Значение термодинамики как науки. Законы термодинамики и их описание. Основные понятия термодинамики

Содержание статьи

ТЕРМОДИНАМИКА, раздел прикладной физики или теоретической теплотехники, в котором исследуется превращение движения в теплоту и наоборот. В термодинамике рассматриваются не только вопросы распространения теплоты, но и физические и химические изменения, связанные с поглощением теплоты веществом, а также, наоборот, выделение теплоты в ходе физических и химических превращений.

Термодинамика находит широкое применение в физической химии и химической физике при анализе физических и химических процессов, в современной физиологии и биологии, в двигателестроении, теплотехнике, авиационной и ракетно-космической технике. Первоначально в термодинамике много внимания уделялось обратимым процессам и равновесным состояниям, так что более подходящим для нее казалось название «термостатика», но благодаря С.Аррениусу (1859–1927) и Г.Эйрингу (1901–1981) получило весьма основательную разработку ее применение к анализу скоростей химических реакций (химической кинетике). В настоящее время главной проблемой в термодинамике является ее применение к необратимым процессам, и уже достигнуты большие успехи в построении теории, по широте охвата сравнимой с термодинамикой обратимых процессов.

ЭНЕРГИЯ

Для той физической величины, которую мы теперь называем энергией, долгое время употреблялся термин «живая сила», введенный И.Ньютоном (1643–1727). Но поскольку «живую силу» можно было спутать с обычной силой, последнюю приходилось для ясности называть «мертвой силой», что нельзя признать удачным. Специальный термин «энергия» был введен в 1807 Т.Юнгом (1773–1829).

Одним из видов энергии является работа, которая совершается, когда тело движется, преодолевая действие некой силы. Примером может служить подача насосом воды в водонапорную башню. О воде в башне говорят, что она имеет потенциальную энергию. Благодаря гравитационному притяжению Земли существует возможность обратного преобразования этой энергии в кинетическую, т.е. в энергию движения воды, текущей по трубам. Когда вода в трубе в конце концов останавливается из-за внутреннего трения, или вязкости, эта энергия оказывается превратившейся в теплоту, т.е. тепловую энергию, которая рассеивается в окружающей среде.

Еще в 1620 Ф.Бэкон высказал предположение, что теплота есть просто другая форма движения, но лишь в 1789 это с несомненностью установил Б.Томпсон (Румфорд), наблюдая за выделением теплоты при рассверливании ствола пушки. Дополнительным подтверждением явились опыты Х.Дэви 1799.

Эти опыты и наблюдения говорили о том, что тепловая и механическая энергия – одно и то же и что, вероятно, можно найти экспериментально механический эквивалент теплоты, т.е. количество работы в механических единицах, эквивалентное данному количеству теплоты в тепловых единицах.

Механический эквивалент теплоты.

Заметив, что температура воды в медицинской колбе повышается, если ее несколько минут встряхивать, Ю.Майер в 1842 вычислил механический эквивалент теплоты по разности удельных теплоемкостей воздуха при постоянном давлении и постоянном объеме. В ту пору точные значения этих удельных теплоемкостей еще не были известны, а потому его результат был не совсем верным, хотя и правильным по порядку величины. В 1845 Дж.Джоуль точно измерил количество теплоты, получаемое при преобразовании механической работы в тепловую энергию, и уточнил результат Майера.

Работа.

Если некое вещество находится под ограничивающим воздействием внешней силы, например атмосферного давления P , то при изменении его объема V , скажем расширении, вследствие движения против действующей силы совершается работа. Полную совершаемую работу можно найти как площадь зависимости силы от соответствующего размера, как показано на рис. 1, где площадью участка, выделенного ретушью, представлена работа, совершаемая газом при расширении от V 1 до V 2 . Такой способ ее определения необходим, поскольку давление может меняться. При малом изменении объема давление намного не изменится, так что малое количество совершаемой работы будет равно:

Следовательно, полная совершаемая работа

При быстром сжатии газа некоторая часть работы, совершаемой над ним, может заметно повысить его температуру. Если газ находится в теплоизолированном сосуде (или сжимается столь быстро, что не успевает хотя бы частично отдать свою теплоту), такое изменение объема называется адиабатическим. Если же газ не теплоизолирован, то происходит теплоотдача, и газ сохраняет температуру окружающей среды. Такое изменение объема называется изотермическим.

«Полезность» энергии.

Полное преобразование работы в теплоту вполне возможно, но обратный процесс преобразования всей теплоты в эквивалентную ей работу невозможен. К такому выводу еще в 1824 пришел путем теоретических рассуждений французский физик Н.Карно (1796–1832). Рассматривая полный цикл обратимых изменений рабочего тела в тепловой машине, в конце которого это тело возвращается в исходное состояние, он показал, что максимальный КПД преобразования теплоты в работу зависит не от природы рабочего тела, а только от максимальной температуры, при которой подводится теплота, и от минимальной температуры, при которой она отводится. Полное преобразование теплоты в работу было бы возможно лишь в том случае, если бы минимальная температура была равна абсолютному нулю, при которой рабочее тело не имело бы никакой тепловой энергии.

На существование абсолютного нуля указывает закон расширения газов. Поскольку при охлаждении от 0 до - 1° C газы сжимаются на 1/273, можно представить себе некий «идеальный» газ, который не конденсируется, как реальные газы, но с понижением температуры продолжает сжиматься, пока его объем не уменьшится до нуля при - 273° C. Это было бы абсолютным нулем температуры для тепловой машины, рабочим телом которой является идеальный газ. Проведя гораздо более сложные рассуждения, У.Томсон (Кельвин) (1824–1907) доказал, что это действительно абсолютный нуль температуры, и ввел названную его именем «термодинамическую» шкалу температуры T (шкалу Кельвина), в соответствии с которой T = 273,16 + t ° C.

Первое начало термодинамики.

Мерой полезной работы, совершенной машиной, является разность площадей (рис. 3,а и б ), показанная на рис. 3,в . Нетрудно сообразить, что при заданном изменении объема эту разность площадей можно увеличить либо повысив T 1 , либо понизив T 2 . Если же температура T 1 фиксирована (а это значит, что фиксировано полное количество подводимой теплоты), то работу, производимую машиной, можно увеличить, только понизив T 2 . С особой наглядностью это показывает «диаграмма Молье» (график зависимости температура – энтропия), представленная на рис. 3,г . Здесь тоже полезная работа пропорциональна выделенной площади; подводимая теплота определяется площадью T 1 D S , а часть ее, соответствующая площади прямоугольника T 2 D S , «бесполезна» в смысле совершения работы. Таким образом, какова бы ни была температура T 1 , отличная от абсолютного нуля, какая-то часть подводимой теплоты не может быть превращена в работу.

На изложенных соображениях основан вывод формулы Карно, которая дает максимально возможный КПД идеальной тепловой машины, работающей при заданной разности температур нагревателя и холодильника:

Реальная машина не может работать с таким КПД, поскольку в ней неизбежны трение и утечки тепла. Для паровой машины, работающей, например, при температуре котла 130° C (403 К) и температуре конденсатора 30° C (303 К), термодинамический КПД равен 100/403, т.е. меньше 25%.

Цикл холодильной машины.

Поскольку рабочее тело в цикле Карно возвращается в исходное состояние, можно представить себе обращенную тепловую машину. Если в прямом цикле передача тепла от нагревателя к холодильнику используется для получения работы, то в обращенном за счет совершения механической работы теплота передается от холодильника нагревателю, так что холодильник становится еще холоднее, а нагреватель – еще горячее. Таков цикл холодильной машины (используемый, например, в холодильниках и кондиционерах): работа, совершаемая электродвигателем домашнего холодильника, идет на то, чтобы внутри холодильника было холодно за счет нагревания окружающего воздуха.

Другие циклы тепловой машины.

В реальных тепловых машинах циклы с изотермическими процессами не находят применения, поскольку такие процессы требуют много времени. Предпочтение отдается адиабатическим процессам, ибо они ближе к реальности в быстро работающих машинах. Простейший из таких циклов – цикл Отто (рис. 4,а ), названный по имени немецкого изобретателя и инженера Н.Отто (1832–1891). В этом цикле подводимая теплота повышает давление газа при постоянном объеме, а затем газ адиабатически расширяется с совершением полезной работы. После того как достигнут заданный объем, теплота отводится, а часть работы затрачивается на адиабатическое сжатие газа, после чего цикл может повториться. КПД определяется степенью сжатия r :

где g – отношение удельных теплоемкостей газа при постоянном давлении и при постоянном объеме. Чем больше r , тем больше КПД.

Цикл Дизеля (рис. 4,б ) назван по имени немецкого изобретателя Р.Дизеля (1858–1913). В этом цикле теплота тоже отдается при постоянном объеме после адиабатического расширения, но подводится (после адиабатического сжатия) при постоянном давлении. В дизельном двигателе тепло не подводится от внешнего источника, а вырабатывается внутри при сгорании топлива, самовоспламеняющегося при сильном сжатии. Высокотемпературные газы не охлаждаются, а совершают работу и выводятся наружу с заменой холодной смесью топлива с воздухом. Теоретический цикл почти полностью воспроизводится, если не считать влияния механических факторов и других неизбежных тепловых потерь.

В менее известном цикле Аткинсона (рис. 4,г ) последовательность ветвей обратна последовательности в цикле Дизеля. Только в цикле Джоуля (рис. 4,в ) теплота и отдается и подводится при постоянном давлении, но этот цикл обычно не используется для преобразования теплоты в работу; он применяется в обращенной (холодильной) машине.

Графики зависимости давление – объем типа представленных на рис. 3 и 4 называются индикаторными диаграммами. Ими пользуются инженеры для расчета КПД двигателей. Для примера на рис. 5 представлена индикаторная диаграмма четырехтактного бензинового двигателя. За тактом сжатия CD , начинающимся в точке C , следуют сгорание топлива на вертикальной ветви DE и рабочий такт EF . В точке F открывается выпускной клапан, так что давление понижается до атмосферного давления P A , и отработанные газы выбрасываются из цилиндра двигателя соответственно горизонтальной ветви AB . На участке B ў C в цилиндр впускается новая горючая смесь, и цикл заканчивается. В реальном двигателе сгорание не происходит мгновенно. Если зажигание производится в точке D , то пламя распространяется по цилиндру, когда объем уже начал увеличиваться, и поэтому максимальное теоретическое давление не достигается. Значительная часть площади, пропорциональной совершаемой работе, теряется, что показано штриховой линией DG . Если же зажигание производится с опережением, например в точке H , то теряется лишь малая часть полезной площади, как показано штриховой линией HI . Это объясняется тем, что при нарастании давления объем все еще продолжает уменьшаться.

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ

Внутренняя энергия.

Когда к системе подводится некоторое количество теплоты d Q , за счет этой теплоты, как было показано ранее на примере цикла Карно, может быть совершена лишь определенная работа d W , так что часть полученной тепловой энергии система теряет. Эти две величины, вообще говоря, неодинаковы, и, следовательно, система либо теряет, либо приобретает энергию, равную их разности. Предположим, что эта разность энергий остается в системе в виде т.н. внутренней энергии E . Тогда последняя увеличится от E до (E + dE ), причем

где d Q и d W – бесконечно малые приращения.

Вообще говоря, приращения d Q и d W не являются независимыми (почему они и обозначены здесь символом d в отличие от приращения dE ). Так, поглощение теплоты обычно сопровождается изменением объема и, следовательно, совершением работы против внешнего давления. И наоборот, если допускается расширение, то оно обычно сопровождается поглощением теплоты, отбираемой у окружающей среды. Никакие ограничения, налагаемые реально на систему, не могут полностью исключить такого взаимодействия, но мысленно можно представить себе идеальную теплоизоляцию (d Q = 0) или строго выполняющееся условие постоянного объема (d W = 0), так же как в теоретической механике вводятся понятия идеально гладких и идеально твердых тел. Только в идеальных условиях, когда d Q и d W независимы друг от друга, приращение d Q или d W можно рассматривать как полный дифференциал, тогда как их разность dE всегда является таковой.

Энтропия.

Тепловая энергия d Q ў , которая не может быть преобразована в работу, пропорциональна нижней температуре T , так что можно записать d Q ў = TdS , где dS – приращение энтропии S системы. Как и E , величина S является характеристикой самой системы, а потому мы обозначаем ее приращение буквой d , а не d .

Обозначив через d W работу, которую можно получить за счет теплоты d Q , можно написать

Если рабочее тело в результате некоего термодинамического процесса не возвращается в исходное состояние, то значительная часть энергии оказывается бесполезной с точки зрения совершения работы, и внутренняя энергия увеличивается на соответствующую разность dE . Увеличение внутренней энергии может проявиться в изменении физического состояния рабочего тела, например в переходе из твердого в жидкое состояние (плавлении) или из жидкого в газообразное (испарении). Такая тепловая энергия называется теплотой плавления и теплотой парообразования соответственно. Повышение внутренней энергии может быть связано также с химическими изменениями (диссоциацией, разрывом связей) и даже с делением ядер.

Энтальпия.

Если изменения энергии системы происходят при постоянном давлении, то, как оказывается, функция

позволяет придать более простую и изящную форму уравнениям, описывающим различные процессы. Дело в том, что при небольшом изменении состояния системы в силу равенств (1) и (2) можно записать

Следовательно, если процесс протекает при постоянном давлении (dP = 0), то выполняется равенство

dH = d Q ,

т.е. подведенное количество теплоты может быть представлено в виде полного дифференциала некой величины, характеризующей внутреннее состояние системы. Эта величина называется энтальпией. Ранее она называлась тепловой функцией или теплосодержанием системы.

Свободная энергия.

В изотермических условиях (dT = 0) более, чем H , удобна другая термодинамическая функция:

Такие же выкладки, как и в случае энтальпии, дают dF = d W . Ранее величина F называлась свободной энергией Гельмгольца, поскольку именно Гельмгольц первым указал на ее значение, но сейчас ее называют просто свободной энергией.

Потенциал Гиббса.

В тех случаях, когда изменяться могут и температура и давление, используется более общая функция

Эту функцию иногда называют полным термодинамическим потенциалом или полезной энергией, но сейчас ее принято называть потенциалом Гиббса или гиббсовой энергией и обозначать символом G по имени Дж.Гиббса (1839–1903). Как будет показано ниже, представленные термодинамические функции позволяют определить условия, необходимые для равновесия.

В случае повышения давления на малую величину dP в системе, поддерживаемой при постоянной температуре (dT = 0), потенциал Гиббса увеличится на величину dG , а скорость его увеличения, или «чувствительность» потенциала Гиббса G к изменениям давления, дается термодинамическим выражением для объема системы

где символ частной производной указывает на то, что изменение происходит при постоянных значениях всех других параметров (в данном случае температуры T ).

Точно так же чувствительность потенциала Гиббса к изменениям температуры (при постоянном давлении) есть мера энтропии системы:

и это равенство можно рассматривать как еще одно определение энтропии.

Соотношения между термодинамическими функциями.

Величины E , H , F и G имеют размерность энергии, и любые три из них могут быть выражены через четвертую. Если d W = PdV , то, пользуясь равенствами (7) и (8), можно H , F и E выразить через G :

Если считать функцией только G , то из независимых переменных достаточно будет рассматривать лишь P и T , что почти всегда оказывается наиболее удобным. Если же в качестве единственной функции выбрать E , то самыми удобными с математической точки зрения будут независимые переменные V и T или V и S , но последняя из них, очевидно, не очень удобна для прямых измерений.

Теплоемкость.

Изменение энтропии dS вещества можно вычислить по количеству теплоты, необходимому для повышения его температуры на один градус, т.е. по измеренной теплоемкости C . Но теплоемкость зависит от того, может ли вещество расширяться при постоянном давлении P , так как тогда за счет теплоты должна совершаться работа, связанная с расширением. Поэтому теплоемкость при постоянном давлении C P больше теплоемкости при постоянном объеме C V . Эти величины даются равенствами

Разность теплоемкостей C P и C V выражается в тепловых единицах, а избыточная энергия, необходимая для совершения работы при расширении против сил давления, может быть выражена в механических единицах [см . формулу (2) и рис. 1]. Именно так Майер и вычислил механический эквивалент теплоты.

Вычисление энтропии.

Если давление P постоянно, то, поскольку H = E + PV , с учетом равенства (3) можно написать

Следовательно, построив график зависимости отношения C P /T от T (или, что с математической точки зрения то же самое, график зависимости C P от ln T ), можно найти приращение энтропии D S как площадь кривой на графике (рис. 6):

Неупорядоченность и энтропия.

Австрийский физик Л.Больцман показал, опираясь на статистическую механику, что энтропия есть мера неупорядоченности, а именно:

где S – энтропия N молей вещества, а R – постоянная из общего уравнения для газов

которое представляет собой математическую запись отдельных законов, открытых Р.Бойлем (1627–1691) и Э.Мариоттом (1620–1684) и объединенных Ж.Гей-Люссаком (1778–1850) с законом, установленным Ж.Шарлем (1746–1823). Универсальная газовая постоянная R для всех газов равна 8,3144 Дж/мольЧ К.

Величина F – это число способов, которыми энергия может быть распределена среди молекул при данной температуре, отнесенное к соответствующему числу способов при абсолютном нуле температуры. Если температура выше абсолютного нуля, то система стремится перейти в состояние, в котором величина Ф больше, так как в этом случае будет меньше энергия, приходящаяся на каждую молекулу, а это более вероятная ситуация, нежели распределение, при котором вся энергия приходится на небольшое число молекул.

Таким образом, энтропия вещества, находящегося в данном состоянии, есть относительная вероятность этого состояния, взятая в логарифмическом масштабе и умноженная на NR , для того чтобы она выражалась в термодинамических единицах.

Идеальный кристалл со строго упорядоченным расположением всех атомов – очень маловероятная структура, которая может поддерживаться лишь при наличии больших межатомных сил или, иначе говоря, при низком уровне его внутренней энергии. При нагревании кристалла тепловое движение нарушает эту упорядоченность. При определенной температуре (точке плавления), когда тепловая энергия становится больше энергии межатомного взаимодействия, твердая кристаллическая решетка разрушается и вещество переходит в менее упорядоченное жидкое состояние. Свободная энергия, которой характеризуется равновесное состояние [формула (5)], определяется соотношением между упорядочивающим действием внутренней энергии и разупорядочивающим действием повышенной температуры, причем энтропия служит количественной мерой действия температуры.

Равновесие.

Таким образом, условием равновесия при постоянной внутренней энергии является максимум энтропии S . Возможны некоторые флуктуации, кратковременно выводящие систему из этого состояния, но в среднем за любое достаточно длительное время выполняется равенство

Поскольку величины F и G являются функциями энтропии S , взятой со знаком «минус», данное условие означает, что равновесие возможно только тогда, когда либо величина F , либо величина G имеет минимум. Таким образом, при любом мыслимом изменении dX условия равновесия таковы:

Это соотношение было выведено путем анализа теплового цикла, предложенного французским инженером Б.Клапейроном (1799–1864) в 1834. Оно показывает, что теплоту парообразования необязательно определять калориметрическими методами; ее можно вычислить по расширению, происходящему при испарении, если известна скорость повышения давления насыщенного пара жидкости при повышении температуры, когда поддерживается постоянным объем системы. Это типичное уравнение термодинамики, устанавливающее соотношение между казалось бы не связанными друг с другом переменными.

Путем аналогичных рассуждений Р.Клаузиус (1822–1888) вывел выражение для разности теплоемкостей C s твердой и C l жидкой фаз:

которое, впрочем, проще вывести из соотношения (15).

Поскольку он рассматривал уравнение Клапейрона и внес, по его словам, «небольшие изменения» в ход рассуждений, за соотношением (30) укрепилось название уравнения Клаузиуса – Клапейрона.

Рассуждая в какой-то мере аналогично, можно, пользуясь первым из соотношений Максвелла, вывести формулу, показывающую влияние давления на температуру плавления твердого вещества, теплоизолированного так, что его энтропия постоянна:

Здесь L – теплота плавления, T – температура плавления при данном давлении P , а (V l v s ) – изменение объема твердого вещества при плавлении. В случае льда при плавлении происходит сжатие, и формула (32) показывает, что с повышением давления температура плавления понижается. Опытные данные согласуются с результатами вычислений. Большинство других твердых веществ при плавлении расширяется, и, следовательно, их температуры плавления повышаются с повышением давления.

Влияние давления.

Другие эффекты, связанные с изотермическим изменением давления, описываются формулами

Эффект Джоуля – Томсона.

Если газ находится в теплоизолированном сосуде и над ним не совершается работа (H = const), то изменение его температуры, обусловленное изменением давления, дается формулой

Для идеального газа a T = 1, и поэтому его температура не должна изменяться. Следовательно, по изменению температуры, измеренному, например, при расширении газа в вакуум, можно оценивать степень отклонения реального газа от идеального. Такой эффект действительно наблюдается, и по имени ученых, открывших его, называется эффектом Джоуля – Томсона.

Влияние температуры.

Точно так же выводятся формулы, описывающие влияние температуры при постоянном давлении:

Например, в диапазоне от абсолютного нуля до некоторой предельной температуры, для каждого вещества своей, теплоемкость всех веществ при постоянном объеме пропорциональна кубу температуры (по шкале Кельвина):

Это выражение вывел на основе квантовой теории П.Дебай (1884–1966). Оно позволяет простым интегрированием вычислять полную энтропию при температурах, близких к 0 К:

Уравнения состояния.

Благодаря своей простой форме газовый закон [формула (18)] позволяет делать важные выводы о свойствах идеального газа. Но при адиабатическом сжатии идеальный газ нагревается. В этом случае изотермический закон PV = NRT не выполняется, и его необходимо заменить уравнением

где g – отношение удельных теплоемкостей при постоянном давлении и при постоянном объеме, т. е. g = C P /C V . Это уравнение вывел французский математик С.Пуассон (1781–1840).

В рабочих цилиндрах тепловых машин (паровых машин, бензиновых, газовых и дизельных двигателей) скорость сжатия велика, но процесс не является полностью адиабатическим и называется политропным. При решении большинства проектно-конструкторских задач в таких случаях принимается уравнение вида

где n – постоянная величина, меньшая чем g , и ее превышение над единицей зависит от быстроты сжатия. Кроме того, поведение реальных газов отклоняется от уравнений (18), (47) и (48), и для них используются т.н. уравнения состояния.

Примером таких уравнений может служить

где a и b – константы, зависящие от природы газа. Это уравнение вывел Я.Ван-дер-Ваальс (1837–1923). Было предложено немало и других уравнений; некоторые из них справедливы только для одного газа.

Литература:

Бэр Г. Техническая термодинамика . М., 1973
Базаров И.П. Термодинамика . М., 1983
Вукалович М.П., Новиков И.И. Термодинамика . М., 1984
Квасников И.А. Введение в теорию квазистатических процессов . М., 1986





Добавить свою цену в базу

Комментарий

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

  • строгая математическая формулировка термодинамики на основе выпуклого анализа
  • неэкстенсивная термодинамика

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся.
Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая потоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро )

Масс у , в свою очередь, можно вычислить, как произведение плотности и объема .

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

протекает при поcтоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Внутренняя энергия одноатомного и двухатомного идеального газа

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина , в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вно вь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы – помните о студенческом сервисе , специалисты которого готовы в любой момент прийти на выручку.

Что такое термодинамика? Это раздел физики, который занимается изучением свойств макроскопических систем. При этом под изучение также попадают способы превращения энергии и методы ее передачи. Термодинамика - это который изучает процессы, происходящие в системах, и их состояния. О том, что еще попадает в список изучаемых ей вещей, мы сегодня и поговорим.

Определение

На картинке ниже можно увидеть пример термограммы, полученной при изучении кувшина с горячей водой.

Термодинамика - это наука, которая опирается на обобщенные факты, полученные опытным путем. Происходящие в термодинамических системах процессы описываются при помощи использования макроскопических величин. В их список входят такие параметры, как концентрация, давление, температура и тому подобные. Понятное дело, что к отдельным молекулам они неприменимы, а сводятся к описанию системы в общем ее виде (в отличие от тех величин, которые используются в электродинамике, например).

Термодинамика - это раздел физики, который также имеет и свои законы. Они, подобно остальным, носят общий характер. Конкретные детали строения того или иного выбранного нами вещества не окажут значительного влияния на характер законов. Именно поэтому говорят, что данный раздел физики является одним из наиболее применимых (или, вернее сказать, успешно применимых) в науке и технике.

Применение

Перечислять примеры можно очень долго. Например, много решений, основанных на термодинамических законах, можно встретить в области тепловой техники или электроэнергетики. Что и говорить об описании и понимании химических реакций, явлений переноса. В некотором роде термодинамика “сотрудничает” с квантовой динамикой. Сфера их соприкосновения - это описание явления черных дыр.

Законы

Картинка выше демонстрирует суть одного из термодинамических процессов - конвекции. Теплые слои вещества поднимаются наверх, холодные - опускаются вниз.

Альтернативное название законов, которое, кстати, употребляется не в пример чаще, это начала термодинамики. На сегодняшний день их известно три (плюс одно “нулевое“, или “общее”). Но перед тем как говорить о том, что предполагает каждый из законов, попытаемся ответить на вопрос о том, что такое начала термодинамики.

Они представляют собой совокупность определенных постулатов, которые ложатся в основу понимания происходящих в макросистемах процессов. Положения начал термодинамики устанавливались эмпирическим путем по мере проведения целых серий опытов и научных исследований. Таким образом, существуют определенные доказательства, позволяющие нам взять постулаты на вооружение без единого сомнения в их точности.

Некоторые люди задаются вопросом о том, зачем термодинамике нужны эти самые законы. Ну, можно сказать, что необходимость их использования обусловлена тем, что в данном разделе физики макроскопические параметры описываются в общем виде, без какого-либо намека на рассмотрения их микроскопической природы или особенностей того же плана. Это сфера не термодинамики, а уже статистической физики, если говорить конкретнее. Еще одной важной вещью является тот факт, что начала термодинамики не зависят друг от друга. То есть одно из второго вывести не получится.

Применение

Применение термодинамики, как было сказано ранее, идет по многим направлениям. За основу берется, кстати, одно из ее начал, которое иначе интерпретируется в форме закона сохранения энергии. Термодинамические решения и постулаты успешно внедряются в такие отрасли, как энергетическая промышленность, биомедицина, химия. Вот в биологической энергетике повсеместно используется закон сохранения энергии и закон вероятности и направленности термодинамического процесса. Наряду с этим, там используются три наиболее распространенных понятия, на которых базируется вся работа и ее описание. Это термодинамическая система, процесс и фаза процесса.

Процессы

Процессы в термодинамике имеют разную степень сложности. Их насчитывается семь штук. Вообще, под процессом в таком случае следует понимать не что иное, как изменение макроскопического состояния, в которое система была приведена ранее. Следует понимать, что разница между условным начальным состоянием и конечным результатом может быть ничтожной.

Если разница бесконечно мала, то произошедший процесс мы вполне можем назвать элементарным. Если мы будем обсуждать процессы, то придется прибегнуть к упоминанию дополнительных терминов. Один из них - это “рабочее тело”. Рабочим телом называется система, в которой происходит один тепловой процесс или несколько.

Условно процессы подразделяются на неравновесные и равновесные. В случае с последним все состояния, через которые предстоит пройти термодинамической системе, являются, соответственно, неравновесными. Зачастую изменение состояний идет в таких случаях быстрыми темпами. А вот равновесные процессы близки к квазистатическим. В них изменения проходят на порядок медленнее.

Тепловые процессы, происходящие в термодинамических системах, могут быть как обратимыми, так и необратимыми. Для того чтобы понять суть, разобьем в своем представлении последовательность действий на определенные промежутки. Если мы можем сделать тот же процесс в обратном направлении с теми же “промежуточными станциями”, то его можно назвать обратимым. В противном случае сделать это не получится.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q , необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c . Тогда количество теплоты (энергии) необходимое для изменения температуры некоторого тела массой m можно рассчитать по формуле:

При этом в этой формуле абсолютно не важно в каких единицах подставлена температура, так как нам важно не ее абсолютное значение, а изменение. Единица измерения удельной теплоемкости вещества: Дж/(кг∙К).

  • Если t 2 > t 1 , то Q > 0 – тело нагревается (получает тепло).
  • Если t 2 < t 1 , то Q < 0 – тело охлаждается (отдает тепло).

Произведение массы тела на удельную теплоемкость вещества, из которого оно изготовлено называется теплоемкостью тела (т.е. просто теплоемкостью без слова «удельная»):

Если в условии задачи сказано про теплоемкость тела, то количество теплоты, отданное или полученное этим телом, можно рассчитать по формуле:

Итак, запомните:

  • Удельная теплоемкость обозначается маленькой буквой с, и является характеристикой вещества.
  • (Просто) Теплоемкость обозначается большой буквой С, и является характеристикой данного тела.

Напомним, что количество теплоты Q отданное каким–либо источником (нагревателем) рассчитывается по формуле: Q = Pt , где: P – мощность источника, t – время, в течение которого источник отдавал тепло. При решении задач не путайте время работа источника и температуру.

Фазовые превращения

Фазой вещества называется однородная система, например, твердое тело, физические свойства которой во всех точках одинаковые. Между различными фазами вещества при обычных условиях существует четко выраженная граница (поверхность) раздела. При изменении внешних условий (температуры, давления, электрических и магнитных полей) вещество может переходить из одной фазы в другую. Такие процессы называются фазовыми превращениями (переходами).

Процесс фазового перехода из жидкого состояния в газообразное (парообразование ) или из твердого в жидкое (плавление ) может происходить только при сообщении веществу некоторого количества теплоты. Обратные фазовые переходы (конденсация и кристаллизация , или отвердевание ) сопровождаются выделением такого же количества теплоты.

Количество теплоты, поступающее в систему или выделяющееся из нее, изменяет ее внутреннюю энергию. Это означает, что внутренняя энергия пара при 100°С больше, чем жидкости при той же температуре. Указанные фазовые переходы идут при постоянных температурах, которые называются соответственно температурой кипения и температурой плавления. Количество теплоты, необходимое для превращения жидкости в пар или выделяемое паром при конденсации, называется теплотой парообразования:

где: r удельная теплота парообразования . Единица измерения [r ] = 1 Дж/кг. Физический смысл удельной теплоты парообразования: она равна количеству теплоты, необходимому для превращения в пар 1 кг жидкости, находящейся при температуре кипения. Превращение жидкости в пар не требует доведение жидкости до кипения. Вода может превратиться в пар и при комнатной температуре. Такой процесс называется испарением .

Количество теплоты, необходимое для плавления тела или выделяемое при кристаллизации (отвердевании), называется теплотой плавления:

где: λ удельная теплота плавления . Единица измерения [λ ] = 1 Дж/кг. Физический смысл удельной теплоты плавления: теплота, необходимая для плавления 1 кг вещества, находящегося при температуре плавления. Удельные теплоты парообразования и плавления называются также скрытыми теплотами, поскольку при фазовых переходах температура системы не меняется, несмотря на то, что теплота к ней подводится.

Обратите внимание: что во время фазовых переходов температура системы не изменяется. А также на то, что сами фазовые переходы начинаются только после достижения необходимой температуры.

Наиболее распространенным источником энергии для нужд человека является топливо – вещество, при сгорании которого выделяется некоторое количество теплоты. Количество теплоты, выделяемое при сгорании топлива массой m , называется теплотой сгорания топлива :

где: q удельная теплота сгорания (теплотворная способность, калорийность) топлива. Единица измерения [q ] = 1 Дж/кг. Физический смысл удельной теплоты сгорания топлива: величина, показывающая, какое количество теплоты выделяется при полном сгорании 1 кг топлива.

Уравнение теплового баланса

В соответствии с законом сохранения энергии для замкнутой системы тел, в которой не происходит никаких превращений энергии, кроме теплообмена, количество теплоты, отдаваемое более нагретыми телами, равно количеству теплоты, получаемому более холодными. Теплообмен прекращается в состоянии термодинамического равновесия, т.е. когда температура всех тел системы становится одинаковой. Сформулируем уравнение теплового баланса: в замкнутой системе тел алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующими в теплообмене, равна нулю :

При использовании такой формы записи уравнения теплового баланса, чтобы не сделать ошибку, запомните: когда Вы будете считать теплоту при нагревании или охлаждении тела, нужно из большей температуры вычитать меньшую, чтобы теплота всегда была положительной. Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то уравнение теплового баланса можно записать в виде:

При использовании такой формы записи, нужно всегда от конечной температуры отнимать начальную. При таком подходе знак их разности сам «покажет» отдаёт тело теплоту или получает.

Запомните, что тело поглощает теплоту если происходит:

  • Нагревание,
  • Плавление,
  • Парообразование.

Тело отдает теплоту если происходит:

  • Охлаждение,
  • Кристаллизация,
  • Конденсация,
  • Сгорание топлива.

Именно в этой теме, имеет смысл не решать задачи в общем виде, а сразу подставлять числа.

Взаимные превращения механической и внутренней энергии

При неупругих ударах механическая энергия частично или полностью переходит во внутреннюю энергию тел, то есть тела могут нагреваться и плавится. В общем случае изменение механической энергии равно выделяющемуся количеству теплоты.

Работа идеального газа

Термодинамика – это наука о тепловых явлениях. В противоположность молекулярно–кинетической теории, которая делает выводы на основе представлений о молекулярном строении вещества, термодинамика исходит из наиболее общих закономерностей тепловых процессов и свойств макроскопических систем. Выводы термодинамики опираются на совокупность опытных фактов и не зависят от наших знаний о внутреннем устройстве вещества, хотя в целом ряде случаев термодинамика использует молекулярно–кинетические модели для иллюстрации своих выводов.

Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия . Это означает, что в таких системах прекратились все наблюдаемые макроскопические процессы. Важным свойством термодинамически равновесной системы является выравнивание температуры всех ее частей.

Если термодинамическая система была подвержена внешнему воздействию, то в конечном итоге она перейдет в другое равновесное состояние. Такой переход называется термодинамическим процессом . Если процесс протекает достаточно медленно (в пределе бесконечно медленно), то система в каждый момент времени оказывается близкой к равновесному состоянию. Процессы, состоящие из последовательности равновесных состояний, называются квазистатическими (или квазистационарными , еще одно название таких процессов - равновесные ).

В изобарном процессе работу идеального газа можно рассчитывать по формулам:

Подчеркнем еще раз: работу газа по расширению можно считать по этим формулам только если давление постоянно. Согласно данной формуле, при расширении газ совершает положительную работу, а при сжатии – отрицательную (т.е. газ сопротивляется сжатию и над ним нужно совершать работу чтобы оно состоялось).

Ввиду того, что работа газа численно равна площади под графиком, становится понятно, что величина работы зависит от того, какой именно процесс происходил, ведь у каждого процесса свой график, а под ним своя площадь. Таким образом, работа зависит не только и не столько от начального и конечного состояний газа, сколько от процесса, с помощью которого конечное состояние было достигнуто.

Внутренняя энергия

Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно–кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом. В частности, внутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема. Внутренняя энергия одноатомного идеального газа рассчитывается по формулам:

Таким образом, внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела. Она не зависит от того, каким путем было реализовано данное состояние. Принято говорить, что внутренняя энергия является функцией состояния. Это значит, что изменение внутренней энергии не зависит от того, как система была переведена из одного состояния в другое (а зависит лишь от характеристик первоначального и конечного состояний) и всегда, в любых процессах для одноатомного идеального газа определяется выражением:

Обратите внимание: эта формула верна только для одноатомного газа, зато она применима ко всем процессам (а не только к изобарному, как формула для работы). Как видно из формулы, если температура не изменялась, то внутренняя энергия остаётся постоянной.

Первый закон термодинамики

Если система обменивается теплом с окружающими телами и совершает работу (положительную или отрицательную), то изменяется состояние системы, то есть изменяются ее макроскопические параметры (температура, давление, объем). Так как внутренняя энергия U однозначно определяется макроскопическими параметрами, характеризующими состояние системы, то отсюда следует, что процессы теплообмена и совершения работы сопровождаются изменением ΔU внутренней энергии системы.

Первый закон (начало) термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом: Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q , переданной системе, и работой A , совершенной системой над внешними телами. Однако, соотношение, выражающее первый закон термодинамики, чаще записывают в немного другой форме:

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами (такая формулировка более удобна и понятна, в таком виде совсем очевидно, что это просто закон сохранения энергии).

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких–либо изменений внутри самой машины. Такая гипотетическая машина получила название вечного двигателя (perpetuum mobile) первого рода. Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты Q от окружающих тел или уменьшения ΔU своей внутренней энергии.

Адиабатным (адиабатическим) называют процесс, в ходе которого система не обменивается теплотой с окружающей средой. При адиабатном процессе Q = 0. Поэтому: ΔU + A = 0, то есть: A = – ΔU . Газ совершает работу за счет уменьшения собственной внутренней энергии.

Первое начало термодинамики и изопроцессы

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплотаQ , изменение внутренней энергии ΔU и работа газа A . Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

Если в задаче явно не сказано, что газ одноатомный (или не назван один из инертных газов, например, гелий), то применять формулы из этого раздела нельзя.

Циклы. Тепловые машины

Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами.

Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т.д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние.

Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем , а с более низкой – холодильником . Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q 1 > 0 и отдает холодильнику количество теплоты Q 2 < 0.

КПД тепловой машины может быть рассчитан по формуле:

где: Q 1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q 2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η ) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η < 1).

Наибольший КПД при заданных температурах нагревателя T 1 и холодильника T 2 , достигается если тепловая машина работает по циклу Карно . Цикл Карно состоит из двух изотерм и двух адиабат. КПД цикла Карно равен:

Второе начало (второй закон) термодинамики

Первый закон термодинамики не устанавливает направление протекания тепловых процессов. Однако, как показывает опыт, многие тепловые процессы могут протекать только в одном направлении. Такие процессы называются необратимыми. Например, при тепловом контакте двух тел с разными температурами тепловой поток всегда направлен от более теплого тела к более холодному. Никогда не наблюдается самопроизвольный процесс передачи тепла от тела с низкой температурой к телу с более высокой температурой. Следовательно, процесс теплообмена при конечной разности температур является необратимым.

Обратимыми процессами называют процессы перехода системы из одного равновесного состояния в другое, которые можно провести в обратном направлении через ту же последовательность промежуточных равновесных состояний. При этом сама система и окружающие тела возвращаются к исходному состоянию.

Необратимыми являются процессы превращения механической работы во внутреннюю энергию тела из–за наличия трения, процессы диффузии в газах и жидкостях, процессы перемешивания газа при наличии начальной разности давлений и т.д. Все реальные процессы необратимы, но они могут сколь угодно близко приближаться к обратимым процессам. Обратимые процессы являются идеализацией реальных процессов.

Первый закон термодинамики не может отличить обратимые процессы от необратимых. Он просто требует от термодинамического процесса определенного энергетического баланса и ничего не говорит о том, возможен такой процесс или нет. Направление самопроизвольно протекающих процессов устанавливает второй закон термодинамики. Он может быть сформулирован в виде запрета на определенные виды термодинамических процессов.

Английский физик У.Кельвин дал в 1851 году следующую формулировку второго закона: В циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Гипотетическую тепловую машину, в которой мог бы происходить такой процесс, называют «вечным двигателем второго рода». Как уже должно было стать понятно, второе начало термодинамики запрещает существование такого двигателя.

Немецкий физик Р.Клаузиус дал другую формулировку второго закона термодинамики: Невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой. Следует отметить, что обе формулировки второго закона термодинамики эквивалентны.

Сложные задачи по термодинамике

При решении различных нестандартных задач по термодинамике необходимо учитывать следующие замечания:

  • Для нахождения работы идеального газа надо построить график процесса в координатах p (V ) и найти площадь фигуры под графиком. Если дан график процесса в координатах p (T ) или V (T ), то его сначала перестраивают в координаты p (V ). Если же в условии задаётся математическая зависимость между параметрами газа, то сначала находят зависимость между давлением и объёмом, а затем строят график p (V ).
  • Для нахождения работы смеси газов используют закон Дальтона.
  • При объединении теплоизолированных сосудов не должна изменяться внутренняя энергия всей системы, т.е. на сколько джоулей увеличится внутренняя энергия газа в одном сосуде, на столько уменьшится в другом.
  • Вообще говоря, давление и температуру газа можно измерять только в состоянии термодинамического равновесия, когда давление и температура во всех точках сосуда одинаковы. Но бывают ситуации, когда давление одинаково во всех точках, а температура нет. Это может быть следствием разной концентрации молекул в разных частях сосуда (проанализируйте формулу: p = nkT ).
  • Иногда приходится в задачах по термодинамике использовать знания из механики.

Расчет КПД циклов по графику

Задачи данной темы по праву считаются одними из самых сложных задач в термодинамике. Итак, для решения Вам придется, во-первых, перевести график процесса в p (V ) – координаты. Во-вторых, надо рассчитать работу газа за цикл. Полезная работа равна площади фигуры внутри графика циклического процесса в координатах p (V). В-третьих, необходимо разобраться, где газ получает, а где отдает теплоту. Для этого вспомните первое начало термодинамики. Внутренняя энергия идеального газа зависит только от его температуры, а работа – от объема. Поэтому, газ получает теплоту , если:

  • Увеличиваются и его температура, и объем;
  • Увеличивается объем, а температура постоянна;
  • Увеличивается температура, а объем постоянен.

Газ отдает теплоту , если:

  • Уменьшаются и его температура, и объем;
  • Уменьшается объем, а температура постоянна;
  • Уменьшается температура, а объем постоянен.

Если один из параметров увеличивается, а другой уменьшается, для того, чтобы понять, отдает газ теплоту или получает ее, необходимо «в лоб» по первому началу термодинамики рассчитать теплоту и посмотреть на ее знак. Положительная теплота – газ ее получает. Отрицательная – отдает.

Первый тип задач. В p (V ) – координатах график цикла представляет собой фигуру с легко вычисляемой площадью, и газ получает теплоту в изохорных и изобарных процессах. Применяйте формулу:

Обратите внимание, что в знаменателе стоит только теплота, полученная газом за один цикл, то есть теплота только в тех процессах, в которых газ получал ее.

Второй тип задач. В p (V ) – координатах график цикла представляет собой фигуру с легко вычисляемой площадью, и газ отдает теплоту в изохорных и изобарных процессах. Применяйте формулу:

Обратите внимание, что в знаменателе стоит только теплота, отданная газом за один цикл, то есть теплота только в тех процессах, в которых газ отдавал ее.

Третий тип задач. Газ получает теплоту не в удобных для расчета изохорных или изобарных процессах, в цикле есть изотермы или адиабаты, или вообще «никакие» процессы. Применяйте формулу:

Свойства паров. Влажность

Любое вещество при определенных условиях может находиться в различных агрегатных состояниях – твердом , жидком и газообразном . Переход из одного состояния в другое называется фазовым переходом . Испарение и конденсация являются примерами фазовых переходов.

Испарением называется фазовый переход из жидкого состояния в газообразное. С точки зрения молекулярно–кинетической теории, испарение – это процесс, при котором с поверхности жидкости вылетают наиболее быстрые молекулы, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости. Это приводит к уменьшению средней кинетической энергии оставшихся молекул, то есть к охлаждению жидкости (если нет подвода энергии от окружающих тел).

Конденсация – это процесс, обратный процессу испарения. При конденсации молекулы пара возвращаются в жидкость.

В закрытом сосуде жидкость и ее пар могут находиться в состоянии динамического равновесия, т.е. число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся в жидкость из пара, это значит, что скорости процессов испарения и конденсации одинаковы. Такую систему называют двухфазной . Пар, находящийся в равновесии со своей жидкостью, называют насыщенным .

Насыщенный пар имеет максимальные: давление, концентрацию, плотность при данной температуре. Они зависят только от температуры насыщенного пара, но не от его объема.

Это означает, что если бы мы сосуд закрыли не крышкой, а поршнем, и после того, как пар стал насыщенным, стали бы его сжимать, то давление, плотность и концентрация пара не изменились бы. Если быть более точным, то давление, плотность и концентрация на небольшое время увеличились бы, и пар стал бы перенасыщенным. Но сразу же часть пара превратилась бы в воду, и параметры пара стали бы прежними. Если поднять поршень, то пар перестанет быть насыщенным. Однако за счёт испарения через некоторое время снова станет насыщенным. Здесь следует учесть, что если воды на дне сосуда нет или её немного, то это испарение может оказаться недостаточным, чтобы пар снова стал насыщенным.

  • Фраза: «В закрытом сосуде с водой...» – означает, что над водой насыщенный пар.
  • Выпадение росы означает, что пар становится насыщенным.

Абсолютной влажностью ρ называют количество водяного пара, содержащегося в 1 м 3 воздуха (т.е. просто плотность водяных паров; из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

где: р парциальное давление водяного пара, М – молярная масса, R – универсальная газовая постоянная, Т – абсолютная температура. Единица измерения абсолютной влажности в СИ [ρ ] = 1 кг/м 3 , хотя обычно используют 1 г/м 3 .

Относительной влажностью φ называется отношение абсолютной влажности ρ к тому количеству водяного пара ρ 0 , которое необходимо для насыщения 1 м 3 воздуха при данной температуре:

Относительную влажность можно также определить как отношение давления водяного пара р к давлению насыщенного пара р 0 при данной температуре:

Испарение может происходить не только с поверхности, но и в объеме жидкости. В жидкости всегда имеются мельчайшие пузырьки газа. Если давление насыщенного пара жидкости равно внешнему давлению (то есть давлению газа в пузырьках) или превышает его, жидкость будет испаряться внутрь пузырьков. Пузырьки, наполненные паром, расширяются и всплывают на поверхность. Этот процесс называется кипением . Таким образом, кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению.

В частности, при нормальном атмосферном давлении вода кипит при температуре 100°С. Это значит, что при такой температуре давление насыщенных паров воды равно 1 атм. Важно знать, что температура кипения жидкости зависит от давления. В герметически закрытом сосуде жидкость кипеть не может, т.к. при каждом значении температуры устанавливается равновесие между жидкостью и ее насыщенным паром.

Поверхностное натяжение

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может скачком переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

Вследствие плотной упаковки молекул сжимаемость жидкостей, то есть изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (то есть увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔA внеш, пропорциональную изменению ΔS площади поверхности.

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия E p поверхности жидкости пропорциональна ее площади:

Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости на единицу при постоянной температуре. В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м 2) или в ньютонах на метр (1 Н/м = 1 Дж/м 2).

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии (любое тело всегда стремится скатиться с горы, а не забраться на нее). Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения . Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку. Сила поверхностного натяжения, действующая на участок границы жидкости длиной L вычисляется по формуле:

Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются. При этом высота столба жидкости в капилляре :

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.