Единица измерения магнитного напряжения. Применение закона Био-Савара-Лапласа для определения напряженности поля, создаваемого. Что такое магнитная напряженность

Определение уровня напряженности магнитного поля расчетным путем производится, как правило, только на стадии проектирования установок, являющихся источниками магнитного поля. Во всех остальных случаях, таких как: ввод в эксплуатацию новых установок, изменение их конструкции, организация новых рабочих мест и т.д., необходимо проводить экспериментальную проверку.

Контроль уровней постоянного магнитного поля должен производиться путем измерения значений магнитной индукции или напряженности магнитного поля на постоянных рабочих местах персонала или в случае отсутствия постоянного рабочего места в нескольких точках рабочей зоны, расположенных на разных расстояниях от источника поля при всех режимах работы источника или только при максимальном режиме. При гигиенической оценке уровней постоянного магнитного поля на рабочем месте определяющим является наибольшее из всех зарегистрированных значений.

Измерения постоянного магнитного поля следует проводить на рабочих местах и в точках рабочей зоны, расположенных на минимальном расстоянии от источника, в которых находится обслуживающий персонал, на трех уровнях от поверхности поля: 0.5; 1.0 и 1.7 м (рабочая поза «стоя») и 0.5; 0.8 и 1.4 м (рабочая поза «сидя»).

При локальном воздействии постоянного магнитного поля измерения проводятся на уровне конечных фаланг пальцев кистей, середины предплечья, середины плеча. Определяющим значением измеряемых величин является их наибольшее значение.

В случае, когда при выполнении технологических операций возникает необходимость непосредственного контакта рук человека с поверхностью источника (поверхностью постоянного магнита), измерения должны проводиться путем также непосредственного контакта датчика прибора с поверхностью источника.

Контроль уровней магнитного поля промышленной частоты проводится при соблюдении тех же условий, что и при контроле электрического поля частотой 50 Гц.

Измерение напряженности (индукции) магнитного поля должно производиться на всех рабочих местах обслуживающего электроустановки персонала, в местах прохода людей (вблизи экранированных токопроводов, под шинными мостами и т.п.), а также в производственных помещениях с постоянным пребыванием персонала, которые расположены на расстоянии менее 20 м от токоведущих частей электроустановок.

Измерения должны производиться на рабочих местах на высоте 0.5; 1.5 и 1.8 м от поверхности земли (пола). При нахождении источника магнитного поля под рабочим местом измерения должны проводиться также на уровне пола помещения, земли. Определяющим является наибольшее зарегистрированное значение.

Не допускается проведение измерений при наличии осадков, температуре и влажности, выходящих за предельные рабочие параметры средств измерений.

Измерение напряженности магнитного поля (или магнитной индукции) производится с помощью специальных приборов. Выбор того или иного прибора зависит от уровня измеряемого поля, от частоты, от места и от цели, с которой производится измерение. Однако во всех случаях приборы должны обеспечивать погрешность измерения не более ±10 %.

Рекомендуется использовать приборы с трехкоординатным индукционным датчиком, обеспечивающим автоматическое измерение максимального модуля напряженности магнитного поля при любой ориентации датчика в пространстве.

Приведем характеристики некоторых приборов, применяемых для измерения уровней магнитных полей.

Миллитесламетр портативный универсальный ТП-2У предназначен для измерения магнитной индукции постоянных, переменных и импульсных магнитных полей. Прибор имеет диапазон измерений от 0.01 до 1999 мТл. При измерении амплитудного значения магнитной индукции переменного магнитного поля частота поля может изменяться от 0.2 до 2000 Гц.

Миллитесламетр портативный модульный трехкомпонентный МПМ-2 предназначен для измерения модуля и трех взаимно-перпендикулярных составляющих B X , B Y , B Z вектора магнитной индукции постоянных и переменных магнитных полей в диапазоне от 0.01 до 199.9 мТл. Удобен при контроле магнитных полей на рабочих местах, в помещениях и в полевых условиях. При измерении магнитной индукции переменного поля частота поля может изменяться от 40 до 200 Гц.

Измеритель переменного магнитного поля ИМП-0.4 имеет две полосы частотного диапазона. В полосе 1 частота сигнала может изменяться от 5 до 2000 Гц, а уровень измеряемой индукции от 200 до 5000 нТл. Полоса 2 имеет частотный диапазон от 2 до 400 кГЦ и уровень измеряемой индукции от 10 до 1000 нТл.

Измеритель переменного магнитного поля ИМП-0.5 состоит из двух блоков ИМП-0.5/1 и ИМП-0.5/2. Первый блок имеет диапазон частот от 5 до 2000 Гц и диапазон измерения от 100 до 2000 нТл. Второй блок имеет диапазон частот от 2 до 400 кГц и диапазон измерения от 10 до 200 нТл.

Приборы ИМП-04 и ИМП-05 предназначены для измерения среднеквадратических значений магнитной индукции низкочастотных магнитных полей вблизи различных технических средств, в том числе компьютеров, при их сертификации, при контроле норм в области охраны природы, а также при аттестации рабочих мест по условиям труда в соответствии с санитарными нормами (СанПиН 2.2.542-96 ).

Измеритель параметров электромагнитного поля промышленной частоты ЭМППЧ-метр предназначен для измерения среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты (50 Гц) в жилых и рабочих помещениях при наличии в них электрооборудования силового, хозяйственного, коммутационного и информационного назначения, а также при проведении комплексного санитарно-гигиенического обследования территорий.

Прибор обеспечивает измерение полей, возбуждаемых промышленными электроустановками, электросетевым оборудованием, медицинской и бытовой электроаппаратурой в соответствии с требованиями ГОСТ 12.1.002-84 , МСанПиН 001-96 , СанПиН 2.1.2.1002-00 .


Прибор имеет диапазон измерения напряженности магнитного поля от 10 до 10000 А/м.

Измеритель напряженности поля промышленной частоты ПЗ-50 предназначен для измерения напряженности электрического и магнитного полей промышленной частоты (50 Гц) и применяется для контроля ПДУ электрического и магнитного поля согласно ГОСТ 12.1.002-84 . Прибор имеет диапазон измерения напряженности магнитного поля от 0.01 до 20000 А/м.

Анализатор переменного магнитного поля типа EFA-1 имеет трехкоординатный датчик, встроенный в корпус прибора и позволяющий автоматически определять максимальный модуль индукции магнитного поля при любом положении в данной точке пространства. Прибор имеет встроенный частотомер и позволяет проводить измерения индукции МП в диапазоне частот 5 – 30 кГц, в т. ч. при фиксированной частоте 50 ± 5 % Гц, имеет цифровое и аналоговое отсчетное устройство, работающие одновременно. Отсчет показаний возможен в действующих и максимальных значениях. Прибор снабжен многофункциональным жидкокристаллическим индикатором с подсветкой, позволяющим осуществлять работу при малой освещенности. У прибора имеется меню пользователя, позволяющее устанавливать требуемый предел измерений, частоту (фиксированную или диапазон), режим работы (непрерывный отсчет показаний или выделение наибольшего значения в данной точке измерений), измеряемое значение (действующее или максимальное). Возможно использование прибора как индикатора при установке (через меню) значения ПДУ. Индикация – световой и звуковой сигнал. Анализатор имеет следующие технические характеристики: пределы измерений индукции МП – 5 нТл – 10 мТл; погрешность измерений – ± 3 или ± 5 % (в зависимости от типа датчика); питание – 5 стандартных гальванических элементов (непрерывная работа 20 ч). Укомплектован зарядным устройством; габариты – 110 х 200 х 60 мм; масса (с элементами питания) – 1000 г; допустимая температура окружающей среды – 0 – 50 °С; относительная

влажность воздуха – до 95 %; имеется возможность подключения к ПЭВМ; соответствует Международным стандартам ISO 9001 и SENELEC50166.

Измеритель напряженности магнитного поля ИНМП-50 имеет измерительный блок и выносной трехкоординатный датчик МП из секционированных катушек, смонтированных в ортогональных плоскостях, закрепленный на штанге с рукояткой; пределы измерения – 10; 100; 1000; 10000 А/м (выбор предела измерения осуществляется автоматически); отсчетное устройство – цифровое; погрешность измерения – < 10 %; питание – комбинированное.

Основные эксплуатационные характеристики: возможность работы в условиях воздействия ЭП частотой 50 Гц (при Е < 50 кВ/м); допустимая температура окружающей среды – 10 – 30 °С; относительная влажность воздуха – не более 90 %.

Измеритель магнитной индукции промышленной частоты ИМП-50 измеряет действующее значение индукции переменного МП; датчик трехкоординатный; частотный диапазон – 50±1 Гц; диапазон измерений – 0.01 мкТл – 10 мТл; погрешность измерения – < 10 %; относительная влажность – до 98 %; питание – автономное.

Для измерения напряженности постоянного магнитного поля используются также приборы Ш1-8 и Ф4355 , имеющие диапазон измерений 0 – 1600 кА/м, а также прибор Г-79 с диапазоном измерений 0 – 15 кА/м в частотном диапазоне 0.02 – 20 кГц.

После проведения измерений необходимо оформлять протокол. В протокол вносятся следующие данные:

– наименование объекта;

– реквизиты организации, проводящей измерения;

– дата проведения измерений;

– характеристика средства измерения (тип, заводской номер, пределы измерений, основная погрешность, дата последней поверки);

– Ф.И.О., должность представителя организации – владельца электроустановки;

– план размещения оборудования с указанием расположения рабочих мест и точек измерения;

– рабочий ток в источнике МП во время проведения измерений;

– сведения о методике измерений;

– температура и относительная влажность воздуха;

– результаты измерений;

– заключение (выводы) с оценкой соответствия измеренных уровней МП предельно допустимым уровням;

– фамилии и должности лиц, производивших измерения;

Напряжённость магни́тного по́ля (стандартное обозначение Н ) - векторная физическая величина , равная разности вектора магнитной индукции B и вектора намагниченности M .

В СИ: где - магнитная постоянная .

  • В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ 0 μ H в системе СИ (см. Магнитная проницаемость , также см. Магнитная восприимчивость).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ - в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ - ампером на метр.

1 Э = 1000/(4π ) А/м ≈ 79,5775 А/м.

1 А/м = 4π /1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ 0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ , что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ - с точностью до постоянного размерного коэффициента) с вектором B 0 , который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B . Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи , которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи - то есть токи молекулярные и т. п. - учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля . Энергия магнитного поля как такового выражается только через фундаментальное B . Тем не менее видно, что величина H феноменологически и тут весьма удобна.

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Юсы
  • Юс малый

Смотреть что такое "Напряжённость магнитного поля" в других словарях:

    НАПРЯЖЁННОСТЬ МАГНИТНОГО ПОЛЯ - векторная величина Н, являющаяся количеств. хар кой магн. поля. Н. м. п. не зависит от магн. св в среды. В вакууме Н. м. п. совпадает с магнитной индукцией В, численно H=B в СГС системе единиц и H=В/m0 в Международной системе единиц (СИ), m0… … Физическая энциклопедия

    НАПРЯЖЁННОСТЬ МАГНИТНОГО ПОЛЯ - (H), векторная характеристика магнитного поля, не зависящая от магнитных свойств среды. В вакууме H совпадает (в ед. СГС) с магнитной индукцией В. В среде H определяет тот вклад в магнитную индукцию, который дают внешние (по отношению к среде)… … Современная энциклопедия

    напряжённость магнитного поля - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN intensity of magnetic fieldmagnetic intensitymagnetic field… … Справочник технического переводчика

    Напряжённость магнитного поля - Напряженность магнитного поля НАПРЯЖЁННОСТЬ МАГНИТНОГО ПОЛЯ (H), векторная характеристика магнитного поля, не зависящая от магнитных свойств среды. В вакууме H совпадает (в ед. СГС) с магнитной индукцией В. В среде H определяет тот вклад в… … Иллюстрированный энциклопедический словарь

    напряжённость магнитного поля - magnetinio lauko stipris statusas T sritis automatika atitikmenys: angl. intensity of magnetic field; magnetic field intensity; magnetic field strength; strength of magnetic field vok. magnetische Feldstärke, f rus. напряжённость магнитного поля … Automatikos terminų žodynas

    напряжённость магнитного поля - magnetinio lauko stipris statusas T sritis fizika atitikmenys: angl. magnetic field intensity; magnetic field strength vok. Magnetfeldstärke, f; magnetische Feldstärke, f rus. напряжённость магнитного поля, f pranc. intensité de champ magnétique … Fizikos terminų žodynas

    напряжённость магнитного поля - (Н), силовая характеристика магнитного поля, не зависящая от магнитных свойств среды. В вакууме Н совпадает (в единицах СГС) с магнитной индукцией В. В среде Н определяет тот вклад в магнитную индукцию, который дают внешние источники поля. * * *… … Энциклопедический словарь

    Напряжённость магнитного поля - векторная физическая величина (Н), являющаяся количественной характеристикой магнитного поля (См. Магнитное поле). Н. м. п. не зависит от магнитных свойств среды. В вакууме Н. м. п. совпадает с магнитной индукцией (См. Магнитная индукция) … Большая советская энциклопедия

Напряжённость магнитного поля.

Циркуляция вектора магнитной индукции по замкнутому контуру в магнитной среде, очевидно, должна рассчитываться с учетом всех токов, которые чисто условно разделены на ток проводимости и ток намагничения :

(1)

Анализируя совокупность соотношения (3) предыдущего раздела и соотношения (1), замечаем, что имеет место зависимость

. (2)

Полученная зависимость удобна тем, что в ее правой части стоит величина тока проводимости J , не связанная с молекулярной структурой вещества.

Введем в рассмотрение вектор напряженности магнитного поля :

(3)

и получим интегральное соотношение

, (4)

и соответствующее ему (следствие классической теоремы Стокса) дифференциальное соотношение

где - объёмная плотность тока проводимости. Физическая размерность вектора напряжённости магнитного поля совпадает с размерностью вектора намагничения среды и равна . В качестве единицы измерения вектора напряжённости магнитного поля используют эту же величину . В магнитостатике для некоторых геометрических конфигураций электрических токов проводимости с высокой степенью симметрии интегральное соотношение (4) позволяет рассчитывать поле магнитной напряжённости .

7.4.5. Магнитные свойства среды .

При феноменологическом подходе к описанию магнитной среды, не затрагивающем молекулярно-кинетическое строение среды, полагают, что

причем для многих веществ и “слабых” магнитных полей эта зависимость линейная и однородная:

где - магнитная восприимчивость среды (величина безразмерная). При феноменологическом описании среды зависимость (2) и, в частности, величина считаются известными или из опыта, или из рассмотрения соответствующих молекулярно-кинетических моделей среды. Зависимость (2) позволяет записать “материальное уравнение” магнитной среды в форме

носит название “магнитная проницаемость” среды (величина безразмерная).

Вопрос о плотности некомпенсированных молекулярных токов решается прямым вычислением:

(5)

Легко видеть, что плотность токов намагничения обусловлена токами проводимости и неоднородностью магнитных свойств среды.

Варианты построения теории магнитного поля в веществе.

Справедливость результатов настоящего раздела, строго говоря, существенно зависит от принятой формы записи магнитных дипольных моментов элементарных токов (1) раздела 7.4.3. В более полных руководствах по классической электродинамике приняты две схемы введения векторного поля намагниченности среды. Согласно первой схеме в качестве постулата принимают уравнение (4) того же раздела и методами векторного анализа доказывают, что из общего определения магнитного момента системы токов

(1)

следует соотношение

(2)

Выражение (2) определяет физический смысл вектора намагниченности как магнитный момент объёма среды, занятого токами намагничения, в пересчете на единицу объёма.

Согласно второй схеме рассматривают выражение для векторного потенциала магнитного поля

(3)

в точках пространства, достаточно удаленных от рассматриваемого объёма среды с токами намагничения,

(4)

и переходят от дифференциальных операций по координатам точки наблюдения к дифференциальным операциям по координатам точек расположения элементарных объёмов среды с токами намагничения. После достаточно сложных выкладок приходят к результату:

. (5)

Сравнивая между собой выражения (3) и (5), приходят к заключению, что справедливо уравнение (4) раздела 7.4.3

Таким образом, основные макроскопические представления о векторном поле намагничения среды можно считать обоснованными.

Заметим, что вектор намагниченности среды как локальная физическая характеристика среды не зависит от выбора начала координат. В основе её определения лежит понятие магнитного момента системы токов. Если определить вектор намагниченности соотношением

, (6)

т.е. в основу определения вектора намагничения среды положить магнитный момент системы токов относительно точки наблюдения и рассматривать объём среды с токами в малой окрестности точки наблюдения, то прямым вычислением приходим к результатам.

Напряженность магнитного поля , то есть силу магнитного поля оценивают по густоте магнитных силовых линий в данной точке поля. Напряженность магнитного поля обоз­начают в формулах буквой Н . Напряженность магнитного поля показывает число силовых линий магнитного поля, проходящих через 1 см 2 поперечного сечения поля .

Магнитные силовые линии, пронизывающие какую-либо площадку, называются магнитным потоком через эту площадку. Магнитный поток через данную площадку будет, следова­тельно, тем больше, чем больше силовых линий проходит через нее. Магнитный поток обозначают буквой Ф .

Направление магнитных силовых линий связано с направ­лением тока в проводнике. Наиболее простым способом опре­деления направления магнитных силовых линий является использование правила буравчика (рисунок 1).

Рисунок 1. Определение направления магнитных силовых линий по правилу буравчика.

Правило буравчика состоит в следующем: если направ­ление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения буравчика совпа­дает с направлением магнитных силовых линий.

Интерактивная демонстрация правила буравчика. Нажать на выключатель!

Рисунок 2. Интерактивная демонстрация определения направления линий напряженности магнитного поля с помощью правила буравчика.

Для подачи тока нажмите на выключатель

Для изменения направления тока нажмите на источник напряжения

Придадим проводнику с током форму кольца (рисунок 2). Пользуясь правилом буравчика, мы легко установим, что маг­нитные силовые линии, создаваемые всеми участками провод­ника, имеют внутри кольца одинаковое направление. Значит, внутри кольца магнитное поле будет сильнее, чем снаружи.

Изготовим из проводника цилиндрическую спираль и про­пустим по ней электрический ток (рисунок 3). Ток по всем виткам будет проходить в одном и том же направлении. Это будет равносильно тому, что мы поместим ряд кольцевых проводни­ков на одну общую ось. Проводник, имеющий такую форму, называется соленоидом или катушкой .

Пользуясь правилом буравчика, мы легко установим, что магнитные силовые линии, создаваемые всеми витками ка­тушки, имеют внутри нее одинаковое направление. Значит, внутри катушки будет более сильное магнитное поле, чем внутри одного витка. Между соседними витками катушки маг­нитные силовые линии направлены навстречу друг другу, и по­этому магнитное поле в этих местах будет очень ослаблено. Снаружи же катушки направление всех магнитных силовых линий будет одинаковым.

Магнитное поле катушки тем сильнее, чем больше сила тока, проходящего по ее виткам, и чем теснее, т. е. ближе друг к другу, расположены витки. Из двух катушек с одина­ковым током и одинаковым числом витков более сильное поле имеет катушка, у которой витки расположены ближе друг к другу, т. е. катушка, имеющая меньшую осевую длину.

Произведение силы тока в амперах на число витков, носит название ампервитков и характеризует магнитное действие электрического тока, то есть магнитодвижущую силу .

Пользуясь этим термином, можно сказать, что магнитное поле катушки тем сильнее, чем больше ампервитков прихо­дится на единицу ее осевой длины.

Применительно к нашему эксперименту сущность его такова: катушка 1 (рис. 24), подключенная к источнику постоянного напряжения, расположена вблизи катушки 2, подключенной к измерительному прибору. При замыкании или размыкании ключа К резко меняется создаваемое протекающим по катушке 1 током магнитное поле, вследствие чего в катушке 2 по закону электромагнитной индукции возникает индукционный ток, регистрируемый прибором; по показаниям последнего можно оценить параметры магнитного поля.

В качестве измерительного прибора используется баллистический гальванометр, у которого подвижная часть обладает значительным моментом инерции, вследствие чего угол отклонения (отброс) подвижной части прибора оказывается пропорциональным прошедшему через нее заряду q :

a = С× q . (18)

Коэффициент пропорциональности С называется баллистической постоянной гальванометра.

При замыкании ключа и прекращении тока через катушку 1 в катушке 2 возникает ЭДС индукции и ток с мгновенным значением , где R – сопротивление измерительной цепи. Через катушку 2 и соединенный с ней последовательно гальванометр пройдет заряд

, (19)

где Ф – начальное значение магнитного потока через катушку 2.

Из (18) и (19) следует, что

Таким образом, показания гальванометра определяются изменением магнитного потока через измерительную катушку.

Экспериментальная часть

Для определения баллистической постоянной гальванометра используется калибровочный соленоид. Соленоидом называют катушку, у которой длина намного больше диаметра (зачастую соленоидом называют всякую катушку). Внутри соленоида напряженность магнитного поля постоянна по всему сечению и равна

,

где l 1 – его длина, N 1 – число витков в обмотке соленоида, I – сила тока в обмотке. Датчик (измерительная катушка) с числом витков N 2 намотана на каркас, плотно одевающийся на соленоид (рис. 25), поэтому его сечение можно принять равным сечению соленоида S 1 . Поток через один виток датчика Ф 0 = В× S 1 , а В = m 0 ×m×Н сол. Поток через все витки датчика .

Подставляя в (20) и преобразуя, получим:

. (21)

Все величины в этом выражении определяются опытным путем.

Напряженность поля катушки измеряется с помощью датчика с N 3 витками, способного передвигаться по деревянному стержню вдоль оси исследуемой катушки. Датчик имеет достаточно малое сечение, так что напряженность поля во всех точках сечения можно считать одинаковой. Магнитный поток через датчик

Ф = В × S 3 × N 3 ,

где В = m 0 × m × Н кат – индукция поля исследуемой катушки на ее оси.

При включении этого потока отброс гальванометра a, согласно (20), будет

,

где R 2 – сопротивление измерительной цепи с датчиком катушки.

Тогда, измеряя a, получим:

. (22)

Пересчетный коэффициент k на основании (21) и (22) получится:

. (23)

Порядок выполнения работы

Задание 1 . Определение пересчетного коэффициента.

Оборудование: выпрямитель ВС-24; реостат до 100 Ом, 1 А; амперметр до 1 А; баллистический гальванометр; калибровочный соленоид с датчиком; 2 ключа.

1. Собрать цепь на рис. 26. Напряжение на соленоид С подается от выпрямителя через реостат R , которым осуществляется точная регулировка тока. Датчик Д следует установить на середине соленоида. С помощью регулятора на выпрямителе и реостата подобрать рабочий ток соленоида (0,2–0,5 А), чтобы при размыкании ключа К 1 отброс «зайчика» был значительным, но в пределах шкалы. Ключ К 2 служит для гашения колебаний подвижной части прибора. При его замыкании в измерительной цепи возникает индукционный ток, тормозящий подвижную часть.

Рис. 26

2. Подобрав рабочий ток I 1 , измерить отброс гальванометра a 1 при одном или нескольких значениях I 1 – всего не менее 5 измерений.

Примечание. Сечение датчиков (S 1 и S 3) определяют по измерениям их диаметров. Длина соленоида l 1 также измеряется непосредственно. R 1 и R 2 складываются из сопротивления гальванометра и соответствующего датчика.

3. Все величины подставляют в формулу (23), вычисляют значения k для отдельных измерений и затем усредняют.

Задание 2 . Измерение напряженности на оси катушки.

1. Использовать ту же схему на рис. 26, но вместо калибровочного соленоида включить исследуемую катушку с ее датчиком. Перед началом измерений датчик следует установить в середине катушки и подобрать рабочий ток, причем рабочий ток должен оставаться неизменным в ходе всего опыта.

2. Установить датчик возле одного из концов катушки и произвести измерения Н кат как функции расстояния х датчика от этого конца. Расстояние x менять с шагом 3 см, пока датчик не переместится к другому концу катушки.

3. Измерения отброса для каждого положения датчика производится по 3 раза во избежание промахов. Результаты измерений занести в табл. 8.

Таблица 8

x , см α, мм α ср, мм Н кат

4. Для каждого положения датчика значения отбросов усреднить и использовать для вычисления Н кат по формуле (22) с использованием пересчетного коэффициента, полученного в предыдущем задании. Результаты вычисления Н кат внести в таблицу.

5. По результатам расчетов построить кривую Н (х ).

Контрольные вопросы и задания

1. Какие величины используют для описания магнитного поля?

2. Дайте определение магнитного потока через произвольный контур. Как определяется магнитный поток через катушку?

3. Запишите формулы, определяющие магнитное поле катушки (соленоида).

4. В чем заключается суть явления электромагнитной индукции?

5. Запишите закон электромагнитной индукции.

6. Объясните полученную кривую Н (х ).

7. Определите число витков в исследуемой катушке, измерьте ее длину и диаметр. Используя эти данные, вычислите по теоретической формуле напряженность поля в центре катушки и сравните с экспериментальным значением.

8. Объясните, для чего необходимо использовать калибровочную катушку.

Лабораторная работа 7(9)

ИЗМЕРЕНИЕ ИНДУКТИВНОСТИ

Цель работы: ознакомиться с методом измерения индуктивности катушки по ее полному сопротивлению.

Теоретическая часть

Всякий проводник с током создает в окружающем пространстве магнитное поле. Одной из характеристик этого поля является магнитный поток Ф, величина которого Ф = L × I , где коэффициент L называется индуктивностью (коэффициентом самоиндукции) проводника и определяется его конфигурацией и магнитными свойствами окружающей среды. Индуктивность оказывается значительной только у катушек, почему они и используются для усиления магнитного потока.

где w и n – циклическая и линейная частота тока. Полное сопротивление катушки

. (26)

Из выражений (24)–(26) получаем

. (27)

Таким образом, для определения индуктивности катушки достаточно знать ее омическое сопротивление, а также измерить силу тока I в ней при подаче на нее переменного напряжения U и частоты n.

Экспериментальная часть

Для осуществления этой идеи предназначена схема на рис. 28. В ней имеется переключатель П, с помощью которого катушку L можно включать или в схему мостика Уитстона (правая часть схемы), или в цепь переменного тока (левая часть).


Рис. 28

При включении в мостовую схему (переключатель П в положении 2) определяется омическое сопротивление катушки. Подробная теория мостика Уитстона приведена в . Здесь же достаточно знать, что сопротивление катушки определяется по формуле

где R – сопротивление магазина; l АС и l СВ – длины плеч реохорда, если гальванометр установился на нуле при замкнутом ключе К.

В положении 1 переключателя П катушка включается в цепь источника переменного тока и по измерениям напряжения на ней и силы тока в ней определяется полное сопротивление катушки. После чего по формуле (27) определяется индуктивность катушки.

Порядок выполнения работы

Задание 1 . Измерение индуктивности одной катушки.

Оборудование: источник переменного тока до 100 В; двойной переключатель; амперметр до 1 А; вольтметр до 100 В; гальванометр; магазин сопротивлений; источник постоянного тока (батарейка, аккумулятор или выпрямитель); три однополюсных ключа; реохорд; катушка.

1. Собрать схему на рис. 28 и произвести вышеописанные измерения. Измерения полного сопротивления провести при трех различных значениях напряжения. Измерения омического сопротивления провести при трех различных соотношениях плеч реохорда. При этом установка гальванометра на нуль достигается подбором сопротивления магазина. Результаты измерений занести в табл. 9.

Таблица 9

Примечание. Вблизи катушки не должно находиться предметов из ферромагнитных материалов.

Используя формулы (24), (27) и (28), вычислить сопротивление катушки R L , ее полное сопротивление и индуктивность L . Следует помнить, что R в формуле (28) и табл. 9 – сопротивление магазина, а в формулу (27) надо подставлять омическое сопротивление катушки R L . Результаты расчетов внести в табл. 10.

Таблица 10

Катушка R , Ом Z , Ом L , Гн L средн, Гн

Задание 2. Измерение индуктивности второй катушки.

Выполняется так же, как с первой катушкой. Результаты измерений занести в табл. 9 и 10.

Задание 3. Измерение взаимной индуктивности катушек.

Индуктивность системы из двух катушек

L = L 1 + L 2 ± 2M , (29)

где L 1 и L 2 – индуктивность самих катушек, М – взаимная индуктивность. Знак М зависит от взаимного направления магнитных полей катушек.

1. Катушки поставить одна на другую, вставить деревянный сердечник, соединить их последовательно.

2. Включить катушки в цепь переменного тока и измерить силу тока в них при трех значениях подаваемого напряжения. Результаты измерения занести в табл. 11.

Таблица 11

3. Вычислить по формуле (27) индуктивность системы из двух катушек, учитывая, что омическое сопротивление системы является суммой омических сопротивлений катушек. Взаимную индуктивность определить, исходя из (29).