Мембранный как отличается от электростатического потенциала. Потенциал покоя клетки. Биофизические основы потенциала действия

Мембранный потенциал (МП) представляет собой разность потенциалов между наружной и внутренней поверхностями мембраны возбудимой клетки в условиях ее покоя. В среднем у клеток возбудимых тканей МП достигает 50 – 80 мВ, со знаком минус внутри клетки. Исследование природы мембранного потенциала показало, что во всех возбудимых клетках (нейроны, мышечные волокна, миокардиоциты, гладкомышечные клетки) его наличие обусловлено преимущественно ионами К+. Как известно, в возбудимых клетках за счет работы Na-K-насоса концентрация ионов К+ в цитоплазме в условиях покоя поддерживается на уровне 150 мМ, в то время как во внеклеточной среде концентрация этого иона обычно не превышает 4 – 5 мМ. Это означает, что внутриклеточная концентрация ионов К+ в 30 – 37 раз выше, чем внеклеточная. Поэтому по градиенту концентрации ионы К+ стремятся выйти из клетки во внеклеточную среду. В условиях покоя, действительно, существует выходящий из клетки поток ионов К+, при этом диффузия осуществляется по калиевым каналам, большая часть которых открыта. В результате того, что мембрана возбудимых клеток непроницаема для внутриклеточных анионов (глутамата, аспартата, органических фосфатов), на внутренней поверхности мембраны клетки вследствие выхода ионов К+ образуется избыток отрицательно заряженных частиц, а на наружной – избыток положительно заряженных частиц. Возникает разность потенциалов, т. е. мембранный потенциал, который препятствует чрезмерному выходу ионов К+ из клетки. При некотором значении МП наступает равновесие между выходом ионов К+ по концентрационному градиенту и входом (возвратом) этих ионов по возникшему электрическому градиенту. Мембранный потенциал, при котором достигается это равновесие, получил название равновесного потенциала. Помимо ионов К+ определенный вклад в создание мембранного потенциала вносят ионы Na+ и Сl. В частности, известно, что концентрация ионов Na+ во внеклеточной среде в 10 раз больше, чем внутри клетки (140 мМ против 14 мМ). Поэтому ионы Na+ в условиях покоя стремятся войти в клетку. Однако основная часть натриевых каналов в условиях покоя закрыта (относительная проницаемость для ионов Na+, судя по экспериментальным данным, полученным на гигантском аксоне кальмара, в 25 раз ниже, чем для ионов К+). Поэтому в клетку входит лишь небольшой поток ионов Na+. Но и этого достаточно, чтобы хотя бы частично компенсировать избыток анионов внутри клетки. Концентрация ионов Сl- во внеклеточной среде также выше, чем внутри клетки (125 мМ против 9 мМ), и поэтому эти анионы также стремятся войти в клетку, очевидно, по хлорным каналам.

Мембранный потенциал

Мембранный потенциал покоя крупных нервных волокон, когда по ним не проводятся нервные сигналы, составляет около -90 мВ. Это значит, что потенциал внутри волокна на 90 мВ отрицательнее, чем потенциал внеклеточной жидкости снаружи волокна. Далее мы объясним все факторы, определяющие уровень этого потенциала покоя, но прежде необходимо описать транспортные свойства мембраны нервного волокна для ионов натрия и калия в условиях покоя. Активный транспорт ионов натрия и калия через мембрану. Натрий-калиевый насос. Вспомним, что все клеточные мембраны организма имеют мощный Na+/K+-Hacoc, постоянно выкачивающий ионы натрия наружу клетки и закачивающий внутрь нее ионы калия. Это электрогенный насос, поскольку положительных зарядов наружу перекачивается больше, чем внутрь (3 иона натрия на каждые 2 иона калия, соответственно). В результате внутри клетки создается общий дефицит положительных ионов, ведущий к отрицательному потенциалу с внутренней стороны клеточной мембраны. Na+/K+-Hacoc создает также большой градиент концентрации для натрия и калия через мембрану нервного волокна в покое: Na+ (снаружи): 142 мэкв/л Na+ (внутри): 14 мэкв/л К+ (снаружи): 4 мэкв/л К+ (внутри): 140 мэкв/л Соответственно, отношение концентраций двух ионов внутри и снаружи составляет: Na внутри / Na снаружи - 0,1 К внутри / -К снаружи = 35,0

Утечка калия и натрия через мембрану нервного волокна. На рисунке показан канальный белок в мембране нервного волокна, называемый каналом калий-натриевой утечки, через который могут проходить ионы калия и натрия. Особенно существенна утечка калия, поскольку каналы более проницаемы для ионов калия, чем натрия (в норме примерно в 100 раз). Как обсуждается далее, это различие в проницаемости чрезвычайно важно для определения уровня нормального мембранного потенциала покоя.

Таким образом, основными ионами, определяющими величину МП, являются ионы К+, покидающие клетку. Ионы Na+, входящие в клетку в небольших количествах, частично уменьшают величину МП, а ионы Сl-, также входящие в клетку в условиях покоя, в определенной степени компенсируют это влияние ионов Na+. Кстати, в многочисленных экспериментах с различными возбудимыми клетками установлено, что чем выше проницаемость клеточной мембраны для ионов Na+ в условиях покоя, тем ниже величина МП. Для того чтобы МП поддерживался на постоянном уровне, необходимо поддержание ионной асимметрии. Для этого, в частности, служат ионные насосы (Na-K-насос, а также, вероятно, Сl-насос) которые восстанавливают ионную асимметрию, особенно после акта возбуждения. Так как этот вид транспорта ионов активный, т. е. требующий затраты энергии, то для поддержания мембранного потенциала клетки необходимо постоянное наличие АТФ.

Природа потенциала действия

Потенциал действия (ПД) представляет собой кратковременное изменение разности потенциалов между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), которое возникает в момент возбуждения. При регистрации потенциала действия нейронов с помощью микроэлектродной тех наблюдается типичный пикообразный потенциал. В упрощенном виде при возникновении ПД можно выделить следующие фазы: начальный этап деполяризации, затем быстрое снижение мембранного потенциала до нуля и перезарядка мембраны, далее происходит восстановление исходного уровня мембранного потенциала (реполяризация). Основную роль в этих процессах играют ионы Na+, деполяризация вначале обусловлена незначительным повышением проницаемости мембраны для ионов Na+. Но чем выше степень деполяризации, тем выше становится проницаемость натриевых каналов, тем больше ионов натрия входит в клетку и тем выше степень деполяризации. В этот период происходит не только снижение разности потенциалов до нуля, но и изменение поляризованности мембраны – на высоте пика ПД внутренняя поверхность мембраны заряжена положительно по отношению к наружной. Процессы реполяризации связаны с увеличением выхода из клетки ионов К+ через открывшиеся каналы. В целом, необходимо отметить, что генерация потенциала действия – это сложный процесс, в основе которого лежит скоординированное изменение проницаемости плазматической мембраны для двух или трех основных ионов (Na+, К+ и Са++). Основным условием возбуждения возбудимой клетки является снижение ее мембранного потенциала до критического уровня деполяризации (КУД). Любой раздражитель, или агент, способный снизить мембранный потенциал возбудимой клетки до критического уровня деполяризации, способен возбудить эту клетку. Как только МП достигнет уровня КУД, процесс будет продолжаться самостоятельно и приведет к открытию всех натриевых каналов, т. е. к генерации полноценного ПД. Если мембранный потенциал не достигнет этого уровня, то в лучшем случае возникнет так называемый местный потенциал (локальный ответ).

В ряде возбудимых тканей величина мембранного потенциала по времени непостоянна – периодически она снижается (т. е. возникает спонтанная деполяризация) и самостоятельно достигает КУД, в результате чего возникает спонтанное возбуждение, после которого мембранный потенциал восстанавливается до исходного уровня, а затем цикл повторяется. Это свойство получило название автоматии. Однако для возбуждения большинства возбудимых клеток необходимо наличие внешнего (по отношению к этим клеткам) раздражителя.

Потенциал покоя

Мембраны, в том чикле плазматические, в принципе непроницаемы для заряженных частиц. Правда, в мембране имеется Na+/K+-АТФ-аза (Nа+/К+-АТР-аза), осуществляющая активный перенос ионов Na+ из клетки в обмен на ионы К+. Этот транспорт энергозависим и сопряжен с гидролизом АТФ (АТР) . За счет работы «Nа+,К+-насоса» поддерживается неравновесное распределение ионов Na+ и К+ между клеткой и окружающей средой. Поскольку расщепление одной молекулы АТФ обеспечивает перенос трех ионов Na+ (из клетки) и двух ионов К+ (в клетку), этот транспорт электрогенен, т. е. цитоплазма клетки заряжена отрицательно по отношению к внеклеточному пространству.

Электрохимический потенциал. Содержимое клетки заряжено отрицательно по отношению к внеклеточному пространству. Основная причина возникновения на мембране электрического потенциала (мембранного потенциала Δψ) - существование специфических ионных каналов. Транспорт ионов через каналы происходит по градиенту концентрации или под действием мембранного потенциала. В невозбужденной клетке часть К+-каналов находится в открытом состоянии и ионы К+ постоянно диффундируют из нейрона в окружающую среду (по градиенту концентрации). Покидая клетку, ионы К+ уносят положительный заряд, что создает потенциал покоя равный примерно -60 мВ. Из коэффициентов проницаемости различных ионов видно, что каналы, проницаемые для Na+ и Cl- , преимущественно закрыты. Ионы фосфата и органические анионы, например белки, практически не могут проходить через мембраны. С помощью уравнения Нернста (RT/ZF,где R-газовая постоянная,T-абсолютная температура,Z-валентность иона,F-число Фарадея) можно показать, что мембранный потенциал нервной клетки в первую очередь определяется ионами К+, которые вносят основной вклад в проводимость мембраны.

Ионные каналы . В мембранах нервной клетки имеются каналы, проницаемые для ионов Na+, К+, Са2+ и Cl-. Эти каналы чаще всего находятся в закрытом состоянии и открываются лишь на короткое время. Каналы подразделяются на потенциал-управляемые (или электровозбудимые), например быстрые Na+-каналы, и лиганд-управляемые (или хемовозбудимые), например никотиновые холинэргические рецепторы. Каналы - это интегральные мембранные белки, состоящие из многих субъединиц. В зависимости от изменения мембранного потенциала или взаимодействия с соответствующими лигандами, нейромедиаторами и нейромодуляторами (см. рис. 343), белки-рецепторы могут находиться в одном их двух конформационных состояний, что и определяет проницаемость канала («открыт» - «закрыт» - и т.д.).

Активный транспорт:

Стабильность градиента ионов достигается посредством активного транспорта: мембранные белки переносят ионы через мембрану против электрического и (или) концентрационного градиентов, потребляя для этого метаболическую энергию. Наиболее важный процесс активного транспорта - это работа Na/K-насоса, существующего практически во всех клетках; насос выкачивает ионы натрия из клетки, одновременно накачивая ионы калия внутрь клетки. Таким образом обеспечивается низкая внутриклеточная концентрация ионов натрия и высокая-калия. Градиент концентрации ионов натрия на мембране имеет специфические функции, связанные с передачей информации в виде электрических импульсов, а также с поддержанием других активных транспортных механизмов и регулирования объема клетки. Поэтому неудивительно, что более 1/3 энергии, потребляемой клеткой, расходуется на Na/К-насос, а в некоторых наиболее активных клетках на его работу расходуется до 70% энергии.

Пассивный транспорт:

Свободная диффузия и транспортные процессы, обеспечиваемые ионными каналами и переносчиками, осуществляются по градиенту концентрации или градиенту электрическою заряда (называемым вместе электрохимическим градиентом). Такие механизмы транспорта классифицируются как «пассивный транспорт». Например, по такому механизму в клетки поступает глюкоза из крови, где ее концентрация гораздо выше.

Ионный насос:

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:

Концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);

Концентрация K+ внутри клетки выше, чем снаружи.

Натрий - калиевый насос - это особый белок, пронизывающий всю толщу мембраны, который постоянно накачивает ионы калия внутрь клетки, одновременно выкачивая из нее ионы натрия; при этом перемещение обоих ионов происходит против градиентов их концентраций. Выполнение этих функций возможно благодаря двум важнейшим свойствам этого белка. Во-первых, форма молекулы переносчика может меняться. Эти изменения происходят в результате присоединения к молекуле переносчика фосфатной группы за счет энергии, выделяющейся при гидролизе АТФ (т. е. разложения АТФ до АДФ и остатка фосфорной кислоты). Во-вторых, сам этот белок действует как АТФ-аза (т. е. фермент, гидролизующий АТФ). Поскольку этот белок осуществляет транспорт натрия и калия и, кроме того, об­ладает АТФ-азной активностью, он так и называется - «натрий-калиевая АТФ-аза».

Упрощенно действие натрий-калиевого насоса можно представить следующим образом.

1. С внутренней стороны мембраны к молекуле белка-переносчика поступают АТФ и ионы натрия, а с наружной - ионы калия.

2. Молекула переносчика осуществляет гидролиз одной молекулы АТФ.

3. При участии трех ионов натрия за счет энергии АТФ к переносчику присоединяется остаток фосфорной кислоты (фосфорилирование переносчика); сами эти три иона натрия также присоединяются к переносчику.

4. В результате присоединения остатка фосфорной кислоты происходит такое изменение формы молекулы переносчика (конформация), что ионы натрия оказываются по другую сторону мембраны, уже вне клетки.

5. Три иона натрия выделяются во внешнюю среду, а вместо них с фосфорилированным переносчиком соединяются два иона калия.

6. Присоединение двух ионов калия вызывает дефосфорилирование переносчика - отдачу им остатка фосфорной кислоты.

7. Дефосфорилирование, в свою очередь, вызывает такую конформацию переносчика, что ионы калия оказываются по другую сторону мембраны, внутри клетки.

8. Ионы калия высвобождаются внутри клетки, и весь процесс повторяется.

Значение натрий-калиевого насоса для жизни каждой клетки и организма в целом определяется тем, что непрерывное откачивание из клетки натрия и нагнетание в нее калия необходимо для осуществления многих жизненно важных процессов: осморегуляции и сохранения клеточного объема, поддержания разности потенциалов по обе стороны мембраны, поддержания электрической активности в нервных и мышечных клетках, для активного транспорта через мембраны других веществ (сахаров, аминокислот). Большие количества калия требуются также для белкового синтеза, гликолиза, фотосинтеза и других процессов. Примерно треть всей АТФ, расходуемой животной клеткой в состоянии покоя, затрачивается именно на поддержание работы натрий-калиевого насоса. Если каким-либо внешним воздействием подавить дыхание клетки, т. е. прекратить поступление кислорода и выработку АТФ, то ионный состав внутреннего содержимого клетки начнет постепенно меняться. В конце концов он придет в равновесие с ионным составом среды, окружающей клетку; в этом случае наступает смерть.

Потенциал действия возбудимой клетки и его фазы:

П.Д,-быстрое колебание мембранного потенциала, возникающего при возбуждении нервн.,мыш. И др клеток.может распрост-ся.

1. фаза нарастания

2.реверсия или овершут(переворачивается заряд)

3.восстановление полярности или реполяризация

4.положительный следовой потенциал

5. отрицательный след. Потенциал

Локальный ответ- это процесс ответа мембраны на раздражитель в определенной зоне нейрона. Не распростр по аксонам. Чем больше стимул, тем больше меняется локальный ответ. При этом уровень деполяризации не достигает критического, остается допороговым. Вследствие этого локальный ответ может оказывать электротонические влияния на соседние участки мембраны, но не может распространяться так, как потенциал действия. Возбудимость мембраны в местах локальной деполяризации и в местах вызванной ей электротонической деполяризации повышена.

Активация и инактивация натриевой системы:

Деполяризующий толчок тока приводит к активации натриевых каналов и увеличению натриевого тока. Это обеспечивает локальный ответ. Смещение мембранного потенциала до критического уровня приводит к стремительной деполяризации клеточной мембраны и обеспечивает фронт нарастания потенциала действия. Если удалить ион Na+ из внешней среды, то потенциал действия не возникает. Аналогичный эффект удавалось получить при добавлении в перфузионный раствор ТТХ (тетродотоксин) - специфического блокатора на­триевых каналов. При использовании метода «voltage-clamp» было показано, что в ответ на действие деполяризующего тока через мембрану протекает кратковременный (1-2 мс) входящий ток, который сменяется через некоторое время выходящим током (рис. 2.11). При замене ионов натрия на другие ионы и вещества, например холин, удалось показать, что входящий ток обеспечивается натриевым током, т. е. в ответ на деполяризующий стимул происходит повышение натриевой проводимости (gNa+). Таким образом, развитие фазы деполяризации потенциала действия обусловлено повышением на­триевой проводимости.

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация) (рис. 2.4). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности. Рассчитано, что активированный натриевый канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представляет собой сумму тысяч одиночных токов.

При генерации одиночного потенциала действия в толстом нервном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов (см. табл. 2.1).

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Изменение возбудимости при возбуждении:

1. Абсолютная рефрактерность - т.е. полная невозбудимость, определяемая сначала полной занятостью "натриевого" механизма, а затем инактивацией натриевых каналов (это примерно соотвествует пику потенциала действия).

2. Относительная рефрактерность - т.е. сниженная возбудимость, связанная с частичной натриевой инактивацией и развитием калиевой активации. При этом порог повышен, а ответ [ПД] снижен.

3. Экзальтация - т.е. повышенная возбудимость - супернормальность, появляющаяся от следовой деполяризации.

4. Субнормальность - т.е. пониженная возбудимость, возникающая от следовой гиперполяризации. Амплитуды потенциала действия на фазе следовой негативности несколько снижены, а на фоне следовой позитивности - несколько повышены.

Наличие рефрактерных фаз обусловливает прерывистый (дискретный) характер нервной сигнализации, а ионный механизм потенциала действия обеспечивает стандартность потенциала действия (нерных импульсов). В этой ситуации изменения внешних сигналов кодируется лишь изменением частоты потенциала действия (частотный код) или изменением количества потенциалов действия.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

А. Характеристика ПД. ПД - электрический процесс, выражаю­щийся в быстром колебании мембранного потенциала вследствие пе­ремещения ионов в клетку и т клетки и способный распространять­ся без затухания (без декремента). Он обеспечивает передачу сигна­лов между нервными клетками, между нервными центрами и рабочими органами, в мышцах - процесс электромеханического сопряжения (рис. 3.3, а).

Величина ПД нейрона колеблется в пределах 80-110 мВ, дли­тельность пика ПД нервного волокна составляет 0,5-1 мс. Ампли­туда ПД не зависит от силы раздражения, она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений -закону силы. ПД либо совсем не возникает на раздражение клетки, если оно мало, либо он максимальной величины, если раздражение является пороговым или сверхпороговым. Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчиняется закону силы: с увеличением силы стимула величина его возрастает (подробнее см. раздел 3.6). В составе ПД различают три фазы: 1 фаза - деполяризация, т.е. исчезновение заряда клетки - уменьшение мембранного потен­циала до нуля; 2 фаза - инверсия, изменение заряда клетки на об­ратный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя - отрицательно (от лат. туегзю - перево­рачивание); 3 фаза - реполяризация, восстановление исходного за­ряда клетки, когда внутренняя поверхность клеточной мембраны снова заряжается отрицательно, а наружная - положительно.

Б. Механизм возникновения ПД. Если действие раздражителя на клеточную мембрану приводит к возникновению ПД, далее сам процесс развития ПД вызывают фазовые изменения прони­цаемости клеточной мембраны, что обеспечивает быстрое движе­ние иона Ка + в клетку, а иона К + - из клетки. Величина мембранного потенциала при этом сначала уменьшается, а затем снова восстанавливается до исходного уровня. На экране осциллографа отмеченные изменения мембранного потенциала предстают в ви­де пикового потенциала - ПД. Он возникает вследствие накоп­ленных и поддерживаемых ионными насосами градиентов кон­центраций ионов внутри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов разных ионов. Ес­ли заблокировать процесс выработки энергии, то ПД некоторый период времени будут возникать, но после исчезновения градиен­тов концентраций ионов (устранение потенциальной энергии) клетка генерировать ПД не будет. Рассмотрим фазы ПД.



Рис. 3.3. Схема, отражающая процесс возбуждения. а - потенциал действия, его фазы: 1 - деполяризация, 2 - инверсия (овершут), 3 - реполяризация, 4 - следовая гиперполяризация; б - натриевые ворота; (Ь-1 - в состоянии покоя клетки); в - калиевые ворота (1 - в состоянии покоя клетки). Знаки плюс (+) и минус (-) - знаки заряда внутри и вне клетки в различные фазы ПД. (См. пояснения в тексте.) Существует много различных названий фаз ПД (единого мнения не сложилось): 1) ме­стное возбуждение - пик ПД - следовые потенциалы; 2) фаза нарастания - фаза спада -следовые потенциалы; 3) деполяризация - овершут (перехлест, превышение, перелет), причем эта фаза в свою очередь делится на две част: восходящая (инверсия, ОТ лат. шуегяю - переворачивание) н нисходящая (реверсия, от лат. геуегзю - возврат) - реполя-рнзапия. Имеются и другие названия.

Отметим одно противоречие: термины «реполяризация» и «реверсия» но смыслу одинаковы - возврат к предыдущему состоя­нию, но эти состояния различны: в одном случае заряд исчезает (реверсия), в другом -восстанавливается (реполяршация). Наиболее корректны тс названия фаз ПД, в которых заложена общая идея, например изменение заряда клетки. В этой связи обоснованно ис­пользовать следующие названия фаз ПД: !) фаза деполяризации - процесс исчезновения заряда клетки до нуля; 2) фаза инверсии - изменение заряда клетки на противоположный. т. е. весь период ПД, когда внутри клетки заряд положительный, а снаружи - отрицатель­ный; 3) фаза реполярпзацин - восстановление заряда клетки до исходной величины (возврат к потенциалу покоя).

1. Фаза деполяризации (см. рис. 3.3, а, 1). При действии депо­ляризующего раздражителя на клетку (медиатор, электрический ток) вначале уменьшение мембранного потенциала (частичная деполяризация) происходит без изменения проницаемости мем­браны для ионов. Когда деполяризация достигает примерно 50% пороговой величины (порогового потенциала), возрастает проницаемость ее мембраны для иона Ка + , причем в первый мо­мент сравнительно медленно. Естественно, что скорость входа ионов Ка* в клетку при этом невелика. В этот период, как и во время всей фазы деполяризации, движущей силой, обеспечи­вающей вход иона Na + в клетку, являются концентрационный и электрический градиенты. Напомним, что клетка внутри заря­жена отрицательно (разноименные заряды притягиваются друг к другу), а концентрация ионов Na+ вне клетки в 10-12 раз боль­ше, чем внутри клетки. При возбуждении нейрона повышается проницаемость его мембраны и для ионов Са+, но его ток в клетку значительно меньше, чем ионов Nа + . Условием, обеспе­чивающим вход иона Nа + в клетку и последующий выход иона К* из клетки, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного меха­низма ионных Nа- и К-каналов. Длительность пребывания электроуправляемого канала в открытом состоянии носит вероятно­стный характер и зависит от величины мембранного потенциа­ла. Суммарный ток ионов в любой момент определяется числом открытых каналов клеточной мембраны. Воротный механизм ^-каналов расположен на внешней стороне клеточной мембра­ны (Na+ движется внутрь клетки), воротный механизм К-каналов -на внутренней (К + движется из клетки наружу).

Активация Nа- и К-каналов (открытие ворот) обеспечивается уменьшением мембранного потенциала, Когда деполяризация клетки достигает критической величины (E kp , критический уро­вень деполяризации - КУД), которая обычно составляет -50 мВ (возможны и другие величины), проницаемость мембраны для ионов Nа + резко возрастает - открывается большое число по-тенциалзависимых ворот Nа-каналов и ионы Nа + лавиной уст­ремляются в клетку. В результате интенсивного тока ионов Nа + внутрь клетки далее процесс деполяризации проходит очень бы­стро. Развивающаяся деполяризация клеточной мембраны вы­зывает дополнительное увеличение ее проницаемости и, естест­венно, проводимости ионов Na+ - открываются все новые и но­вые активационные т-ворота Nа-каналов, что придает току ионов Na* в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

2. Фаза инверсии. После исчезновения ПП вход Nа+ в клетку про­должается (m - ворота Na-каналов еще открыты - h-2), поэтому число положительных ионов в клетке превосходит число отрицательных, заряд внутри клетки становится положительным, сна­ружи - отрицательным. Процесс перезарядки мембраны представ­ляет собой 2-ю фазу ПД - фазу инверсии (см. рис. 3.3, в, 2). Теперь электрический градиент препятствует входу Na+ внутрь клетки (положительные заряды отталкиваются друг от друга), прово­димость Na* снижается. Тем не менее некоторый период (доли миллисекунды) ионы Na + продолжают входить в клетку, об этом свидетельствует продолжающееся нарастание ПД. Это означает, что концентрационный градиент, обеспечивающий движение ионов Ка + в клетку, сильнее электрического, препят­ствующего входу ионов Nа* в клетку. Во время деполяризации мембраны увеличивается проницаемость ее и для ионов Са 2+ , они также идут в клетку, но в нервных клетках роль ионов Са 2+ в развитии ПД мала. Таким образом, вся восходящая часть пика ПД обеспечивается в основном входом ионов Nа* в клетку.

Примерно через 0,5-1 мс после начала деполяризации рост ПД прекращается вследствие закрытия ворот Ка-каналов (Ь-3) и открытия ворот К-каналов (в, 2), т.е. увеличения проницаемости для ионов К + . Поскольку ионы К + находятся преимущественно внутри клетки, они, согласно концентрационному градиенту, быстро выходят из клетки, вследствие чего в клетке уменьшается число положительно заряженных ионов. Заряд клетки начинает возвращаться к исходному уровню. В фазу инверсии выходу ио­нов К* из клетки способствует также электрический градиент. Ионы К* выталкиваются положительным зарядом из клетки ипритягиваются отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки - до конца фазы инверсии (см. рис. 3.3, а - пунк­тирная линия), когда начинается следующая фаза ПД - фаза реполяризации. Калий выходит из клетки не только по управляе­мым каналам, ворота которых открыты, но и по неуправляемым каналам утечки.

Амплитуда ПД складывается из величины ПП (мембранный потенциал покоящейся клетки) и величины фазы инверсии - око­ло 20 мв. Если мембранный потенциал в состоянии покоя клетки мал, то амплитуда ПД этой клетки будет небольшой.

3. Фаза реполяризации. В этой фазе проницаемость клеточной мембраны для ионов К + все еще высока, ионы К + продолжают быстро выходить из клетки согласно концентрационному гради­енту. Клетка снова внутри имеет отрицательный заряд, а снару­жи - положительный (см. рис. 3.3, а, 3), поэтому электрический градиент препятствует выходу К* из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено зна­чительно сильнее действия электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом иона К + из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для ионов К + и замедлением выхода их из клетки вследствие закрытия ворот К-каналов. Другая причина замедления тока ионов К + связана с возрастанием положитель­ного потенциала наружной поверхности клетки и формировани­ем противоположно направленного электрического градиента.

Главную роль в возникновении ПД играет ион Na*, входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене иона Nа + в среде на другой ион, например холин, или в случае блокировки Na-каналов тетродотоксином, ПД в нервной клетке не возникает. Однако проницаемость мембраны для иона К + то­же играет важную роль. Если повышение проницаемости для иона К + предотвратить тетраэтиламмонием, то мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналы утечки ионов), через которые К + будет выходить из клетки.

Роль ионов Са 2+ в возникновении ПД в нервных клетках не­значительна, в некоторых нейронах она существенна, например в дендритах клеток Пуркинье мозжечка.

В. Следовые явления в процессе возбуждения клетки. Эти явле­ния выражаются в гиперполяризации или частичной деполяризации клетки после возвращения мембранного потенциала к исход­ной величине (рис. 3.4).

Следовая гиперполяризация клеточной мембраны обычно яв­ляется следствием еще сохраняющейся повышенной проницае­мости клеточной мембраны для К + . Ворота К-каналов еще не полностью закрыты, поэтому К + продолжает выходить из клет­ки согласно концентрационному градиенту, что и ведет к гипер­поляризации клеточной мембраны. Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и ка­лиевые ворота возвращаются в исходное состояние), а мембран­ный потенциал становится таким же, каким он был до возбуж­дения клетки. Ионные помпы непосредственно за фазы потенциа­ла действия не отвечают, ионы перемещаются с огромной скоростью согласно концентрационному и частично электриче­скому градиентам.

Следовая деполяризация также характерна для нейронов. Ме­ханизм ее изучен недостаточно. Возможно, она обусловлена крат­ковременным повышением проницаемости клеточной мембраны для Ка* и входом его в клетку согласно концентрационному и электрическому градиентам.

Наиболее растпространенный метод изучения функций ионных каналов - метод фиксации напряжения (voltage-clamp). Мем­бранный потенциал с помощью подачи электрического напря­жения изменяют и фиксируют на определенном уровне, затем клеточную мембрану градуально деполяризуют, что ведет к от­крытию ионных каналов и возникновению ионного тока, кото­рый мог бы деполяризовать клетку. При этом пропускают элек­трический ток, равный по величине, но противоположный по знаку ионному току, поэтому трансмембранная разность потен­циалов не изменяется. Это позволяет изучить величину ионного тока через мембрану. Применение различных блокаторов ион­ных каналов дает дополнительную возможность более глубоко изучить свойства каналов.

Количественное соотношение между ионными токами по отдельным каналам в покоящейся клетке и во время ПД и их кинетику можно выяснить с помощью метода локальной фик­сации потенциала (patch-clamp). К мембране подводят микро­электрод - присоску (внутри его создается разрежение) и, если на этом участке оказывается канал, исследуют ионный ток че­рез него. В остальном методика подобна предыдущей. И в этом случае применяют специфические блокаторы каналов. В част­ности, при подаче на мембрану фиксированного деполяри­зующего потенциала было установлено, что через Ка-каналы может проходить и ион К + , но его ток в 10-12 раз меньше, а через К-каналы может проходить ион Ма + , его ток в 100 раз меньше, чем ток ионов К + .

Запас ионов в клетке, обеспечивающий возникновение возбу­ждения (ПД), огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменя­ются. Клетка может возбуждаться до 5 * 10 5 раз без подзарядки, т.е. без работы Ма/К-насоса. Число импульсов, которое генери­рует и проводит нервное волокно, зависит от его толщины, что определяет запас ионов. Чем толще нервное волокно, тем боль­ше запас ионов, тем больше импульсов оно может генерировать (от нескольких сотен до миллиона) без участия Nа/К-насоса. Однако в тонких волокнах на возникновение одного ПД расходуется около 1% концентрационных градиентов ионов Nа + и К*. Если заблокировать выработку энергии, то клетка будет еще многократно возбуждаться. В реальной действительности Nа/К-насос постоянно переносит ионы Nа + из клетки, а ионы К + воз­вращает в клетку, в результате чего поддерживается концентра­ционный градиент Nа + и К + за счет непосредственного расхода энергии, источником которой является АТФ. Имеются данные, что увеличение внутриклеточной концентрации Nа + сопровож­дается повышением интенсивности работы Nа/К-насоса. Это может быть связано исключительно с тем, что для переносчика становится доступно большее количество внутриклеточных ио­нов Na + .

Мембранный потенциал покоя (МПС) — это разность потенциалов между внешней и внутренней сторонами мембраны в условиях, когда клетка не возбуждено. Цитоплазма клетки заряжена отрицательно к внеклеточной жидкости неравномерным распределением анионов и катионов по обе стороны мембраны. Разность потенциалов (напряжение) для различных клеток имеет значение от -50 до -200 мВ (минус означает, что внутри клетка более негативно заряжена, чем снаружи). Мембранный потенциал покоя возникает на мембранах всех клеток — возбуждающих (нервов, мышц, секреторных клеток) и незбудливих.

МПС необходим для поддержания возбудимости таких клеток, как мышечные и нервовои. Также он влияет на транспорт всех заряженных частиц в любом типе клеток: он способствует пассивному транспорта анионов из клетки и катионов в клетку.

Образование и поддержания мембранного потенциала обеспечивают различные типы ионных насосов (в частности натрий-калиевый насос или натрий-калиевая АТФаза) и ионных каналов (калиевые, натриевые, хлорные ионные каналы).

Регистрация потенциала покоя

Для регистрации потенциала покоя используют специальную микроэлектродную технику. Микроэлектрод — это тоненькая стеклянная трубочка, с вытянутым концом, диаметром менее 1 мкм, заполненная раствором электролита (чаще хлорида калия). Рефернтним электродом служит серебряная хлорированная пластинка, расположенная в внеклеточном пространстве, оба электрода подключены к осциллографа. Сначала оба электрода занходяться в внеклеточном пространстве и разность потенциалов между ними отсутствует, если ввести регистрирующий микроэлектрод через мембрану в клетку, то осциллограф покажет скачкообразное смещение потенциала примерно до -80 мВ. Этот сдвиг потенциала называют мембранным потенциалом покоя.

Формирование потенциала покоя

К возникновению мембранного потенциала покоя приводят два фактора: во-первых, концентрации различных ионов отличаются внешне и всереднини клетки, во-вторых мембрана является полупроницаемой: одни ионы могут через нее проникать, другие — нет. Оба эти явления зависят от наличия в мембране специальных белков: концентрационные градиенты создают ионные насосы, а проницаемость мембраны для ионов обеспечивают ионные каналы. Важнейшую роль в формировании мембранного потенциала играют ионы калия, натрия и хлора. Концентрации этих ионов видризняюються по обе стороны мембраны. Для нейрона млекопитающих концентрация K + составляет 140 ммоль внутри клетки и только 5 мМ извне, градиент концентрации Na + почти противоположный — 150 ммоль снаружи и 15 мМ внутри. Такое распределение ионов поддерживается натрий-калиевым насосом в плазматической мембране — белком использующий энергию АТФ для закачки K + в клетку и скачивания Na + из нее. Также существует концентрационный градиент и для других ионов, например, хлорид аниона Cl -.

Концентрационные градиенты катионов калия и натрия — это химическая форма потенциальной энергии. В преобразовании энергии в электрическую участвуют ионные каналы — поры формируются скоплениями специальных трансмембранных белков. Когда ионы диффундируют через канал, они переносят единицу электрического заряда. Любой суммарный движение положительных или отрицательных ионов через мембрану будет создавать напряжение, или разность потенциалов по обе стороны мембраны.

Ионные каналы, участвующие в утовренни МПС имеют избирательную проницаемость, то есть дают возможность проникать только определенному типу ионов. В мембране нейрона в состоянии покоя открытые калиевые каналы (те, что в основном пропускают только калий), большинство натриевых каналов — закрыты. Диффузия ионов K + через калиевые каналы является решающим для создания мембранного потенциала. Так как концентрация K + значительно выше внутри клетки, химический градиент способствует оттоку этих катионов из клетки, поэтому в цитоплазме начинают преобладать анионы, которые не могут проходить через калиевые каналы.

Отток ионов калия из клетки ограничен самым мембранным потенциалом, поскольку при определенном его уровне накопление отрицательных зарядов в цитоплазме будет ограничивать движение катионов за пределы клетки. Таким образом, главным фактором в возникновении МПС является распределение ионов калия под действием электрического и химического потенциалов.

Равновесный потенциал

Для того, чтобы определить влияние движения определенного иона через полупроницаемую мембрану на формирование мембранного потенциала, строят модельные системы. Такая модельная система состоит из сосуда разделенной на две ячейки искусственной полупроницаемой мембраной, в которую встроены ионные каналы. В каждую ячейку можно погрузить электрод и померить разность потенциалов.

Рассмотрим случай, когда искусственная мембрана проницаема только для калия. По две стороны мембраны модельной системы создают градиент концентрации аналогичный таковому у нейроне: в ячейку, соответствующую цитоплазме (внутренняя ячейка), помещают 140 мМ раствор хлорида калия (KCl), в ячейку, соответствующую межклеточной жидкости (внешняя ячейка) — 5 ммоль раствор KCl. Ионы калия будут диффундировать через мембрану во внешнюю ячейку по градиенту концентрации. Но поскольку анионы Cl — проникать через мембрану не могут во внутренней ячейке возникать избыток отрицательного заряда, который будет препятствовать подали оттока катионов. Когда такие модельные нейроны достигнут состояния равновесия, действие химического и электрического потенциала будет сбалансирована, ни суммарной диффузии К + не будет наблюдаться. Значение мембранного потенциала, виинкае при таких условиях, называется равновесным потенциалом для определенного иона (Е ион). Равновесный потенциал для калия составляет примерно -90 мВ.

Аналогичный опыт можно провести и для натрия, установив между ячейками мембрану проникающей только для этого катиона, и поместив во внешнюю ячейку раствор хлорида натрия с концентрацией 150 мМ, а во внутреннюю — 15 мМ. Натрий будет двигаться во внутреннюю ячейку, ривоноважний потенциал для него составит примерно 62 мВ.

Количество ионов, должна диффундировать для генерации электрического потенциала очень невелика (примерно 10 -12 моль К + на 1 см 2 мембраны), этот факт имеет два важных последствия. Во-прешь, это означает, что концентрации ионов, которые могут проникать через мембрану, остаются стабильными снаружи и внутри клетки, даже после того как их движение обеспечил утоврення электрического потенциала. Во-вторых, мизерные потоки ионов через мембрану, потирбно для установления потенциала, не нарушают электронейтральности цитоплазмы и внеклеточной жидкости в целом, распределение зарядов происходит только в области, непосредственно прилегающей к плазматической мембраны.

Уравнение Нернста

Равновесный потенциал для определенного иона, например для калия, можно рассчитать по уравнению Нернста, что выглядит так:

,

где R — универсальная газовая постоянная, Т — абслоютна температура (по шкале Кельвина), z — заряд иона, F — число Фарадея, o, i — концентрация калия снаружи и внутри клетки соответственно. Поскольку описанные процессы происходят при температуре тела — 310 ° К, а десятичными логарифмами в исчислении пользоваться легче чем натуральными, это уравнение превращают следующим образом:

Подставляя концентрации К + в уравнение Нернста получаем равновесный потенциал для калия, составляет -90 мВ. Поскольку по нулевой потенциал принимается внешняя сторона мембраны, то знак минус означает, что в условиях равновесного калиевого потенциала внутренняя Сторн мембраны сравнительно более электроотрицательным. Аналогичные расчеты можно провести и для равновесного Натиева потенциала, он составляет 62 мВ.

Уравнения Голдмана

Хотя равновесный потенциал для ионов калия составляет -90 мВ, МПС нейрона несколько менее отрицательный. Эта разница отражает незначительное но постоянное следование ионов Na + через мембрану в состоянии покоя. Поскольку концентрационный градиент для натрия противоположный такого для калия, Na + движется внутрь клетки и сдвигает суммарный заряд на внутренней стороне мембраны в положительную сторону. На самом деле МПС нейрона составляет от -60 до -80 мВ. Это значение значительно ближе к Е K чем до Е Na, потому что в состоянии покоя в нейроне открыто много калиевых каналов и очень мало натриевых. Также на встанвлення МПС влияет движение ионов хлора. В 1943 году Дэвид Голдаман предложил усовершенствовать уравнение Нернста так, чтобы оно отражало влияние различных ионов на мембарнний потенциал, в этом уравнении учитывается относительная проницаемость мембраны для каждого типа ионов:

где R — универсальная газовая постоянная, Т — абслоютна температура (по шкале Кельвина), z — заряд иона, F — число Фарадея, [ион] o, [ион] i — концентрации ионов внутри и внутри клеток, Р — относительная проницаемость мембраны для соответствующего иона. Значение заряда в данном уравнении не сохраняется, но оно учтено — для хлора внешняя и внутренняя концентрация поменяны местами, так как его заряд 1.

Значение мембранного потенциала покоя для различных тканей

  • Разделенными мышцы -95 мВ;
  • Непосмугованих мышцы -50 мВ;
  • Астроглией от -80 до -90 мВ;
  • Нейроны -70 мВ.

Роль натрий-калиевого насоса в формировании МПС

Мембранный потенциал покоя может существовать только при условии неравномерного распределения ионов, обеспечивается функционированием натрий-калиевого насоса. Кроме того, этот белок делает также электрогенных властовости — он переносит 3 катионы натрия в обмен на 2 ионы калия, движущихся внутрь клетки. Таким образом, Na + -K + -АТФазы снижает МПС на 5-10 мВ. Подавление деятельности этого белка приводит к незначительному (на 5-10 мВ) мгновенного повышения мембранного потенциала, после чего он еще некоторое время будет существовать на достаточно стабильном уровне, пока будут сохраняться градиенты концентраций Na + и K +. Впоследствии эти градиенты начнут уменьшаться, вследствие проникнсоти мембраны к ионам, и через несколько десятков минут электрический потенциал на мембране исчезнет.

Мембранный потенциал

В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, которая называется мембранным потенциалом [МП), или, если это клетка возбудимой ткани, – потенциалом покоя. Так как внутренняя сторона мембраны заряжена отрицательно по отношению к наружной, то, принимая потенциал наружного раствора за нуль, МП записывают со знаком «минус». Его величина у разных клеток колеблется от минус 30 до минус 100 мВ.

Первая теория возникновения и поддержания мембранного потенциала была разработана Ю. Бернштейном (1902). Исходя из того, что мембрана клеток обладает высокой проницаемостью для ионов калия и малой проницаемостью для других ионов, он показал, что величину мембранного потенциала можно определить, используя формулу Нернста.

В 1949–1952 гг. А. Ходжкин, Э. Хаксли, Б. Катц создали со‑временную мембранно‑ионную теорию, согласно которой мембранный потенциал обусловлен не только концентрацией ионов калия, но и натрия и хлора, а также неодинаковой проницаемостью для этих ионов мембраны клетки. Цитоплазма нервных и мышечных клеток содержит в 30 ‑50 раз больше ионов калия, в 8–10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость. Проницаемость мембраны для ионов обусловлена ионными каналами, макромолекулами белка, пронизывающими липидный слой. Одни каналы открыты постоянно, другие (потенциалозависимые) открываются и закрываются в ответ на изменения МП. Потенциалозависимые каналы подразделяются на натриевые, калиевые, кальциевые и хлорные. В состоянии физиологического покоя мембрана нервных клеток в 25 раз более проницаема для ионов калия, чем для ионов натрия.

Таким образом, согласно обновленной мембранной теории асимметричное распределение ионов по обе стороны мембраны и связанное с этим создание и поддержание мембранного потенциала обусловлено как избирательной проницаемостью мембраны для различных ионов, так и их концентрацией по обе стороны от мембраны, а более точно величину мембранного потенциала можно рассчитать по формуле.

Поляризация мембраны в покое объясняется наличием открытых калиевых каналов и трансмембранным градиентом концентраций калия, что приводит к выходу части внутриклеточного калия в окружающую клетку среду, т. е. к появлению положительного заряда на наружной поверхности мембраны. Органические анионы – крупномолекулярные соединения, для которых мембрана клетки непроницаема, создают на внутренней поверхности мембраны отрицательный заряд. Поэтому чем больше разница концентраций калия по обе стороны от мембраны, тем больше его выходит и тем выше значения МП. Переход ионов калия и натрия через мембрану по их концентрационному градиенту в конечном итоге должен был бы привести к выравниванию концентрации этих ионов внутри клетки и в окружающей ее среде. Но в живых клетках этого не происходит, так как в клеточной мембране имеются натрий‑калиевые насосы, которые обеспечивают выведение из клетки ионов натрия и введение в нее ионов калия, работая с затратой энергии. Они принимают и прямое участие в создании МП, так как за единицу времени ионов натрия выводится из клетки больше, чем вводится калия (в соотношении 3:2), что обеспечивает постоянный ток положительных ионов из клетки. То что выведение натрия зависит от наличия метаболической энергии, доказывается тем, что под действием динитрофенола, который блокирует метаболические процессы, выход натрия снижается примерно в 100 раз. Таким образом, возникновение и поддержание мембранного потенциала обусловлено избирательной проницаемостью мембраны клетки и работой натрий‑калиевого насоса.