Закон сохранения массы веществ в хим реакциях. Урок по химии Закон сохранения массы веществ. Уравнения химических реакций. Г) плавление парафина

Цели урока:

  1. Опытным путём доказать и сформулировать закон сохранения массы веществ.
  2. Дать понятие о химическом уравнении как об условной записи химической реакции с помощью химических формул.

Тип урока: комбинированный

Оборудование: весы, химические стаканы, ступка с пестиком, фарфоровая чашка, спиртовка, спички, магнит.

Реактивы: парафин, растворы CuSO 4 , NaOH, HCl, фенолфталеин, порошки железа и серы.

Ход урока.

I. Организационный этап.

II. Постановка цели. Сообщение темы и цели урока.

III. Проверка домашнего задания.

Вопросы для повторения:

1. Чем отличаются физические явления от химических?

2. Какие области применения физических явлений вы знаете?

3. По каким признакам можно судить о том, что прошла химическая реакция?

4. Что такое экзо- и эндотермические реакции? Какие условия необходимы для их протекания?

5. Учащиеся сообщают результаты домашнего эксперимента (№ 1,2 после §26)

Задание. Найди соответствие

1 вариант - химические явления, 2 вариант – физические:

  1. Плавление парафина
  2. Гниение растительных остатков
  3. Ковка металла
  4. Горение спирта
  5. Прокисание фруктового сока
  6. Растворение сахара в воде
  7. Почернение медной проволоки при прокаливании
  8. Замерзание воды
  9. Прокисание молока
  10. Образование инея

IV. Введение знаний.

1. Закон сохранения массы веществ.

Проблемный вопрос: изменится ли масса реагирующих веществ по сравнению с массой продуктов реакции.

Демонстрационные опыты:

Учитель ставит на чашу весов два стаканчика:

а) один со свежеосаждённым Cu(OH) 2 , другой с раствором HCl; взвешивает их, сливает растворы в один стаканчик, другой ставит рядом, и ребята отмечают, что равновесие весов не нарушилось, хотя реакция прошла, о чём свидетельствует растворение осадка;

б) аналогично и проводится и реакция нейтрализации – к окрашенной фенолфталеином щёлочи приливается избыток кислоты из другого стаканчика.

Видеоэксперимент: Нагревание меди.

Описание эксперимента: В коническую колбу помесите 2 грамма измельченной меди. Плотно закройте колбу пробкой и взвесьте. Запомните массу колбы. Осторожно нагревайте колбу в течение 5 минут и наблюдайте за происходящими изменениями. Прекратите нагревание, и когда колба охладится, взвесьте её. Сравните массу колбы до нагревания с массой колбы после нагревания.

Вывод: Масса колбы после нагревания не изменилась.

Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ (учащиеся записывают формулировку в тетрадь).

Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.

Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

2. Химические уравнения.

Демонстрационный эксперимент: Нагревание смеси железа и серы.

Описание эксперимента: В ступке приготовьте смесь из 3,5 граммов Fe и 2 граммов S. Перенесите эту смесь в фарфоровую чашку и сильно нагрейте на пламени горелки, наблюдая за происходящими изменениями. Поднесите магнит к образовавшемуся веществу.

Полученное вещество – сульфид железа (II) – отличное от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

Исходные вещества, принимающие участие в химических реакциях называются реагентами.

Новые вещества, образующиеся в результате химической реакции называются продуктами.

Запишем протекающую реакцию в виде схемы:

железо + сера → сульфид железа (II)

Химическое уравнение – это условная запись химической реакции посредством химических формул.

Запишем протекающую реакцию в виде химического уравнения:

Fe + S → FeS

Правила составления химических уравнений

(презентация на экране).

1. В левой части уравнения записать формулы веществ, вступающих в реакцию (реагентов). Затем поставить стрелку.

а) N 2 + H 2 →

Б) Al(OH) 3 →

В) Mg + HCl →

Г) СaO + HNO 3 →

2. В правой части (после стрелки) записать формулы веществ, образующихся в результате реакции (продуктов). Все формулы составляются в соответствии со степенью окисления.

а) N 2 + H 2 → NH 3

Б) Al(OH) 3 → Al 2 O 3 + H 2 O

В) Mg + HCl → MgCl 2 + H 2

Г) СaO + HNO 3 → Ca(NO 3 ) 2 + H 2 O

3. Уравнение реакции составляется на основе закона сохранения массы веществ, т. е. слева и справа должно быть одинаковое число атомов. Это достигается расстановкой коэффициентов перед формулами веществ.

Алгоритм расстановки коэффициентов в уравнении химической реакции.

2. Определить, у какого элемента количество атомов меняется, найти Н.О.К.

3. Разделить Н.О.К. на индексы – получить коэффициенты. Поставить коэффициенты перед формулами.

5. Начинать лучше с атомов О или любого другого неметалла (если только О не находится в составе нескольких веществ).

А) N 2 + 3H 2 → 2NH 3 б) 2Al(OH) 3 → Al 2 O 3 + 3H 2 O

В) Mg + 2HCl → MgCl 2 + H 2 г) СaO + 2HNO 3 → Ca(NO 3 ) 2 + H 2 O

V. Домашнее задание. § 27 (до типов реакций); № 1 после §27

VI. Итог урока. Учащиеся формулируют выводы по уроку.


Тема урока: Закон сохранения массы веществ. Химические уравнения

Образовательные задачи:

    Повторить понятия о физических и химических явлениях, химических реакциях и их сути;

    На основании демонстрационного эксперимента подвести учащихся к открытию закона сохранения массы веществ;

    Используя видеофрагмент электронного приложения к учебнику, познакомить учащихся с исторической справкой открытия закона сохранения массы веществ;

    Показать значение открытия закона в химии и для производства;

Развивающие задачи:

    Способствовать развитию навыков самостоятельной и групповой работы;

    Способствовать развитию познавательной активности учащихся на уроке через применение видеофрагментов электронного приложения;

    Развивать логическое мышление учащихся для умения объяснять результаты демонстрационного эксперимента;

    Развивать умение применять закон сохранения массы веществ для решения задач и составления уравнений реакций.

Воспитательные задачи:

    Продолжать воспитание аккуратности у учащихся в оформлении записи при решении задач и написания уравнений реакций;

    Способствовать формированию у учащихся умения выслушивать мнение других, владению различными формами устных выступлений, оценке разных точек зрения.

    Воспитывать культуру умственного труда, диалектико-материалистическое восприятие мира.

Тип урока: Урок усвоения новых знаний.

Формы и методы: рассказ,беседа,самостоятельная работа, работа с учебником, наглядный, работа в группах.

Оборудование: ноутбук,мультимедийный проектор, интерактивная доска, электронное приложение, ПСХЭ, весы, прибор для демонстрации закона сохранения массы веществ.

Реактивы: Растворы сульфата натрия и хлорида бария.

Демонстрации: 1) взаимодействие хлорида бария и сульфата натрия на весах; 2) видеофрагменты электронного приложения к учебнику.

Ожидаемый результат:

Ученик:

    даёт определение закону сохранения массы веществ, знает его суть;

    расставляет коэффициенты в уравнениях химических реакций;

    рассчитывает массу вещества (продукта или реагента), используя закон сохранения массы веществ.

ХОД УРОКА

I . Организация учащихся к уроку.

II . Актуализация опорных знаний. Мотивация учебной деятельности. Постановка проблемного вопроса.

1. Фронтальный опрос

«ИГРА – упражнение». Учитель перечисляет физические и химические явления. Учащиеся внимательно слушают. Если названо химическое явление, то они поднимают руку вверх. Ученик, ответивший не верно, даёт определение физического или химического явления и приводит дополнительно свой пример:

а) скисание молока;

б) брожение винограда;

в) таяние льда;

г) ржавление гвоздя;

д) плавление парафина;

е) испарение спирта;

ж) кипячение дистиллированной воды;

з) горение природного газа;

и) образование инея;

к) гниение мусора.

2. Беседа

Учитель: Вспомните опыт по горению серы при изучении темы «Физические и химические явления». Как мы записывали схему данной химической реакции? (ученик на доске записывает схему химической реакции при помощи химических формул S + O 2 SO 2 , в это время с классом фронтально проверяем механизм записи схемы химической реакции, который был отработан на том уроке).

Как называются исходные и конечные вещества в схеме реакции?

Что происходит с атомами серы и кислорода по окончании химической реакции, судя по её схеме?

3. Определение темы и цели урока, её значимости в химической науке.

Учитель: Сегодня на уроке перед нами стоит чрезвычайно ответственная миссия – открыть для себя один из важнейших законов природы, науки. Вы попробуете себя в роли теоретиков и частично практиков, решая несложные упражнения и задачи.

Через несколько минут вы самостоятельно сформулируете тему сегодняшнего урока.

Девизом нашего урока будут слова английского философа Ф. Бекона: «Истина – дочь времени, а не авторитета» . Будьте внимательными, так как в конце урока я попрошу вас объяснить, что понимал автор под этим высказыванием. А ещё вы должны дать ответ на ключевой вопрос: «Как химики познают мир веществ?».

Беседа

Учитель: Вернёмся снова к известной нам схеме химической реакции горения простого вещества серы. Как вы думаете: В чём суть химической реакции? (атомы Серы и Кислорода не исчезают, и новые атомы не появляются, а происходит их перегруппировка, в результате чего образуется новое вещество эс-О-два ). Итак, суть химической реакции – перегруппировка атомов элементов вследствие чего происходит образование новых веществ .

Учитель: Изменяется ли количество атомов до и после реакции? (число атомов элементов не изменяется).

Учитель: Изменяется ли масса атомов Серы и Кислорода до и после реакции? (масса атомов элементов Серы и Кислорода не изменяется).

Учитель: Так, изменяется ли общая масса веществ до и после реакции?

(масса веществ до и после реакции не изменяется).

Рассказ учителя

Такое наше теоретическое предположение, которое в науке называют Гипотезой . Гипотеза – это мысль, предположение, которое требует доказательства. Когда гипотеза подтверждается практически, экспериментально, тогда она стаёт Законом .

Определите тему нашего урока (учащиеся формулируют тему урока)

III . Изучение нового материала.

1. История открытия закона.

Рассказ с сопровождением видеофрагментов

Учитель: В 1676 году английский физик и химик Роберт Бойль провёл такой опыт: он взвесил запаянную реторту с порошком металла, длительное время нагревал её, потом охладил до комнатной температуры, вскрыл реторту и снова взвесил. Вес реторты с содержимым увеличился. На основании чего Р. Бойль делает вывод, что масса прокалённого металла увеличивается за счёт соединения металла с «огненной силой», которая проникает через стенки реторты (видеофрагмент 1 ). Такие частицы «огненной силы» в то время называли флогистонами . Существовала даже целая теория флогистона.

Однако, согласно наших теоретических рассуждений масса веществ до реакции и после реакции должна быть неизменной!

ТАК КТО ОШИБАЕТСЯ? Мы или Р. Бойль? Что нам остаётся сделать? Правильно! Провести собственный эксперимент!

Демонстрация. Перед проведением эксперимента уравновесим сосуд Ландоля (двухколенная пробирка) на технических весах. В одно колено наливаем бесцветный раствор хлорида бария, а другое – бесцветный раствор сульфата натрия. Наклонив пробирку, переливаем содержимое одного колена к содержимому другого, т.е. смешиваем прозрачные вещества. Наблюдаем образование белого осадка.

Учитель: О чём свидетельствует данный признак реакции?

(об образовании нового вещества).

Наблюдение: Равновесие весов не нарушается!

Вывод: Мы правы! Это уже ЗАКОН.

Учитель: Какую же ошибку допустил Р. Бойль? (ответы учащихся).

Учитель: Я вас всех поздравляю, мы открыли для себя один из важнейших законов природы о сохранении массы вещества во время протекания химических реакций.

Однако, до нас его открыл учёный с многогранным талантом, у которого тоже имелись сомнения относительно справедливости опытов

Р. Бойля (видеофрагмент 2 ).

Учитель: Как М.В. Ломоносов изменил опыт? Он провёл ряд опытов аналогичных тем, которые проводил Р. Бойль с прокаливанием металлов в ретортах. Он подметил, что если сосуд, содержащий металл, взвесить до и после прокаливания, не раскрывая её, то масса остаётся неизменной. Опыты М.В. Ломоносова опровергают опыты и выводы Р. Бойля.

Ломоносов называет свой закон – Закон сохранения массы веществ. Тот факт, что атомы имеют постоянную массу, и обусловливает сохранение массы вещества. Ломоносов писал: «Все перемены в Натуре случающиеся такого суть состояния, что сколько чего у одного тела отнимется, столько же присовокупится к другому. Так, ежели где убудет материи, то умножится в другом месте...».

Это открытие было огромным прорывом в науке, толчком к её развитию, поскольку предположение Р. Бойля почти столетие господствовало в химии и тем самым сдерживало её развитие. Это мы к сути закона подошли просто…, а в науке открытия происходят достаточно не просто. Отсутствие точных приборов, знания о газах, неумение их взвешивать не давали возможности открыть этот закон природы.

2. Открытие А.Л. Лавуазье.

Лавуазье писал: «Масса никогда не образуется и не исчезает, а только переходит от одного вещества к другому». «Элементы не появляются и не исчезают, а происходит только их перегруппировка».

Учитель: А известны ли вам факты, которые являются исключением из этого закона? Например: после сгорания дров, их масса явно уменьшается по сравнению с изначальной. Так ли это? Ответ поясните (ответы учащихся). Нет!

Следствие из закона: «Ничто не возникает из ничего и не исчезает бесследно. Наука не знает ни одного случая, когда бы во время каких-нибудь процессов этот закон нарушался».

3. Применение закона сохранения массы веществ, его значение.

    в химическом производстве;

    при составлении химических уравнений реакций;

    в расчётах при решении задач;

    открытие закона сохранения массы веществ способствовало даль-нейшему развитию химической науки, пониманию законов природы.

Учитель: Предлагаю проверить закон в действии на примере известной нам реакции горения серы и горения водорода.

S + O 2 = SO 2

32 32 64 Закон действует!

H 2 + O 2 = H 2 O

2 + 32 = 18Закон не действует!

Учитель: Поскольку атомы не исчезают и новые не образуются, то их количество согласно закону сохранения массы должно быть равным. Как этого можно добиться? Этого можно добиться, подбирая коэффициенты.

2 H 2 + O 2 = 2 H 2 O

4 + 32 = 36 Закон действует!

Учитель: Закон сохранения массы веществ применяется и для решения задач. Например: Какую массу серы необходимо сжечь в 4 г кислорода, чтобы получить 8 г оксида серы(IV)?

Дано: Решение:

m(O 2) = 4 г m(S) + m(O 2) = m(SO 2)

m(S) – ? m(S) = m(SO 2) – m(O 2) = 8 г – 4 г = 4 г

Ответ: m(S) = 4 г

IV . Закрепление полученных знаний.

Работа в парах

1. Расставьте коэффициенты в уравнениях химических реакций:

а) Na + С1 2 → NaС1 ; б) Аg + S → Аg 2 S ;

г) НgО → Нg + О 2 ; д) Na + О 2 → Nа 2 О.

2. Решите задачи:

а) При горении 24 кг угля образовалось 88 кг углекислого газа. Какая масса кислорода для этого потребуется?

б) Какую массу ртути можно получить разложением 8,68 г оксида ртути(II), если при этом выделилось 0,64 г кислорода?

Самостоятельная работа

1. Закончите предложения:

а) Закон сохранения массы веществ экспериментально подтвердили: _____________________________ и ______________________________ .

б) Современная формулировка закона сохранения массы веществ такая: __________________________________________________________________.

в) Закон сохранения массы веществ используют для составления _____________________________ и _______________________________.

г) Число атомов до реакции всегда должно равняться ______________________________________________________________.

д) Коэффициент всегда ставится ________________________________.

2. Сумма всех коэффициентов в уравнении химической реакции

Р + О 2 = Р 2 О 5 , равна:

а) 8 ; б) 9 ; в) 11 ; г) 6 .

V . Обобщение и систематизация полученных знаний.

Фронтальный опрос

Какую тему мы изучили сегодня на уроке?

Кем был открыл закон сохранения массы веществ?

Какое значение имеет закон сохранения массы веществ и где применяется?

Какое следствие вытекает из закона сохранения массы веществ?

В чём суть химической реакции?

Что называют коэффициентом и для чего его применяют в уравнениях химических реакций?

VI . Рефлексия.

Так какой смысл, по-вашему, мнению, вложил Ф. Бекон в выражение: «Истина – дочь времени, а не авторитета»?

Как химики познают мир веществ?

Сегодня на уроке…

узнал… понял… понравилось…


Научился… поможет… интересно…

VII . Инструктаж Д/з.

    § 20 , с.67 – 68, упр. 3, 4 , 5 , тестовые задания 1 , 2 .

    Используя электронное приложение к учебнику, подготовьтесь к уроку.

VIII . Подведение итогов урока.

12.02.2015 5575 688 Хайрулина Лилия Евгеньевна

Цель урока: сформировать понятие закона сохранения масс, научить составлять уравнения реакций
Задачи урока:
Образовательная: опытным путём доказать и сформулировать закон сохранения массы веществ.
Развивающая: дать понятие о химическом уравнении как об условной записи химической реакции с помощью химических формул; начать формирование навыков составления химических уравнений
Воспитательная: привить интерес к химии, расширить кругозор

Ход урока
I. Орг.момент
II. Опрос фронтальный:
- Что такое физические явления?
- Что такое химические явления?
- Примеры физ и хим явлений
- Условия протекания химических реакций
III. Изучение нового материала

Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ.
С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка.

Закон сохранения массы веществ является основным законом химии, все расчеты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновение современной химии как точной науки.
Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.
Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

Химические уравнения
Закон сохранения массы веществ применяется при составлении уравнений химических реакций.
Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.
Посмотрим видео - эксперимент: Нагревание смеси железа и серы.
В результате химического взаимодействия серы и железа получено вещество – сульфид железа (II) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.
Исходные вещества, принимающие участие в химических реакциях называются реагентами.
Новые вещества, образующиеся в результате химической реакции называются продуктами.
Запишем протекающую реакцию в виде уравнения химической реакции:
Fe + S = FeS
Алгоритм составления уравнения химической реакции
Составим уравнение химической реакции взаимодействия фосфора и кислорода
1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H2; N2; O2; F2; Cl2; Br2; I2. Между реагентами ставим знак «+», а затем стрелку:
P + O2 →
2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

P + O2 → P2O5

3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.
Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.
В данном случае это атомы кислорода.
Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:
Находим коэффициенты путём деления наименьшего кратного на число атомов данного вида, полученные цифры ставим в уравнение реакции:
Закон сохранения массы вещества не выполнен, так как число атомов фосфора в реагентах и продуктах реакции не равно, поступаем аналогично ситуации с кислородом:
Получаем окончательный вид уравнения химической реакции. Стрелку заменяем на знак равенства. Закон сохранения массы вещества выполнен:
4P + 5O2 = 2P2O5

IV. Закрепление
V. Д/з

Скачать материал

Полный текст материала смотрите в скачиваемом файле.
На странице приведен только фрагмент материала.

Урок №14. Закон сохранения массы вещества. Химические уравнения

Закон сохранения массы веществ

Проблемный вопрос: изменится ли масса реагирующих веществ по сравнению с массой продуктов реакции?

Чтобы ответить на данный вопрос пронаблюдайте за следующим экспериментом

Видео-эксперимент: .

Описание эксперимента: В коническую колбу помесите 2 грамма измельченной меди. Плотно закройте колбу пробкой и взвесьте. Запомните массу колбы. Осторожно нагревайте колбу в течение 5 минут и наблюдайте за происходящими изменениями. Прекратите нагревание, и когда колба охладится, взвесьте её. Сравните массу колбы до нагревания с массой колбы после нагревания.

Вывод: Масса колбы после нагревания не изменилась.

Пронаблюдаем за другими видео-экспериментами:

Вывод: Масса веществ до и после реакции не изменилась.

Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ.

С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка.

Закон сохранения массы веществ является основным законом химии, все расчеты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновение современной химии как точной науки.

Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.

Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

Химические уравнения

Закон сохранения массы веществ применяется при составлении уравнений химических реакций.

Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.

Посмотрим видео - эксперимент : .

В результате химического взаимодействия серы и железа получено вещество – сульфид железа (II ) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

Исходные вещества, принимающие участие в химических реакциях называются реагентами.

Новые вещества, образующиеся в результате химической реакции называются продуктами.

Запишем протекающую реакцию в виде уравнения химической реакции:

Fe + S = FeS

Алгоритм составления уравнения химической реакции

Составим уравнение химической реакции взаимодействия фосфора и кислорода

1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H 2 ; N 2 ; O 2 ; F 2 ; Cl 2 ; Br 2 ; I 2 . Между реагентами ставим знак «+», а затем стрелку:

P + O 2

2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

P + O 2 → P 2 O 5

3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.

    Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.

    В данном случае это атомы кислорода.

    Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:

    Находим коэффициенты путём деления наименьшего кратного на число атомов данного вида, полученные цифры ставим в уравнение реакции:

    Закон сохранения массы вещества не выполнен, так как число атомов фосфора в реагентах и продуктах реакции не равно, поступаем аналогично ситуации с кислородом:

    Получаем окончательный вид уравнения химической реакции. Стрелку заменяем на знак равенства. Закон сохранения массы вещества выполнен:

4 P + 5O 2 = 2P 2 O 5

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

1.

Преобразуйте следующие схемы в уравнения химических реакций расставив необходимые коэффициенты и заменив стрелки на знак равенства:

Zn + O 2 → ZnO

Fe + Cl 2 → FeCl 3

Mg + HCl → MgCl 2 + H 2

Al(OH) 3 → Al 2 O 3 + H 2 O

HNO 3 → H 2 O+NO 2 +O 2

CaO+H 2 O→ Ca(OH) 2

H 2 +Cl 2 → HCl

KClO 3 → KClO 4 +KCl

Fe(OH) 2 +H 2 O+O 2 → Fe(OH) 3

KBr + Cl 2 KCl + Br 2

2.

Используя алгоритм составления уравнений химических реакций, составьте уравнения реакций взаимодействия между следующими парами веществ:
1) Na и O 2
2) Na и Cl
2
3) Al и S

В 1748 г. М. В. Ломоносов (Россия) и в 1789 г. А. Лавуазье (Франция) независимо друг от друга открыли закон сохранения массы веществ в химических реакциях. Этот закон формулируется так:

Масса всех веществ, которые вступают в химическую реакцию, равна массе всех продуктов реакции.

СН 4 + О 2 = СО 2 + Н 2 О

По закону сохранения массы:

m (СН 4) + m (О 2) = m (СО 2) + m (Н 2 О),

где m (СН 4) и m (О 2) - массы метана и кислорода, которые вступили в реакцию; m (СО 2) и m (Н 2 О) - массы углекислого газа и воды, образовавшиеся в результате реакции.

Сохранение массы веществ в химических реакциях объясняется тем, что число атомов каждого элемента до и после реакции не изменяется. В ходе химической реакции происходит только перегруппировка атомов. В реакции, например, в исходных веществ - СН 4 и О 2 - атом углерода соединяется с атомами водорода, а атомы кислорода- друг с другом; в молекулах продуктов реакции - СО 2 и Н 2 О - и атом углерода, и атомы водорода соединяются с атомами кислорода. Легко посчитать, что для сохранения числа атомов каждого элемента в данную реакцию должны вступать 1 молекула СН 4 и 2 молекулы О 2 , а в результате реакции должны образоваться 1 молекула СО 2 и 2 молекулы Н 2 О:

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Данное выражение является уравнением химической реакции, или химическим уравнением .

Числа перед формулами веществ в уравнении реакции называются коэффициентами . В уравнении коэффициенты перед формулами О 2 и Н 2 О равны 2; коэффициенты перед формулами СН 4 и СО 2 равны 1 (их обычно не записывают).

Химическое уравнение - это выражение химической реакции, в котором записаны формулы исходных веществ (реагентов) и продуктов реакции, а также коэффициенты, показывающие число молекул каждого вещества.

Если известна схема реакции, то для составления химического уравнения нужно найти коэффициенты.

Составим, например, уравнение реакции, которая выражается следующей схемой:

Al + НСl = AlCl 3 + H 2

В левой части схемы атомы и входят в состав молекулы HCl в соотношении 1: 1; в правой части схемы содержатся 3 атома хлора в составе молекулы AlC1 3 и 2 атома водорода в составе молекулы Н 2 . Наименьшее общее кратное чисел 3 и 2 равно 6.

Напишем коэффициент «6» перед формулой HCl, коэффициент «2» - перед формулой AlC1 3 и коэффициент «3» - перед формулой Н;

Аl+ 6HCl = 2AlCl 3 + 3Н 2

Так как теперь в правой части содержится 2 атома , напишем коэффициент «2» перед формулой Al в левой части схемы:

2Al + 6НС1 = 2AlC1 3 + 3H 2

В результате мы получили уравнение данной реакции. Коэффициенты в химическом уравнении показывают не только число молекул, но и число молей исходных веществ и продуктов реакции. Например, это уравнение показывает, что в реакцию вступают 2 моля алюминия Аl и 6 молей , а в результате реакции образуются 2 моля хлорида алюминия AlC1 3 и 3 моля водорода Н 2).