЕНИЯ, СРЕДСТВАМИ ЯЗЫКА НАУКИ.

ПЕРВОЕ УПОМИНАНИЕ О ЛОГИЧЕСКОМ ДОКАЗАТЕЛЬСТВЕ ГИПОТЕЗЫ РИМАНА
20.10.2000 HTTP://LIB.RU/POLITOLOG/SHILOW_S/MEGANAUKA.TXT
«ХРОНИКА. ДЕФИНИЦИИ МЕГАНАУКИ»

_______________________________________________________________________
Незыблемое и последнее основание, которое искал Декарт в начале Нового времени, понято и открыто в Конце Истории Нового времени. Это основание - число. Как бытие, истинно описываемое языком науки. В Конце Истории Нового времени это основание открывается и становится видным, как «последнее» Нового времени. Видно число через «оптику» редукционизма солиптической (методориторической) доктрины, как высшей формы картезинанского «методологического» сомнения. Открытое таким образом число имеет характеристики свойственные не только арифметическому понятию «числа», но и философскому понятию «основания» (добавлю - и физическому представлению о «природе» («материи») - представлению «атом» и представлению «электрон»), так что математикам (и физикам) придется потесниться в лодке числа, плывущей в «безбрежном океане неведомого» (о коем пишет Ньютон в «Математических началах натурфилософии», трактуя себя не как «открывателя законов мироздания», но «как мальчика, бросающего камешки на побережье») и предоставить место в этой лодке также и философам. Собственно говоря, для блага же и физико-математиков, лодка числа (Ноев Ковчег современной цивилизации) под управлением которых, сгрудившихся на одной из ее сторон, уже почти под водой (напр., крах программы «формально-логической» формализации Гильберта-Геделя). Программа формализации Науки Риторики дедуцирует понятие истинной теории множеств, связанной формулой Единицы, как множества простых чисел.

Математической науки. Работа над ними оказала колоссальное влияние на развитие этой области человеческого знания. Спустя 100 лет Математический институт Клэя представил список из 7 проблем, известных как задачи тысячелетия. За решение каждой из них была предложена премия в 1 миллион долларов.

Единственной задачей, которая оказалась в числе обоих перечней головоломок, уже не одно столетие не дающих покоя ученым, стала гипотеза Римана. Она еще ждет своего решения.

Краткая биографическая справка

Георг Фридрих Бернхард Риман родился в 1826 году в Ганновере, в многодетной семье бедного пастора, и прожил всего 39 лет. Ему удалось опубликовать 10 трудов. Однако уже при жизни Риман считался преемником своего учителя Иоганна Гаусса. В 25 лет молодой ученый защитил диссертацию «Основания теории функций комплексной переменной». Позже он сформулировал свою гипотезу, ставшую знаменитой.

Простые числа

Математика появилась, когда человек научился считать. Тогда же возникли первые представления о числах, которые позже попытались классифицировать. Было замечено, что некоторые из них обладают общими свойствами. В частности, среди натуральных чисел, т. е. таких, которые использовались при подсчете (нумерации) или обозначении количества предметов, была выделена группа таких, которые делились только на единицу и на самих себя. Их назвали простыми. Изящное доказательство теоремы бесконечности множества таких чисел дал Евклид в своих «Началах». На данный момент продолжается их поиск. В частности, самым большим из уже известных является число 2 74 207 281 - 1.

Формула Эйлера

Наряду с понятием о бесконечности множества простых чисел Евклид определил и вторую теорему о единственно возможном разложении на простые множители. Согласно ей любое целое положительное число является произведением только одного набора простых чисел. В 1737 году великий немецкий математик Леонард Эйлер выразил первую теорему Евклида о бесконечности в виде формулы, представленной ниже.

Она получила название дзета-функции, где s — константа, а p принимает все простые значения. Из нее напрямую следовало и утверждение Евклида о единственности разложения.

Дзета-функция Римана

Формула Эйлера при ближайшем рассмотрении является совершенно удивительной, так как задает отношение между простыми и целыми числами. Ведь в ее левой части перемножаются бесконечно много выражений, зависящих только от простых, а в правой расположена сумма, связанная со всеми целыми положительными числами.

Риман пошел дальше Эйлера. Для того чтобы найти ключ к проблеме распределения чисел, он предложил определить формулу как для действительной, так и для комплексной переменной. Именно она впоследствии получила название дзета-функции Римана. В 1859 году ученый опубликовал статью под заголовком «О количестве простых чисел, которые не превышают заданной величины», где обобщил все свои идеи.

Риман предложил использовать ряд Эйлера, сходящийся для любых действительных s>1. Если ту же формулу применяют для комплексных s, то ряд будет сходиться при любых значениях этой переменной с действительной частью больше 1. Риман применил процедуру аналитического продолжения, расширив определение zeta(s) на все комплексные числа, но «выбросив» единицу. Она была исключена, потому что при s = 1 дзета-функция возрастает в бесконечность.

Практический смысл

Возникает закономерный вопрос: чем интересна и важна дзета-функция, которая является ключевой в работе Римана о нулевой гипотезе? Как известно, на данный момент не выявлено простой закономерности, которая бы описывала распределение простых чисел среди натуральных. Риману удалось обнаружить, что число pi(x) простых чисел, которые не превосходили x, выражается посредством распределения нетривиальных нулей дзета-функции. Более того, гипотеза Римана является необходимым условием для доказательства временных оценок работы некоторых криптографических алгоритмов.

Гипотеза Римана

Одна из первых формулировок этой математической проблемы, не доказанной и по сей день, звучит так: нетривиальные 0 дзета-функции — комплексные числа с действительной частью равной ½. Иными словами они расположены на прямой Re s = ½.

Существует также обобщенная гипотеза Римана, представляющая собой то же утверждение, но для обобщений дзета-функций, которые принято называть L-функциями Дирихле (см. фото ниже).

В формуле χ(n) — некоторый числовой характер (по модулю k).

Римановское утверждение считается так называемой нулевой гипотезой, так как была проверена на согласованность с уже имеющимися выборочными данными.

Как рассуждал Риман

Замечание немецкого математика изначально было сформулировано достаточно небрежно. Дело в том, что на тот момент ученый собирался доказать теорему о распределении простых чисел, и в этом контексте данная гипотеза не имела особого значения. Однако ее роль при решении многих других вопросов огромна. Именно поэтому предположение Римана на данный момент многими учеными признается важнейшей из недоказанных математических проблем.

Как уже было сказано, для доказательства теоремы о распределении полная гипотеза Римана не нужна, и достаточно логически обосновать, что действительная часть любого нетривиального нуля дзета-функции находится в промежутке от 0 до 1. Из этого свойства следует, что сумма по всем 0-м дзета-функции, которые фигурируют в точной формуле, приведенной выше, — конечная константа. Для больших значений x она вообще может потеряться. Единственным членом формулы, который останется неизменным даже при очень больших x, является сам x. Остальные сложные слагаемые в сравнении с ним асимптотически пропадают. Таким образом, взвешенная сумма стремится к x. Это обстоятельство можно считать подтверждением истинности теоремы о распределении простых чисел. Таким образом, у нулей дзета-функции Римана появляется особая роль. Она заключается в том, чтобы значения не могут внести существенного вклада в формулу разложения.

Последователи Римана

Трагическая смерть от туберкулеза не позволила этому ученому довести до логического конца свою программу. Однако от него приняли эстафету Ш-Ж. де ла Валле Пуссен и Жак Адамар. Независимо друг от друга ими была выведена теорема о распределении простых чисел. Адамару и Пуссену удалось доказать, что все нетривиальные 0 дзета-функции находятся в пределах критической полосы.

Благодаря работе этих ученых появилось новое направление в математике — аналитическая теория чисел. Позже другими исследователями было получено несколько более примитивных доказательств теоремы, над которой работал Риман. В частности, Пал Эрдеш и Атле Сельберг открыли даже подтверждающую ее весьма сложную логическую цепочку, не требовавшую использования комплексного анализа. Однако к этому моменту посредством идеи Римана уже было доказано несколько важных теорем, включая аппроксимацию многих функций теории чисел. В связи с этим новая работа Эрдеша и Атле Сельберга практически ни на что не повлияла.

Одно из самых простых и красивых доказательств проблемы было найдено в 1980 году Дональдом Ньюманом. Оно было основано на известной теореме Коши.

Угрожает ли римановская гипотеза основам современной криптографии

Шифрование данных возникло вместе с появлением иероглифов, точнее, они сами по себе могут считаться первыми кодами. На данный момент существует целое направление цифровой криптографии, которое занимается разработкой

Простые и «полупростые» числа, т. е. такие, которые делятся только на 2 других числа из этого же класса, лежат в основе системы с открытым ключом, известной как RSA. Она имеет широчайшее применение. В частности, используется при генерировании электронной подписи. Если говорить в терминах, доступных «чайникам», гипотеза Римана утверждает существование системы в распределении простых чисел. Таким образом, значительно снижается стойкость криптографических ключей, от которых зависит безопасность онлайн-транзакций в сфере электронной коммерции.

Другие неразрешенные математические проблемы

Закончить статью стоит, посвятив несколько слов другим задачам тысячелетия. К их числу относятся:

  • Равенство классов P и NP. Задача формулируется так: если положительный ответ на тот или иной вопрос проверяется за полиномиальное время, то верно ли, что и сам ответ на этот вопрос можно найти быстро?
  • Гипотеза Ходжа. Простыми словами ее можно сформулировать так: для некоторых типов проективных алгебраических многообразий (пространств) циклы Ходжа являются комбинациями объектов, которые имеют геометрическую интерпретацию, т. е. алгебраических циклов.
  • Гипотеза Пуанкаре. Это единственная из доказанных на данный момент задач тысячелетия. Согласно ей любой 3-мерный объект, обладающий конкретными свойствами 3-мерной сферы, обязан являться сферой с точностью до деформации.
  • Утверждение квантовой теории Янга — Миллса. Требуется доказать, что квантовая теория, выдвинутая этими учеными для пространства R 4 , существует и имеет 0-й дефект массы для любой простой калибровочной компактной группы G.
  • Гипотеза Берча — Свиннертон-Дайера. Это еще одна проблема, имеющая отношение к криптографии. Она касается элиптических кривых.
  • Проблема о существовании и гладкости решений уравнений Навье — Стокса.

Теперь вам известна гипотеза Римана. Простыми словами мы сформулировали и некоторые из других задач тысячелетия. То, что они будут решены либо будет доказано, что они не имеют решения, — это вопрос времени. Причем вряд ли этого придется ждать слишком долго, так как математика все больше использует вычислительные возможности компьютеров. Однако не все подвластно технике, и для решения научных проблем прежде всего требуется интуиция и творческий подход.

5 декабря 2014 в 18:54

Задачи тысячелетия. Просто о сложном

  • Занимательные задачки ,
  • Математика

Привет, хабралюди!

Сегодня я бы хотел затронуть такую тему как «задачи тысячелетия», которые вот уже десятки, а некоторые и сотни лет волнуют лучшие умы нашей планеты.

После доказательства гипотезы (теперь уже теоремы) Пуанкаре Григорием Перельманом, основным вопросом, который заинтересовал многих, был: «А что же он собственно доказал, объясните на пальцах? » Пользуясь возможностью, попробую объяснить на пальцах и остальные задачи тысячелетия, или по крайней мере подойти в ним с другой более близкой к реальности стороны.

Равенство классов P и NP

Все мы помним из школы квадратные уравнения, которые решаются через дискриминант. Решение этой задачи относится к классу P (P olynomial time) - для нее существует быстрый (здесь и далее под словом «быстрый» подразумевается как выполняющийся за полиномиальное время) алгоритм решения, который и заучивается.

Также существуют NP -задачи (N on-deterministic P olynomial time) , найденное решение которых можно быстро проверить по определенному алгоритму. Для примера проверка методом перебора компьютером. Если вернуться к решению квадратного уравнения, то мы увидим, что в данном примере существующий алгоритм решения проверяется так же легко и быстро как и решается. Из этого напрашивается логичный вывод, что данная задача относится как к одному классу так и ко второму.

Таких задач много, но основным вопросом является, все или не все задачи которые можно легко и быстро проверить можно также легко и быстро решить? Сейчас для некоторых задач не найдено быстрого алгоритма решения, и неизвестно существует ли такой вообще.

На просторах интернета также встретил такую интересную и прозрачную формулировку:

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей.

В данном случае вопрос стоит все тот же, есть ли такой алгоритм действий, благодаря которому даже не имея информации о том, где находится человек, найти его так же быстро, как будто зная где он находится.

Данная проблема имеет большое значение для самых различных областей знаний, но решить ее не могут уже более 40 лет.

Гипотеза Ходжа

В реальности существуют множество как простых так и куда более сложных геометрических объектов. Очевидно, что чем сложнее объект тем более трудоемким становится его изучение. Сейчас учеными придуман и вовсю применяется подход, основная идея которого заключается в том, чтобы вместо самого изучаемого объекта использовать простые «кирпичики» с уже известными свойствами, которые склеиваются между собой и образуют его подобие, да-да, знакомый всем с детства конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта.

Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков» так и объектов.

Гипотеза Римана

Всем нам еще со школы известны простые числа которые делятся только на себя и на единицу (2,3,5,7,11...) . С давних времен люди пытаются найти закономерность в их размещении, но удача до сих пор так никому и не улыбнулась. В результате ученые применили свои усилия к функции распределения простых чисел, которая показывает количество простых чисел меньше или равных определенного числа. Например для 4 - 2 простых числа, для 10 - уже 4 числа. Гипотеза Римана как раз устанавливает свойства данной функции распределения.

Многие утверждения о вычислительной сложности некоторых целочисленных алгоритмов, доказаны в предположении верности этой гипотезы.

Теория Янга - Миллса

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения, объединяющие теории электромагнитного, слабого и сильного взаимодействий. Одно время теория Янга-Миллса рассматривалась лишь как математический изыск, не имеющий отношения к реальности. Однако, позже теория начала получать экспериментальные подтверждения, но в общем виде она все еще остается не решенной.

На основе теории Янга-Миллса построена стандартная модель физики элементарных частиц в рамках которой был предсказан и не так давно обнаружен нашумевший бозон Хиггса.

Существование и гладкость решений уравнений Навье - Стокса

Течение жидкостей, воздушные потоки, турбулентность. Эти, а также множество других явлений описываются уравнениями, известными как уравнения Навье - Стокса . Для некоторых частных случаев уже найдены решения, в которых как правило части уравнений отбрасываются как не влияющие на конечный результат, но в общем виде решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать.

Гипотеза Бёрча - Свиннертон-Дайера

Для уравнения x 2 + y 2 = z 2 в свое время еще Эвклид дал полное описание решений, но для более сложных уравнений поиск решений становится чрезвычайно трудным, достаточно вспомнить историю доказательства знаменитой теоремы Ферма, чтобы убедиться в этом.

Данная гипотеза связана с описанием алгебраических уравнений 3 степени - так называемых эллиптических кривых и по сути является единственным относительно простым общим способом вычисления ранга, одного из важнейших свойств эллиптических кривых.

В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.

Гипотеза Пуанкаре

Думаю если не все, то большинство точно о ней слышали. Чаще всего встречается, в том числе и на центральных СМИ, такая расшифровка как «резиновую ленту натянутую на сферу можно плавно стянуть в точку, а натянутую на бублик - нельзя ». На самом деле эта формулировка справедлива для гипотезы Тёрстона, которая обобщает гипотезу Пуанкаре, и которую в действительности и доказал Перельман.

Частный случай гипотезы Пуанкаре говорит нам о том, что любое трехмерное многообразие без края (вселенная, например) подобно трехмерной сфере. А общий случай переводит это утверждение на объекты любой мерности. Стоит заметить, что бублик, точно так же как вселенная подобна сфере, подобен обычной кофейной кружке.

Заключение

В настоящее время математика ассоциируется с учеными, имеющими странный вид и говорящие о не менее странных вещах. Многие говорят о ее оторванности от реального мира. Многие люди как младшего, так и вполне сознательного возраста говорят, что математика ненужная наука, что после школы/института, она нигде не пригодилась в жизни.

Но на самом деле это не так - математика создавалась как механизм с помощью которого можно описать наш мир, и в частности многие наблюдаемые вещи. Она повсюду, в каждом доме. Как сказал В.О. Ключевский: «Не цветы виноваты, что слепой их не видит».

Наш мир далеко не так прост, как кажется, и математика в соответствии с этим тоже усложняется, совершенствуется, предоставляя все более твердую почву для более глубокого понимания существующей реальности.