Что такое трофический уровень. Трофические цепи и трофические уровни. Значение консументов в круговороте веществ


Процессы нитрификации и денитрификации были сбалансированы вплоть до начала интенсивного использования человеком азотных минеральных удобрений в целях получения больших урожаев сельскохозяйственных растений. В настоящее время из-за использования громадных объемов таких удобрений наблюдается накопление азотистых соединений в почве, растениях, грунтовых водах. Таким образом, роль живых организмов в круговороте азота является основной.

Круговорот веществ - основа бесконечности жизни на нашей планете. В нем принимают участие все живые организмы, осуществляя процессы питания, дыхания, выделения, размножения. Основой биогенного круговорота является солнечная энергия, которая поглощается фототрофными организмами и преобразовывается ими в первичное органическое вещество, доступное консументам. В ходе дальнейшей трансформации консументами разных порядков энергия пищи постепенно растрачивается, уменьшается. Поэтому устойчивость биосферы напрямую связана с постоянным притоком солнечной энергии. В биогеохимических циклах углерода и азота основную роль играют живые организмы, в то время как основу глобального круговорота воды в биосфере обеспечивают физические процессы.

В.И. Вернадский пришел к выводу о том, что для обеспечения своей устойчивости жизнь должна быть непременно представлена в разных формах. Действительно, если предположить, что жизнь зародилась где-нибудь в океане в форме только одного биологического вида, то через некоторое время он извлечет из среды все, что ему нужно, выделит отходы своей деятельности, усеет все дно морей своими останками, и на этом жизнь прекратится: превратить эти останки в минеральные вещества будет некому. Вот почему жизнь как устойчивое планетарное явление возможна только тогда, когда она разнокачественна. Эта разнокачественность в существующей на Земле биосфере характеризуется наличием трех составляющих: продуцентов, консументов и редуцентов.

Трофическая иерархия биосферы выражается в сложных пищевых связях между составляющими ее видами, это совокупность организмов, объединенных типом питания. Автотрофные организмы (преимущественно зеленые растения) занимают первый трофический уровень (продуценты), далее следуют гетеротрофы: на втором уровне растительноядные животные (консументы 1 порядка); хищники, питающиеся растительноядными животными - на третьем (консументы 2 порядка); вторичные хищники - на четвертом (консументы 3 порядка). Сапротрофные организмы (редуценты) могут занимать все уровни, начиная со второго. Организмы различных трофических цепей, получающие пищу через равное число звеньев, находятся на одном трофическом уровне. Соотношение различных трофиеских уровней можно графически изобразить в виде пирамиды.

Рис.1.Пирамида биомасс и трофические уровни в экосистеме

Экологические пирамиды чисел, биомассы и энергии, изображенные в виде графических моделей, выражают количественные соотношения разных по способу питания организмов: продуцентов, консументов и редуцентов. Продуцентами называются организмы, способные к фото - и хемосинтезу и являющиеся в пищевой цепи веществ первым звеном, созидателем органических веществ из неорганических. К продуцентам относятся практически все растения.

Консументами называются организмы, являющиеся в пищевой цепи потребителями органического вещества. Консументы питаются растениями, животными или и растениями и животными. Различают консументы первого и второго порядка. К животным первого порядка относятся все растительноядные животные, к животным второго - хищники. Редуцентами называются организмы, разлагающие мертвые органические вещества (трупы, отбросы) и превращающие их в неорганические вещества, которые могут быть усвоены вновь. К редуцентам относятся бактерии и грибы. В пищевой цепи редуценты относятся к консументам. Взаимодействие продуцентов, консументов и редуцентов обеспечивает постоянство, устойчивость биологического круговорота. Вследствие этого круговорота разнообразные формы жизни влияют на окружающую среду, организуют ее химизм, изменяют рельеф местности и микроклиматические условия. Зоны, в которых осуществляется биогенный круговорот, называются экосистемами или, как их назвал В.Н. Сукачев, биогеоценозами. Они представляют собой однородные участки земной поверхности с установившимися составами живых существ (биоценозов) и косных компонентов (почв, приземных слоев атмосферы, солнечной энергии), находящихся во взаимодействии. Последнее связано с обменом веществ и энергии. Вся совокупность биогеоценозов, имеющихся на Земле и осуществляющих биогенный круговорот веществ, составляет биосферу в целом.

Во всех биогеоценозах продуценты, консументы и редуценты составляют разнообразные наборы. Это является гарантией того, что если что-то случится с одним из видов, то его долю влияния на биосферу возьмут на себя другие виды, и биогеоценоз не разрушится. Взаимосвязь биогеоценозов обеспечивает устойчивость жизненных процессов на планете в целом. Эта гарантия обеспечивается также тем, что различных биогеоценозов много: если где-то на Земле произойдет какой-то катаклизм (извержение вулкана, опускание земной коры, наступление/отступление моря, геологический сдвиг, похолодание и т.п.), то другие биогеоценозы поддержат существование жизни и со временем восстановят равновесие. Например, после того как на острове Кракатау в результате извержения вулкана в 1883 году было полностью уничтожено все живое, через полвека жизнь на острове восстановилась.

Итак, биосфера - это система биогеоценозов. Каждый из них представляет собой самостоятельную биологическую систему, точнее подсистему. Она обеспечивает поддержание биогенного круговорота в конкретных географических условиях. Каждый биогеоценоз имеет свой набор видов, связанных друг с другом. Но взаимоотношения в биогеоценозах строятся не на уровне видов (ибо их представители могут обитать не только в данном биогеоценозе) и не на уровне особей (ибо тут они в основном пищевые и потому кратковременные), а на уровне популяций видов. Под популяцией понимается совокупность особей одного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений. Популяции за время совместной эволюции видов в составе биогеоценоза приспосабливаются друг к другу и стремятся устойчиво поддерживать соответствующие трофические цепи.

Пищевая (трофи́ческая) цепь - ряды видов растений, животных, грибов и микроорганизмов, которые связаны друг с другом отношениями: пища - потребитель. Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80-90 %) потенциальной энергии, рассеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4-5.

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или пх биомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.

Трофическую структуру обычно изображают в виде экологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями - консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энер гии, а скорость продуцирования пищи. Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние. Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи (С). Часть ее идет на построение новых клеток, т.е. на прирост (Р). Часть энергии пищи расходуется на обеспечение энергетического обмена или на дыхание. Поскольку усвояемость пищи не может быть полной, т.е.100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма (F). Балансовое равенство будет выглядеть следующим образом:

С = Р + R + F.

Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего. Именно поэтому большие хищные животные всегда редки. Поэтому также нет хищников, которые питались бы волками. В таком случае они просто не прокормились бы, поскольку волки немногочисленны.

Пирамида биомасс - это соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т.е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

Пирамида чисел ( численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

Вид, являющийся потребителем, не может полностью уничтожить всю популяцию своих потенциальных жертв: в противном случае он погибнет сам. В свою очередь, уровень плодовитости жертв эволюционно складывается с учетом того, что часть популяции будет уничтожена хищниками. Но естественно, что всегда имеются ограничения и на численность самих хищников. Это поддерживает равновесие системы.

Любая популяция сама по себе также является устойчивой биологической системой. Для обеспечения этого она непрерывно воспроизводит свой вид в биогеоценозе, в котором существует. Законы самоорганизации биосферы таковы, что между особями популяции складываются взаимоотношения, направленные на организацию выполнения этой функции. В частности, при благоприятных условиях существования популяции ее особи начинают размножаться более интенсивно. Это приводит к тому, что между отдельными особями возникает конкуренция (из-за территории, самок и т.п.). Для популяции становится выгодно, чтобы часть особей размножаться перестала и рост численности замедлился. Понятно, что для особи отказ от создания потомства ненормален, но для популяции это необходимая реакция на ее чрезмерную численность. Например, при определенной плотности внутри сообщества грызунов начинают обостряться внутренние отношения. При этом агрессивные формы отношений начинают преобладать над коммуникативными, возникает обстановка стресса. Последний приводит к гибели отдельных особей или к блокировке у некоторых из них поступления в кровь половых гормонов.

При резком ухудшении условий существования (чрезмерно расплодились хищники, ухудшились климатические условия, стало мало корма и т.п.) популяция начинает сокращаться. Тогда включаются природные механизмы, стимулирующие размножение. Но популяция всегда стремится к оптимальному уровню своей численности, и, следовательно, для любой популяции характерен процесс саморегуляции. Таким образом, биосфера представляет собой систему, в которой в качестве подсистемы выступают биогеоценозы. Каждый биогеоценоз, в свою очередь, является самостоятельной системой, в которой в качестве подсистемы выступают популяции. В них же подсистемами являются отдельные организмы. Каждый организм, естественно, представляет собой отдельную биологическую систему. Последняя является основной единицей обмена веществ. Биогенный круговорот веществ в планетарном масштабе возможен только потому, что все организмы осуществляют его с окружающей средой непрерывно. Именно с организма начинается цепь взаимоотношений между составляющими живой материи. И ни на одном уровне эту цепь прерывать нельзя, ибо все они связаны между собой функционально. А значит биосфера, являясь целостной иерархией подчинена этой закономерности.



ТРОФИЧЕСКИЙ УРОВЕНЬ

Распределение организмов по широким категориальным группам - трофическим уровням, - основанное на их положении в «пищевой цепи», было предложено как полезное упрощение при анализе структуры и функционирования экосистемы с точки зрения энергетического потока.

На нижнем уровне пищевой цепи находятся продуценты, то есть производители органического вещества (в основном растения), которых поедают растительноядные (первичные консументы, или потребители), а их, в свою очередь, поедают хищники (консументы второго порядка). На небольших хищников охотятся большие хищники (консументы третьего порядка) и так далее. Если рассматривать этот процесс с точки зрения биомассы, то трофические уровни настраиваются один на другой как кирпичики «Лего», пропорционально количеству представленной биомассы. В результате получаем пирамиду, в основании которой лежат первичные производители. Иногда пирамида бывает перевернутой, когда широко представленные растительноядные как бы давят своей массой на небогатый уровень первичных производителей; в таком случае создается впечатление, что биомасса производителей меньше уровня, достаточного для поддержания биомассы травоядных. В какой-то конкретный момент времени это может оказаться действительно так, но помимо статики нужно принимать во внимание и динамику системы. Производители могут размножаться с очень большой скоростью и наращивать биомассу гораздо быстрее, чем потребители, просто они и потребляются с очень большой скоростью. Если трофические уровни рассматривать с точки зрения поступления энергии, то из-за неэффективности ее передачи с одного уровня на другой форма пищевых отношений должна всегда принимать форму пирамиды (см. «Экологическая энергетика»).

Концепцию трофических уровней подвергали критике. Может, это всего лишь констатация очевидного факта, выраженная научным языком? Может, она слишком широка для того, чтобы оказаться полезной при исследованиях? Где в этих пирамидах место всеядных и организмов, питающихся падалью (редуцентов)? Как быть с хищными растениями? Взрослая шотландская куропатка поедает молодые побеги вереска, а ее птенцы питаются насекомыми - получается, что один и тот же вид располагается на разных трофических уровнях. Из-за этих трудностей некоторые экологи считают, что идея трофических уровней ни на что не пригодна и ее следует отбросить как ненужную. Они говорят, что поток энергии и ее трансформацию в экосистемах гораздо лучше изучать при помощи схемы «сети трофических отношений».

См. также статьи «Первичная продукция», «Трофическая сеть», «Экологическая энергетика», «Экосистема».

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Низший уровень психического развития На низшем уровне психического развития находится довольно большая группа животных; среди них встречаются и такие животные, которые стоят еще на грани животного и растительного мира (жгутиковые), а с другой стороны, и сравнительно

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

Высший уровень развития элементарной сенсорной психики Высшего уровня элементарной сенсорной психики достигло большое число многоклеточных беспозвоночных. Однако, как отмечалось, часть низших многоклеточных беспозвоночных находится в основном на том же уровне

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Низший уровень развития перцептивной психики Перцептивная психика является высшей стадией развития психического отражения. Напомним, что эта стадия характеризуется, по Леонтьеву, изменением строения деятельности - выделением содержания деятельности, относящейся к

Из книги Фармацевтическая и продовольственная мафия автора Броуэр Луи

Высший уровень развития перцептивной психики В мире животных процесс эволюции привел к трем вершинам: позвоночные, насекомые и головоногие моллюски. Соответственно высокому уровню строения и жизнедеятельности этих животных мы наблюдаем у них и наиболее сложные формы

Из книги Экология автора Митчелл Пол

РЕФЛЕКТОРНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ДВИЖЕНИЙ Спинной мозг самый каудальный отдел ЦНС. Он состоит из 36–37 сегментов (рис. 5.1). От каждого сегмента спинного мозга отходят две пары (передних, или вентральных и дорсальных, или задних) нервов. Всего насчитывается 36–37 пар

Из книги Муравьи, кто они? автора Мариковский Павел Иустинович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги автора

Медикаменты, снижающие уровень холестерина в крови Американская кардиологическая ассоциация опубликовала на 13 страницах доклад под заголовком: «Отчет о конференции ассоциации по проблемам зависимости между содержанием холестерина в крови и

Из книги автора

ТРОФИЧЕСКИЙ КАСКАД Морские выдры едят морских ежей, а те, в свою очередь, едят бурые водоросли. Но когда охота на морских выдр привела к почти полному их исчезновению, бурым водорослям тоже пришлось несладко, так как ничто не ограничивало рост морских ежей. В результате

Из книги автора

Разный уровень общественного развития Не все муравьи находятся на одинаковом уровне общественной жизни. Наряду с теми, у которых общество развито и им управляют сложные законы, есть виды муравьев как бы остановившиеся в своей эволюции, отсталые. Таковы муравьи

Из книги автора

Насколько поднялся бы уровень океана, если бы растаяли ледники Антарктиды и Гренландии? Если бы в наши дни ледники Антарктиды и Гренландии полностью растаяли, уровень Мирового океана поднялся бы приблизительно на 60 метров. Были бы затоплены прибрежные районы на всех

Из книги автора

Насколько ниже нынешнего был уровень Мирового океана в разгар ледникового периода? В разгар ледникового периода из Мирового океана было извлечено в ледники в 3–4 раза больше воды, чем ее содержится в ныне существующих ледниках Земли. По оценкам, уровень воды в океане был

Каждый организм должен получать энергию для жизни. Например, растения потребляют энергию солнца, животные питаются растениями, а некоторые животные питаются другими животными.

Пищевая (трофическая) цепь - это последовательность того, кто кого ест в биологическом сообществе () для получения питательных веществ и энергии, поддерживающих жизнедеятельность.

Автотрофы (продуценты)

Автотрофы - живые организмы, которые производят свою пищу, то есть собственные органические соединения, из простых молекул, таких как углекислый газ. Существует два основных типа автотрофов:

  • Фотоавтотрофы (фотосинтезирующие организмы) такие, как растения, перерабатывают энергию солнечного света для получения органических соединений - сахаров - из углекислого газа в процессе . Другими примерами фотоавтотрофов являются водоросли и цианобактерии.
  • Хемоавтотрофы получают органические вещества благодаря химическим реакциям, в которых задействованы неорганические соединения (водород, сероводород, аммиак и т.д.). Этот процесс называется хемосинтезом.

Автотрофы являются основой каждой экосистемы на планете. Они составляют большинство пищевых цепей и сетей, а энергия, получаемая в процессе фотосинтеза или хемосинтеза, поддерживает все остальные организмы экологических систем. Когда речь идет об их роли в пищевых цепях, автотрофы можно назвать продуцентами или производителями.

Гетеротрофы (консументы)

Гетеротрофы , также известные как потребители, не могут использовать солнечную или химическую энергию, для производства собственной пищи из углекислого газа. Вместо этого, гетеротрофы получают энергию, потребляя другие организмы или их побочные продукты. Люди, животные, грибы и многие бактерии - гетеротрофы. Их роль в пищевых цепях заключается в потреблении других живых организмов. Существует множество видов гетеротрофов с разными экологическими ролями: от насекомых и растений до хищников и грибов.

Деструкторы (редуценты)

Следует упомянуть еще одну группу потребителей, хотя она не всегда фигурирует в схемах пищевых цепей. Эта группа состоит из редуцентов, организмов, которые перерабатываю мертвые органические вещества и отходы, превращаяя их в неорганические соединения.

Редуценты иногда считаются отдельным трофическим уровнем. Как группа, они питаются отмершими организмами, поступающими на различных трофических уровнях. (Например, они способны перерабатывать разлагающееся растительное вещество, тело недоеденной хищниками белки или останки умершего орла.) В определенном смысле, трофический уровень редуцентов проходит параллельно стандартной иерархии первичных, вторичных и третичных потребителей. Грибы и бактерии являются ключевыми редуцентами во многих экосистемах.

Редуценты, как часть пищевой цепи, играют важную роль в поддержании здоровой экосистемы, поскольку благодаря им, в почву возвращаются питательные вещества и влага, которые в дальнейшем используется продуцентами.

Уровни пищевой (трофической) цепи

Схема уровней пищевой (трофической) цепи

Пищевая цепь представляет собой линейную последовательность организмов, которые передают питательные вещества и энергию начиная с продуцентов и к высшим хищникам.

Трофический уровень организма - это положение, которое он занимает в пищевой цепи.

Первый трофический уровень

Пищевая цепь начинается с автотрофного организма или продуцента , производящего собственную пищу из первичного источника энергии, как правило, солнечной или энергии гидротермальных источников срединно-океанических хребтов. Например, фотосинтезирующие растения, хемосинтезирующие и .

Второй трофический уровень

Далее следуют организмы, которые питаются автотрофами. Эти организмы называются растительноядными животными или первичными потребителями и потребляют зеленые растения. Примеры включают насекомых, зайцев, овец, гусениц и даже коров.

Третий трофический уровень

Следующим звеном в пищевой цепи являются животные, которые едят травоядных животных - их называют вторичными потребителями или плотоядными (хищными) животными (например, змея, которая питается зайцами или грызунами).

Четвертый трофический уровень

В свою очередь, этих животных едят более крупные хищники - третичные потребители (к примеру, сова ест змей).

Пятый трофический уровень

Третичных потребителей едят четвертичные потребители (например, ястреб ест сов).

Каждая пищевая цепь заканчивается высшим хищником или суперхищником - животным без естественных врагов (например, крокодил, белый медведь, акула и т.д.). Они являются "хозяевами" своих экосистем.

Когда какой-либо организм умирает, его в конце концов съедают детритофаги (такие, как гиены, стервятники, черви, крабы и т.д.), а остальная часть разлагается с помощью редуцентов (в основном, бактерий и грибов), и обмен энергией продолжается.

Стрелки в пищевой цепи показывают поток энергии, от солнца или гидротермальных источников до высших хищников. По мере того, как энергия перетекает из организма в организм, она теряется на каждом звене цепи. Совокупность многих пищевых цепей называется пищевой сетью .

Положение некоторых организмов в пищевой цепи может варьироваться, поскольку их рацион отличается. Например, когда медведь ест ягоды, он выступает как растительноядное животное. Когда он съедает грызуна, питающегося растениями, то становиться первичным хищником. Когда медведь ест лосося, то выступает суперхищником (это связано с тем, что лосось является первичным хищником, поскольку он питается селедкой, а она ест зоопланктон, который питается фитопланктоном, вырабатывающим собственную энергию благодаря солнечному свету). Подумайте о том, как меняется место людей в пищевой цепи, даже часто в течение одного приема пищи.

Типы пищевых цепей

В природе, как правило, выделяют два типа пищевых цепей: пастбищную и детритную.

Пастбищная пищевая цепь

Схема пастбищной пищевой цепи

Этот тип пищевой цепи начинается с живых зеленых растений, предназначенных для питания растительноядных животных, которыми питаются хищники. Экосистемы с таким типом цепи напрямую зависят от солнечной энергии.

Таким образом, пастбищный тип пищевой цепи зависит от автотрофного захвата энергии и перемещения ее по звеньям цепи. Большинство экосистем в природе следуют этому типу пищевой цепи.

Примеры пастбищной пищевой цепи:

  • Трава → Кузнечик → Птица → Ястреб;
  • Растения → Заяц → Лиса → Лев.

Детритная пищевая цепь

Схема детритной пищевой цепи

Этот тип пищевой цепи начинается с разлагающегося органического материала - детрита - который употребляют детритофаги. Затем, детритофагами питаются хищники. Таким образом, подобные пищевые цепи меньше зависят от прямой солнечной энергии, чем пастбищные. Главное для них - приток органических веществ, производимых в другой системе.

К примеру, такой тип пищевой цепи встречается в разлагающейся подстилке .

Энергия в пищевой цепи

Энергия переносится между трофическими уровнями, когда один организм питается другим и получает от него питательные вещества. Однако это движение энергии неэффективное, и эта неэффективность ограничивает протяженность пищевых цепей.

Когда энергия входит в трофический уровень, часть ее сохраняется как биомасса, как часть тела организмов. Эта энергия доступна для следующего трофического уровня. Как правило, только около 10% энергии, которая хранится в виде биомассы на одном трофическом уровне, сохраняется в виде биомассы на следующем уровне.

Этот принцип частичного переноса энергии ограничивает длину пищевых цепей, которые, как правило, имеют 3-6 уровней.

На каждом уровне, энергия теряется в виде тепла, а также в форме отходов и отмершей материи, которые используют редуценты.

Почему так много энергии выходит из пищевой сети между одним трофическим уровнем и другим? Вот несколько основных причин неэффективной передачи энергии:

  • На каждом трофическом уровне значительная часть энергии рассеивается в виде тепла, поскольку организмы выполняют клеточное дыхание и передвигаются в повседневной жизни.
  • Некоторые органические молекулы, которыми питаются организмы, не могут перевариваться и выходят в виде фекалий.
  • Не все отдельные организмы в трофическом уровне будут съедены организмами со следующего уровня. Вместо этого, они умирают, не будучи съеденными.
  • Кал и несъеденные мертвые организмы становятся пищей для редуцентов, которые их метаболизируют и преобразовывают в свою энергию.

Итак, ни одна из энергий на самом деле не исчезает - все это в конечном итоге приводит к выделению тепла.

Значение пищевой цепи

1. Исследования пищевой цепи помогают понять кормовые отношения и взаимодействие между организмами в любой экосистеме.

2. Благодаря им, есть возможность оценить механизм потока энергии и циркуляцию веществ в экосистеме, а также понять движение токсичных веществ в экосистеме.

3. Изучение пищевой цепи позволяет понять проблемы биоусиления.

В любой пищевой цепи, энергия теряется каждый раз, когда один организм потребляется другим. В связи с этим, должно быть намного больше растений, чем растительноядных животных. Автотрофов существует больше, чем гетеротрофов, и поэтому большинство из них являются растительноядными, нежели хищниками. Хотя между животными существует острая конкуренция, все они взаимосвязаны. Когда один вид вымирает, это может воздействовать на множество других видов и иметь непредсказуемые последствия.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

1 уровень, продуценты

2 уровень, заяц

3 уровень, лиса

4 уровень, орёл

Трофический уровень - единица, обозначающая удалённость организма от продуцентов в пищевой (трофической) цепи. Слово трофический происходит от греческого τροφή (trophē) - еда.

Как количество трофических уровней, так и их сложность изучения увеличиваются, исключение составляют периодические массовые вымирания.

Уровни

В трофической цепи имеются несколько уровней. Пищевая цепочка начинается на уровне 1 - на нём находятся продуценты, такие как растения. На уровне 2 находятся травоядные животные, которые питаются продуцентами. Плотоядные животные находятся на уровне 3. Иногда пищевая цепь заканчивается сверххищниками , которые находятся на трофических уровнях 4 или 5. Экологические сообщества с более высоким биоразнообразием образуют более сложные трофические пути.

Способы получения пищи

Понятие «трофический уровень» было введено Раймондом Линдеманом в 1942 году на основе терминологии Августа Тьенманна (1926), который назвал способы получения пищи:

Трофические уровни не всегда определяются натуральными целыми числами, потому что организмы часто питаются разной едой и находятся более чем на одном трофическом уровне. Например, некоторые плотоядные животные также едят растения. Крупный хищник может питаться как более мелкими хищниками, так и травоядными. Косатки являются сверххищниками, но они делятся на отдельные виды, охотящиеся на конкретных жертв - тунца, мелких акул и тюленей. Даниэль Поли представил вычисления трофических уровней:

T L i = 1 + ∑ j (T L j ⋅ D C i j) {\displaystyle TL_{i}=1+\sum _{j}(TL_{j}\cdot DC_{ij})\!} ,

где T L j {\displaystyle TL_{j}} является трофическим уровнем добычи j , а D C i j {\displaystyle DC_{ij}} является долей j в рационе организма i .

Энергия передается от организма к организму, создающих пищевую или трофическую (греч. trophe-пища) цепь от автотрофов, продуцентов (создателей) к гетеротрофам, консументам (пожирателям) и так 4-6 раз с одного трофического уровня на другой.

Трофический уровень - это место каждого звена в пищевой цепи. Первый трофический уровень - это продуценты, все остальные - консументы. Второй трофический уровень - это растительноядные консументы; третий - плотоядные консументы, питающиеся растительноядными формами; четвертый - консументы, потребляющие других плотоядных, и т.д. Следовательно, можно и консументов разделить по уровням: консументы первого, второго, третьего и т.д. порядков.

Четко распределяются по уровням лишь консументы, специализирующиеся на определенном виде пиши. Однако есть виды, которые питаются мясом и растительной пищей (человек, медведь и др.), которые могут включаться в пищевые цепи на любом уровне.

Пища, поглощаемая консументом, усваивается не полностью - от 12 до 20% у некоторых растительноядных, до 75% и более у плотоядных. Энергетические затраты связаны прежде всего с поддержанием метаболических процессов, траты на дыхание, оцениваемая общим количеством СО 2 , выделенного организмом. Значительно меньшая часть идет на образование тканей и некоторого запаса питательных веществ, т.е. на рост. Остальная часть пищи выделяется в виде экскрементов. Кроме того, значительная часть энергии рассеивается в виде тепла при химических реакциях в организме и особенно при активной мышечной работе. В конечном итоге вся Энергия, использованная на метаболизм, превращается в тепловую и рассеивается в окружающей среде.

Таким образом, большая часть энергии при переходе с одного трофического уровня на другой, более высокий, теряется. Приблизительно потери составляют около 90%. На каждый следующий уровень передается не более 10% энергии от предыдущего уровня. Так, если калорийность продуцента 1000 Дж, то при попадании в тело фитофага остается 100 Дж, в теле хищника уже 10 Дж, а если этот хищник будет съеден другим, то на его долю останется лишь 1 Дж, т.е. 0,1 % от калорийности растительной пищи.

Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи экосистем сложно переплетаются, образуя трофические сети. Но конечный итог: рассеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться.

Нельзя забывать еще и мертвую органику, которой питается значительная часть гетеротрофов. Среди них есть и сапрофаги и сапрофиты (грибы), использующие энергию, заключенную в детрите. Поэтому различают два вида трофических цепей:

  1. Пастбищные (цепи выедания) — начинаются с продуцентов; для таких цепей при переходе с одного трофического уровня на другой характерно увеличение размеров особей при одновременном уменьшении плотности