Вторичной группировкой называется. Вторичные группировки. Контрольные вопросы и задания

Числа Фибоначчи.

При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. К примеру, можно вывести формулу для числа перестановок:

Отсюда видно, что всœегда может быть сведён к факториалу от меньшего числа.

Хорошей иллюстрацией к построению рекуррентных соотношений является задача Фибоначчи. В своей книге в 1202 ᴦ. итальянский математик Фибоначчи привел следующую задачу. Пара кроликов приносит приплод раз в месяц двух крольчат (самку и самца), причём новорождённые крольчата через два месяца после рождения сами приносят приплод. Сколько кроликов появится через год, если в начале была одна пара кроликов.

Из условия задачи следует, что через месяц будет две пары кроликов, через два месяца приплод даст только первая пара кроликов, появившихся два месяца назад, в связи с этим всœего будет 3 пары кроликов. Ещё через месяц будет уже 5 пар. И так далее.

Обозначим через количество пар кроликов по истечении месяцев с начала года. Тогда через месяц количество пар кроликов можно найти по формуле:

Эта зависимость принято называть рекуррентным соотношением . Слово «рекурсия» означает возврат назад (в нашем случае – возврат к предыдущим результатам).

По условию, и , тогда по соотношению имеем: , , и т.д., .

Определœение 1: Числа называются числами Фибоначчи . Это – известная в математике последовательность чисел:

1, 1, 2, 3, 5, 8, 13, 21, ...

В этой последовательности каждое последующее число является суммой двух предыдущих чисел. И в рекуррентном соотношении также последующий член находится как сумма двух предыдущих членов.

Установим связь между числами Фибоначчи и комбинаторной задачей. Пусть требуется найти число - последовательностей, состоящих из нулей и единиц, в которых никакие две единицы не стоят подряд.

Возьмем любую такую последовательность и сопоставим ей пару кроликов по следующему правилу: единицам соответствуют месяцы появления на свет одной из пар «предков» данной пары (включая и исходную), а нулями – всœе остальные месяцы. К примеру, последовательность устанавливает такую «генеалогию» – сама пара появилась в конце 11-го месяца, ее родители в конце 7-го месяца, «дед» – в конце 5-го месяца, и «прадед» в конце 2-го месяца. Первоначальная пара шифруется последовательностью . Ни в одной последовательности две единицы не могут стоять подряд – только что появившаяся пара не может принœести приплод через месяц. Очевидно, различным последовательностям отвечают различные пары и обратно.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, число последовательностей с указанными свойствами, равно .

Теорема 1: Число находится как сумма биномиальных коэффициентов:. В случае если – нечетно, то . В случае если – четно, то . Иначе: – целая часть числа .

Доказательство: В самом делœе, - число всœех последовательностей из 0 и 1, в которых никакие две единицы не стоят рядом. Число таких последовательностей, содержащих ровно единиц и нулей, равно , при этом , тогда изменяется от 0 до . Применяя правило суммы, получаем данную сумму.

Это равенство можно доказать иначе. Обозначим:

Из равенства , следует, что . Кроме этого, ясно, что и . Так как обе последовательности и удовлетворяют рекуррентному соотношению , то , и .

Определœение 2: Рекуррентное соотношение имеет порядок , если оно позволяет вычислять через предыдущих членов последовательности: .

К примеру, – рекуррентное соотношение второго порядка, а рекуррентное соотношение 3-го порядка. Соотношение Фибоначчи является соотношением второго порядка.

Определœение 3:Решением рекуррентного соотношения является последовательность, удовлетворяющая этому соотношению.

В случае если задано рекуррентное соотношение ‑ го порядка, то ему удовлетворяют бесконечно много последовательностей, т.к. первые элементов можно задать произвольно. Но если первые элементов заданы, то остальные члены определяются однозначно.

К примеру, соотношению Фибоначчи кроме рассмотренной выше последовательности 1, 1, 2, 3, 5, 8, 13, 21, ..., могут удовлетворять также и другие последовательности. К примеру, последовательность 2, 2, 4, 8, 12,... строится по тому же принципу. Но если задать начальные члены (их в последовательности Фибоначчи - 2), то решение определяется однозначно. Начальных членов берут столько, каков порядок соотношения.

По известным рекуррентным соотношениям и начальным членам можно выписывать члены последовательности один за другим и таким путем мы можем получить любой её член. Но во многих случаях, нам не нужны всœе предыдущие члены, а необходим один определœенный член. В этом случае удобнее иметь формулу ‑ го члена последовательности.

Мы будем говорить, что некоторая последовательность является решением данного рекуррентного соотношения, если при подстановке этой последовательности соотношение тождественно выполняется.

К примеру, последовательность является одним из решений соотношения: . Это легко проверить обычной подстановкой.

Определœение 4: Решение рекуррентного соотношения ‑ го порядка принято называть общим , если оно зависит от произвольных постоянных , меняя которые, можно получить любое решение данного соотношения.

К примеру, для соотношения общим решение будет .

В самом делœе, легко проверяется, что оно будет решением нашего соотношения. Покажем, что любое решение можно получить в таком виде. Пусть и – произвольны.

Тогда найдутся такие и , что

Очевидно, для любых , система уравнений имеет единственное решение.

Определœение 5: Рекуррентное соотношение принято называть линœейным , если оно записывается в виде:

где - числовые коэффициенты.

Для решения произвольных рекуррентных соотношений общих правил, вообще говоря, нет. При этом для решения линœейных рекуррентных соотношений есть общие правила решения.

Рассмотрим сначала соотношение 2-го порядка .

Решение этого соотношения основано на следующих утверждениях.

Теорема 2: В случае если и - являются решением данного рекуррентного соотношения 2-го порядка, то для любых чисел и последовательность также является решением этого соотношения.

Теорема 3: В случае если число является корнем квадратного уравнения , то последовательность является решением рекуррентного соотношения .

Из теорем 2, 3 вытекает следующее правило решения линœейных рекуррентных соотношений 2-го порядка.

Пусть дано рекуррентное соотношение .

1) Составим квадратное уравнение , ĸᴏᴛᴏᴩᴏᴇ принято называть характеристическим для данного соотношения. Найдём всœе корни этого уравнения (даже кратные и комплексные).

2) Составим общее решение рекуррентного соотношения. Его структура зависит от вида корней (одинаковые они или различные).

а) В случае если это соотношение имеет два различных корня и , то общее решение соотношения имеет вид .

Действительно, из теорем 2, 3 следует, что - решение и система уравнений

Имеет единое решение, т.к. при условии .

К примеру, для чисел Фибоначчи, имеем . Характеристическое уравнение имеет вид: . Решая последнее уравнение, получим корни.

Рекуррентным соотношением (уравнением, рекуррентной формулой) называется соотношение вида

которое позволяет вычислить все члены последовательности a 0 ,a 1 , a 2 ,.., если заданы её первыеk членов.

k – порядок рекуррентного уравнения.

Примеры . 1)a n +1 = a n + d - арифметическая прогрессия.

2) a n +1 = q a n - геометрическая прогрессия.

3) a n +2 = a n + a n +1 - последовательность чисел Фибоначчи.

1.4.2. Решение линейного однородного рекуррентного уравнения

Вслучае, когда рекуррентное уравнение линейно и однородно, то есть выполняется соотношение вида

Последовательность a 0 , a 1 , a 2 ,.., удовлетворяющая данному уравнению называетсявозвратной .

Многочлен

называется характеристическим многочленом для возвратной последовательности .

Корни этого многочлена называются характеристическими. Множество всех последовательностей, удовлетворяющих рекуррентному уравнению (1) называется его общим решением.

Общее решение однородного линейного рекуррентного уравнения имеет аналогию с решением линейного дифференциального уравнения. А именно, справедливы теоремы.

Теорема 1 . Пусть - корень характеристического многочлена (2), тогда последовательность
, гдеc – производная константа, удовлетворяет уравнению (1).

Теорема 2 . Если
- простые корни характеристического многочлена (2), то общее решение рекуррентного уравнения (1) имеет вид:

где c 1 ,c 2 ,..,c k – произвольные константы.

Теорема 3 . Если - корень кратности (i = 1,2,..,s ) характеристического многочлена (2), то общее решение рекуррентного уравнения (1) имеет вид:

где c ij – произвольные константы.

Зная общее решение рекуррентного уравнения (1), по начальным условиям a 0 ,a 1 ,..,a k -1 , можно найти неопределенные постоянныеc ij , и тем самым получить частное уравнении (1) с данными условиями.

Пример . Найти последовательность {a n }, удовлетворяющую рекуррентному уравнению

Характеристический многочлен

1 (2).4.3. Решение линейного неоднородного рекуррентного уравнения

Рассмотрим линейное неоднородное рекуррентное уравнение

a n+k + p 1 a n+k-1 + … + p k a n = f(n), (n = 0, 1, 2,…) (3)

Пусть {b n } – общее решение однородного уравнения (1). {c n } – частное (конкретное) решение неоднородного уравнения (3).

Тогда последовательность {b n +c n } образует общее решение уравнения (3). Таким образом, справедлива теорема.

Теорема 4 . Общее решение линейного неоднородного рекуррентного уравнения представляется в виде суммы общего решения соответствующего линейного однородного рекуррентного уравнения и некоторого частного решении неоднородного уравнения.

В результате, задача нахождения общего решения неоднородного уравнения (3) сводится к нахождению его частного решения. В отдельных случаях имеются рецепты нахождении частного решения.

1) Если f (n ) = β n , (гдеβ не является корнем характеристического уравнения), то частное решение следует искать в видеc n = C β n . Тогда, подставляя его в (3), получаем:

В результате, частное решение задаётся формулой

2) Пусть f (n ) –многочлен степениr от переменнойn , и число 1 не является характеристическим корнем. Тогда и частное решение следует искать в виде

Подставляя c n в (3) вместоa n , получаем

Сравнивая коэффициенты левой и правой частей полученного равенства, найдём соотношения для чисел d i , позволяющие эти числа определить.

Пример . Найти решение рекуррентного уравнения

с начальным условием .

Решение. Рассмотрим характеристический многочлен данного рекуррентного уравнения

Его корень . Тогда по теореме 1 общее решение соответствующего однородного рекуррентного уравнения задаётся формулой , где – произвольная константа.

Так как , т.е. единица не является корнем характеристического многочлена, а правая часть есть многочлен первой степени, то частное решение неоднородного уравнения ищется в виде полинома первой степени с неопределёнными коэффициентами , где и – неизвестные коэффициенты. Подставив вместо в исходное уравнение, получим или . Приравнивая коэффициенты левой и правой части последнего равенства, получаем систему уравнений для определения неизвестных и .

Числа Фибоначчи.

При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. Например, можно вывести формулу для числа перестановок:

Отсюда видно, что всегда может быть сведён к факториалу от меньшего числа.

Хорошей иллюстрацией к построению рекуррентных соотношений является задача Фибоначчи. В своей книге в 1202 г. итальянский математик Фибоначчи привел следующую задачу. Пара кроликов приносит приплод раз в месяц двух крольчат (самку и самца), причём новорождённые крольчата через два месяца после рождения сами приносят приплод. Сколько кроликов появится через год, если в начале была одна пара кроликов.

Из условия задачи следует, что через месяц будет две пары кроликов, через два месяца приплод даст только первая пара кроликов, появившихся два месяца назад, поэтому всего будет 3 пары кроликов. Ещё через месяц будет уже 5 пар. И так далее.

Обозначим через количество пар кроликов по истечении месяцев с начала года. Тогда через месяц количество пар кроликов можно найти по формуле:

Эта зависимость называется рекуррентным соотношением . Слово «рекурсия» означает возврат назад (в нашем случае – возврат к предыдущим результатам).

По условию, и , тогда по соотношению имеем: , , и т.д., .

Определение 1: Числа называются числами Фибоначчи . Это – известная в математике последовательность чисел:

1, 1, 2, 3, 5, 8, 13, 21, ...

В этой последовательности каждое последующее число является суммой двух предыдущих чисел. И в рекуррентном соотношении также последующий член находится как сумма двух предыдущих членов.

Установим связь между числами Фибоначчи и комбинаторной задачей. Пусть требуется найти число - последовательностей, состоящих из нулей и единиц, в которых никакие две единицы не стоят подряд.

Возьмем любую такую последовательность и сопоставим ей пару кроликов по следующему правилу: единицам соответствуют месяцы появления на свет одной из пар «предков» данной пары (включая и исходную), а нулями – все остальные месяцы. Например, последовательность устанавливает такую «генеалогию» – сама пара появилась в конце 11-го месяца, ее родители в конце 7-го месяца, «дед» – в конце 5-го месяца, и «прадед» в конце 2-го месяца. Первоначальная пара шифруется последовательностью . Ни в одной последовательности две единицы не могут стоять подряд – только что появившаяся пара не может принести приплод через месяц. Очевидно, различным последовательностям отвечают различные пары и обратно.

Таким образом, число последовательностей с указанными свойствами, равно .

Теорема 1: Число находится как сумма биномиальных коэффициентов:. Если – нечетно, то . Если – четно, то . Иначе: – целая часть числа .



Доказательство: В самом деле, - число всех последовательностей из 0 и 1, в которых никакие две единицы не стоят рядом. Число таких последовательностей, содержащих ровно единиц и нулей, равно , при этом , тогда изменяется от 0 до . Применяя правило суммы, получаем данную сумму.

Это равенство можно доказать иначе. Обозначим:

Из равенства , следует, что . Кроме этого, ясно, что и . Так как обе последовательности и удовлетворяют рекуррентному соотношению , то , и .

Определение 2: Рекуррентное соотношение имеет порядок , если оно позволяет вычислять через предыдущих членов последовательности: .

Например, – рекуррентное соотношение второго порядка, а рекуррентное соотношение 3-го порядка. Соотношение Фибоначчи является соотношением второго порядка.

Определение 3:Решением рекуррентного соотношения является последовательность, удовлетворяющая этому соотношению.

Если задано рекуррентное соотношение ‑ го порядка, то ему удовлетворяют бесконечно много последовательностей, т.к. первые элементов можно задать произвольно. Но если первые элементов заданы, то остальные члены определяются однозначно.

Например, соотношению Фибоначчи кроме рассмотренной выше последовательности 1, 1, 2, 3, 5, 8, 13, 21, ..., могут удовлетворять также и другие последовательности. К примеру, последовательность 2, 2, 4, 8, 12,... строится по тому же принципу. Но если задать начальные члены (их в последовательности Фибоначчи - 2), то решение определяется однозначно. Начальных членов берут столько, каков порядок соотношения.

По известным рекуррентным соотношениям и начальным членам можно выписывать члены последовательности один за другим и таким путем мы можем получить любой её член. Но во многих случаях, нам не нужны все предыдущие члены, а необходим один определенный член. В этом случае удобнее иметь формулу ‑ го члена последовательности.

Мы будем говорить, что некоторая последовательность является решением данного рекуррентного соотношения, если при подстановке этой последовательности соотношение тождественно выполняется.

Например, последовательность является одним из решений соотношения: . Это легко проверить обычной подстановкой.

Определение 4: Решение рекуррентного соотношения ‑ го порядка называется общим , если оно зависит от произвольных постоянных , меняя которые, можно получить любое решение данного соотношения.

Например, для соотношения общим решение будет .

В самом деле, легко проверяется, что оно будет решением нашего соотношения. Покажем, что любое решение можно получить в таком виде. Пусть и – произвольны.

Тогда найдутся такие и , что

Очевидно, для любых , система уравнений имеет единственное решение.

Определение 5: Рекуррентное соотношение называется линейным , если оно записывается в виде:

где - числовые коэффициенты.

Для решения произвольных рекуррентных соотношений общих правил, вообще говоря, нет. Однако для решения линейных рекуррентных соотношений есть общие правила решения.

Рассмотрим сначала соотношение 2-го порядка .

Решение этого соотношения основано на следующих утверждениях.

Теорема 2: Если и - являются решением данного рекуррентного соотношения 2-го порядка, то для любых чисел и последовательность также является решением этого соотношения.

Теорема 3: Если число является корнем квадратного уравнения , то последовательность является решением рекуррентного соотношения .

Из теорем 2, 3 вытекает следующее правило решения линейных рекуррентных соотношений 2-го порядка.

Пусть дано рекуррентное соотношение .

1) Составим квадратное уравнение , которое называется характеристическим для данного соотношения. Найдём все корни этого уравнения (даже кратные и комплексные).

2) Составим общее решение рекуррентного соотношения. Его структура зависит от вида корней (одинаковые они или различные).

а) Если это соотношение имеет два различных корня и , то общее решение соотношения имеет вид .

Действительно, из теорем 2, 3 следует, что - решение и система уравнений

Имеет единое решение, т.к. при условии .

Например, для чисел Фибоначчи, имеем . Характеристическое уравнение имеет вид: . Решая последнее уравнение, получим корни.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московская академия им. С.Ю. Витте

Факультет «Экономика»

Контрольная работа

Работу выполнила:

студентка 1го курса,

дистанционной формы обучения

Висляева М.Н.

г. Москва

При выполнении контрольного задания Вы должны сделать вторичную перегруппировку для несложного примера (пример выбрать самостоятельно) и объяснить, как и при выполнении каких условий справедлив такой перерасчет. При использовании компьютерных программ и более сложного примера указать также эффект и особенности применения ИТ.

В письменном ответе на задание Вы должны:

1. Объяснить связь между формулой сложения дисперсий и корреляционным отношением, разъяснить его статистический смысл.

2. Выполнить сравнение вариации для двух различных распределений с различными средними, объяснить условия сопоставимости при различии средних.

3. Дать наиболее полное объяснение смысла предельной ошибки, связать с понятием репрезентативности выборки и ее необходимым объемом.

4. Объяснить соотношение оценивания неизвестных параметров по МНК и проверку значимости полученных результатов по критериям проверки статистических гипотез.

Перегруппировка ранее сгруппированных статистических данных называется вторичной группировкой. К этому методу прибегают в тех случаях, когда в результате первоначальной группировки нечетко проявился характер распределения изучаемой совокупности.

В этом случае производят укрупнение или уменьшение интервалов. Также вторичная группировка используется для приведения к сопоставимому виду группировок с различными интервалами с целью их сравнения. Рассмотрим приемы вторичной группировки на примере.

Произвести укрупнение интервалов на основе данных таблицы 1:

Таблица 1

Число магазинов

Приведенная группировка недостаточно наглядна, потому что не показывает четкой и строгой закономерности в изменении товарооборота по группам.

Уплотним ряды распределения, образовав шесть групп. Новые группы образованы путем суммирования первоначальных групп (табл. 2).

Таблица 2

Группы магазинов по размеру товарооборота за IV квартал, тыс. руб.

Число магазинов

Товарооборот за IV квартал, тыс. руб.

Товарооборот в среднем на 1 магазин, тыс. руб.

Совершенно четко видно, чем крупнее магазины, тем выше уровень товарооборота.

1. По аналитической группировке можно измерить связь с помощью эмпирического корреляционного отношения. Этот, показатель обозначается греческой буквой з (эта). Он основан на правиле разложения дисперсии, согласно которому общая дисперсия s2 равна сумме внутригрупповой и межгрупповой дисперсий.

Дисперсия результативного признака внутри группы при относительном постоянстве признака-фактора возникает за счет других факторов. Эта дисперсия называется остаточной. Она определяется по формуле:

где у ij - значение признака у для i-й единицы в j-й группе;

J - среднее значение признака в j-й группе;

n j - число единиц j-й группе;

j = 1, 2, 3, ..., т.

Внутригрупповые дисперсии, рассчитанные для отдельных групп, объединяются в средней величине внутригрупповой дисперсии:

Межгрупповая дисперсия относится на счет изучаемого фактора (и факторов, связанных с ним), поэтому эта дисперсия называется факторной. Она определяется по формуле

Правило сложения дисперсий может быть записано:

Эмпирическое корреляционное отношение измеряет, какую часть общей колеблемости результативного признака вызывает изучаемый фактор. Соответственно оно рассчитывается как отношение факторной дисперсии к общей дисперсии результативного признака:

Этот показатель принимает значения в интервале : чем ближе к 1, тем теснее связь, и наоборот.

Таблица 3. Исходные данные

Таблица 4. Рабочая таблица

Средний товарооборот = ?X*f / f= 17370/51 = 340,58 тыс. руб.

Дисперсия равна:

G 2 =? f*(X-Xср) 2 / ? f = 38682,36/51 = 758,48

Среднее квадратическое отклонение:

Коэффициент вариации равен:

V = G / Xср = 27,54/758,48 = 0,081; 8,1%.

Коэффициент вариации меньше 33%, следовательно, совокупность однородна.

Таблица 5. Исходные данные

1) средние затраты времени на проезд к месту работы у рабочих = Х ср =? Xf / ?f = (25*70 + 35*80 + 45*200 + 55*55 + 65*15) / 420 = 41,8 мин.

2) расчет дисперсии

Дисперсия равна:

G 2 =? f отклонение:

3) Коэффициент*(X-Xср) 2 / ? f = 43160,8/420 = 102,8

Среднее квадратическое вариации равен:

V = G / Xср = 10,14/41,8 = 0,24; 24%

Коэффициент вариации меньше 33%, следовательно, рассмотренная совокупность однородна и средняя для нее достаточно типична.

Выборочную совокупность можно сформировать по количественному признаку статистических величин, а также по альтернативному или атрибутивному. В первом случае обобщающей характеристикой выборки служит выборочная средняя величина, обозначаемая, а во втором -- выборочная доля величин, обозначаемая w. В генеральной совокупности соответственно: генеральная средняя и генеральная доля р.

Разности -- и W -- р называются ошибкой выборки, которая делится на ошибку регистрации и ошибку репрезентативности. Первая часть ошибки выборки возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая часть ошибки возникает из-за постоянного или спонтанного несоблюдения принципа случайности отбора. Ее трудно обнаружить и устранить, она гораздо больше первой и потому ей уделяется основное внимание.

Исключительно важную роль для обоснования и применения выборочного наблюдения играет закон больших чисел. Использование законы больших чисел состоит в том, что при определенных условиях и при достаточно большом объеме наблюдений сводные характеристики, полученные на основе выборочного наблюдения, будут мало отличаться от соответствующих характеристик генеральной доверенности. Основываясь на этом, можно, увеличивая объем выборочной совокупности, уменьшить пределы возможных ошибок репрезентативности, довести их до наименьших размеров. С другой стороны, зная пределы ошибок репрезентативности, можно определить необходимую численность выборочной совокупности.

Одной из наиболее важных и ответственных задач при организации и проведении выборочного наблюдения является установление необходимой численности выборочной совокупности, т.е. такой ее численности, которая обеспечивала бы получение данных, достаточно правильно отражающих изучаемые свойства генеральной совокупности.

При этом должно быть учтено: 1) с какой степенью точности следует получить предельную ошибку выборки; 2) какова должна быть вероятность того, что будет обеспечена обусловленная точность результатов выборочного наблюдения; 3)степень колеблемости изучаемых свойств в исследуемой генеральной совокупности.

Это значит, что необходимая численность выборки устанавливается в зависимости от размеров предельной ошибки выборки, от величины коэффициента доверия (t) и от размеров величины дисперсии.

Метод оценивания параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции, называется методом наименьших квадратов.

Суть метода заключается в том, что критерием качества рассматриваемого решения является сумма квадратов ошибок, которую стремятся свести к минимуму. Для применения этого метода требует провести как можно большее число измерений неизвестной случайной величины (чем больше - тем выше точность решения) и некоторое множество предполагаемых решений, из которого требуется выбрать наилучшее. Если множество решений параметризировано, то нужно найти оптимальное значение параметров.

МНК используется в математике, в частности - в теории вероятностей и математической статистике. Наибольшее применение этот метод имеет в задачах фильтрации, когда необходимо отделить полезный сигнал от наложенного на него шума. Его применяют и в математическом анализе для приближённого представления заданной функции более простыми функциями. Ещё одна из областей применения МНК - решение систем уравнений с количеством неизвестных меньшим, чем число уравнений.

Этапы проверки статистических гипотез:

Формулировка основной гипотезы H 0 и конкурирующей гипотезы H 1 . Гипотезы должны быть чётко формализованы в математических терминах.

Задание вероятности б, называемой уровнем значимости и отвечающей ошибкам первого рода, на котором в дальнейшем и будет сделан вывод о правдивости гипотезы.

Расчёт статистики ц критерия такой, что:

её величина зависит от исходной выборки;

по её значению можно делать выводы об истинности гипотезы H 0 ;

сама статистика ц должна подчиняться какому-то известному закону распределения, т.к. сама ц является случайной в силу случайности.

Построение критической области. Из области значений ц выделяется подмножество таких значений, по которым можно судить о существенных расхождениях с предположением. Его размер выбирается таким образом, чтобы выполнялось равенство. Это множество и называется критической областью.

Вывод об истинности гипотезы. Наблюдаемые значения выборки подставляются в статистику ц и по попаданию (или непопаданию) в критическую область выносится решение об отвержении (или принятии) выдвинутой гипотезы H 0 .

дисперсия корреляционный вариация

Размещено на Allbest.ru

...

Подобные документы

    Таблица значений выборки дискретных случайных величин в упорядоченном виде. Таблица интервального статистического ряда относительных частот. Задание эмпирической функции распределений и построение ее графика. Полигон и распределение случайной величины.

    практическая работа , добавлен 26.07.2012

    Числовые характеристики для статистических распределений. Построение интервального вариационного ряда, многоугольника частостей, графика выборочной функции распределения и определения среднего значения выборки и выборочной дисперсии двумя способами.

    презентация , добавлен 01.11.2013

    Среднее значение показателя (среднее арифметическое). Показатели вариации - размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициент вариации. Максимальное и минимальное значение статистического показателя.

    контрольная работа , добавлен 14.11.2008

    Понятие генеральной совокупности, математического ожидания и дисперсии. Обеспечение случайности и репрезентативности выборки в статистическом планировании. Дискретный и интервальный вариационный ряд, точечные оценки параметров распределения признака.

    реферат , добавлен 13.06.2011

    Сущность выборочного исследования. Способы отбора единиц в выборочную совокупность. Средняя и предельная ошибка для показателей средней величины и показателей доли. Определение необходимого объема выборки при заданной предельной ошибке среднего значения.

    презентация , добавлен 16.03.2014

    Формы, виды и способы статистического наблюдения. Виды группировок, их интервал и частота. Структура ряда динамики. Абсолютные и относительные статистические величины. Представление выборки в виде статистического ряда. Точечное и интервальное оценивание.

    курс лекций , добавлен 29.11.2013

    Построение интервальных вариационных рядов по показателям. Вычисление средней арифметической, моды и медианы, относительных и абсолютных показателей вариации. Определение количественных характеристик распределений, построение эмпирической функции.

    курсовая работа , добавлен 11.01.2012

    Диаграмма рассеивания как точки на плоскости, координаты которых соответствуют значениям случайных величин X и Y, порядок ее построения и назначение. Нахождение коэффициентов и построение графика линейного приближения, графика квадратичного приближения.

    курсовая работа , добавлен 03.05.2011

    Упорядочение исходной выборки наработок до отказа. Проверка статистической гипотезы о соответствии экспоненциальному распределению и распределению Вейбулла. Оценивание параметров распределений и показателей безотказности, его главные методы и приемы.

    курсовая работа , добавлен 22.01.2012

    Понятие вариационного ряда, статистического распределения. Эмпирическая функция и основные характеристики математического ожидания выборочной дисперсии. Точечные и интервальные оценки распределений. Теория гипотез - аналог теории доверительных интервалов.

Распределение совокупности на группы, однородные в том или ином отношении, связано с такими действиями, как систематиза­ция, типология, классификация, группировка. Традиционно такое распределение выполняют по следующей схеме: из множества признаков, описывающих явление, выбирают группировочные, а затем совокупность делят на группы и подгруппы в соответствии со значениями этих признаков.

В каждом конкретном исследовании решаются три вопроса:

1) что взять за основу группировки;

2) сколько групп, позиций необходимо выделить;

3) как разделить группы.

Основой группировки может быть любой атрибутивный или ко­личественный признак, имеющий градации.

Промежуток изменений (область существования) признака статистической совокупности

(R=хmах - xmin)

принято называть размахом вариации. Совокупность значений признака статисти­ческой совокупности, принадлежащих отдельному промежутку, принято называть группой Ориентировочно оптимальное коли­чество групп определяется формулой, рекомендованной амери­канским статистиком Стерджессом:

K=1+3.322LgN

где К - число групп (интервалов); N - объем статистической со­вокупности.

Формула Стерджесса пригодна при условии, что рас­пределение единиц совокупности по данному признаку приближа­ется к нормальному, и при этом применяются равные интервалы в группах. Чтобы получить группы, адекватные действительности, необходимо руководствоваться сущностью изучаемого явления (процесса).

Интервалы представляют собой каркас группировки. На прак­тике их образовывают, придерживаясь трех формальных при­нципов: равности интервалов, кратности интервалов, равности частот. Количество групп и величина интервала связаны между собой: чем больше образовано групп, тем меньше ин­тервал, и наоборот. Количество групп зависит от числа единиц обследуемого объекта и степени колеблемости группировочного признака.

Интервалы могут быть равные и неравные . Неравные интер­валы используются, если диапазон вариации признака слишком широкий и распределение значений неравномерно. Формируются они на основе принципа кратности, когда ширина каждого последу­ющего интервала в к раз больше (меньше) предыдущего. Равные интервалы целесообразно применять в тех случаях, когда вариа­ция проявляется в сравнительно узких границах и распределение является практически равномерным. Для группировок с равными интервалами величина интервала

Сравнимость статистических группировок. Вторичная группировка

Иногда возникает необходимость проведения вторичных группировок - образования новых групп на основе ранее осу­ществленной группировки. Такая необходимость может возник­нуть, если имеющиеся группировки не удовлетворяют требова­ниям проводимого анализа (несопоставимы из-за разного числа выделенных групп или неодинаковых границ интервалов). Полу­чение новых групп на основе имеющихся возможно двумя спосо­бами перегруппировки: объединением первоначальных интерва­лов (путем их укрупнения) и долевой перегруппировки (на основе закрепления за каждой группой определенной доли единиц сово­купности).

Пример:

Таблица 2 – Распределение сотрудников предприятия ив уровню дохода

Произведем перегруппировку данных, образовав новые труппы с интервалами до5, 5-10,10-20,20-30, свыше 30 тыс. руб. В первую новую группу войдет полностью первая группа сотрудников и часть второй группы. Чтобы образовать группу до 5 тыс. руб., необходимо от интервала группы взять 1,0 тыс. руб. Величина интервала этой группы составляет 6,0 тыс. руб. Следовательно, необходимо взять от нее 1/6 (1,0:6,0) часть. Аналогичную же часть надо взять от числа работников, т.е. . В первой группе число работающих: 16+3=20 человек. Вторую новую группу образуют работающие второй группы за вычетом отнесенных к первой, то есть 20-3=17-чел. Во вновь образованную третью группу войдут все со­трудники третьей группы и часть сотрудников, четвертой. Для определения этой части от интервала 18-30 (ширина интервала равна 12) нужно добавить к предыдущему 2,0 (чтобы верхняя граница интервала была равна 2,0 тыс. руб.). Следовательно, необходимо, взять часть интервала, равную . В этой группе 74 человека, значит надо взять 74х(1:6)=12 чел. В новую третью группу войдут 44+12 = 56 чел. Во вновь образованную четвертую группу войдут 74-12= 62 чел., оставшихся от прежней четвертой группы. Пятую вновь образованную группу составят работающие пятой и шестой прежних групп: 37+9 = 46 чел. В результате получим следующие новые группы:

Таблица 3 – Новая группировка

4 Закрепление знаний _______

1 В чем заключается процесс группировки

2 Перечислите и охарактеризуйте основные виды группировок

3 Интервал. Виды и формула

4 Формула Стерджесса

5 Перегруппировка

5 Выдача домашнего задания ______

Повторить пройденный материал

Подведение итогов занятия


План занятия №(7) 4

по учебной дисциплине «Статистика»

Группа Дата
Э2-1
Зм2-5

Тема занятия Проведение сводки статистических данных. Группировка и перегруппировка данных

Метод группировок.

Тип занятия урок совершенствования знаний

Вид занятия урок-практическая работа №1

Дидактические цели

Образовательные

знают понятие группировки, виды, цели и задачи, порядок проведения группировки, умеют проводить группировку, перегруппировку статистических данных

Развивающие

классифицируют различные виды группировок, формулируют выводы по результатам проведенной группировки

Воспитывающие

содействуют формированию профессиональной культуры.

Межпредметные связи:

Обеспечивающие дисциплины: АФХД

Обеспечиваемые дисциплины: математика

Методы обучения: практического обучения

Методическое обеспечение занятия: раздаточный материал

Литература:

1 Н.В. Толстик Статистика

2 Е.М. Ефимова Статистика

ХОД УЧЕБНОГО ЗАНЯТИЯ

Организационный момент

Работа с журналом, рапортичкой, проверка готовности группы к уроку

Изучение нового материала

1 Группировка - это процесс образования однородных групп на основе расчленения статистической совокупности на части или объединения изучаемых единиц в частные совокупности по существенным для них признакам.

Признаки, по которым производится распределение единиц наблюдаемой совокупности на группы, называютсягруппировочными признаками.

Классификация группировок:

Структурная группировка характеризует состав однород­ной совокупности по определенным признакам. Например, состав населения региона по месту проживания, по размеру среднедушевого дохода, группировка хозяйств по объему выпущенной продук­ции, структура депозитов по срокам их привлечения.

Типологическая группировка - это распределение качес­твенно неоднородных совокупностей на классы, социально-эко­номические типы, однородные группы. Примером может служить группировка сек­торов экономики, хозяйствующих субъектов по формам собственности: государственная, федеральная, муниципальная, частная, смешанная.

Аналитические группировки предназначены для выявления зависимости между признаками.

Основой группировки может быть любой атрибутивный или ко­личественный признак.

Совокупность значений признака статисти­ческой совокупности, принадлежащих отдельному промежутку, принято называть группой. Ориентировочно оптимальное коли­чество групп определяется формулой, рекомендованной амери­канским статистиком Стерджессом:

K=1+3.322LgN (1)

где К - число групп (интервалов);

N - объем статистической со­вокупности.

Интервалы представляют собой каркас группировки. Количество групп и величина интервала связаны между собой: чем больше образовано групп, тем меньше ин­тервал, и наоборот. Количество групп зависит от числа единиц обследуемого объекта и степени колеблемости группировочного признака.

Интервалы групп могут быть закрытыми (когда указана ниж­няя и верхняя границы) и открытыми (когда указана только одна граница - верхняя или нижняя).

где х min , max – минимальное и максимальное значение признака

n – число групп

h – щаг интервала

Задача 1

Произведите группировку 30 магазинов одного из регионов РФ на 1.01.05, применяя метод группировок.

Таблица 1 – Исходные данные

Среднесписочная численность, чел. Товарооборот, млн. руб.

Решение :

Вкачестве группировочного признака выбираем товарооборот.

Теперь необходимо образовать 4 группы с равными интервалами. Величина интервала определяется по формуле:

где h - шаг интервала

n - число групп

Обозначим границы групп:

2100-7350 – 1-ая группа (2100+5250)

7350-12600 – 2-я группа (7350+5250)

12600-17850 – 3-ая группа (17850+5250)

17850-23100 – 4-ая группа (17850+5250)

После того, как определено число групп и группировочный признак, необходимо определить показатели, которые характеризуют группы и их величины. Показатели разноситься по группам и подсчитываются итоги.

Таблица 2 – Группировка магазинов по величине товарооборота

Таблица 3 – Группировка магазинов по величине товарооборота (% к итогу)

Вывод : из таблицы 3 видно, что преобладает группа с товарооборотом в интервале 2100-7350 – 60%.

Провести группировку коммерческих банков одного из регионов РФ на 1.01.06

Таблица 4 – Исходные данные

Номер банка Капитал Рабочие активы Уставный капитал
207,7 2,48 1,14
200,3 2,40 1,10
190,2 2,28 1,05
323,0 3,88 1,88
247,1 2,96 1,36
177,7 2,12 0,97
242,5 2,90 1,33
182,9 2,18 0,99
315,6 3,78 1,73
183,2 2,20 1,01
320,2 3,84 1,76
207,3 2,48 1,14
181,0 2,17 0,99
172,4 2,06 0,94
234,3 2,81 1,29
189,5 2,27 1,04
187,7 2,24 1,03
166,9 1,99 0,91
157,7 1,88 0,86
168,3 2,02 0,93
224,4 2,69 1,23
166,5 1,99 0,91
198,5 2,38 1,09
240,4 2,88 1,32
229,3 2,75 1,26
175,2 2,10 0,96
156,8 1,87 0,86
160,1 1,92 0,88
178,7 2,14 0,98
171,6 2,05 0,94

Решение:

В качестве группировочного признака возьмем капитал банка.

Образуем четыре группы банков с разными интервалами. Величину интервала определяем по формуле:

где h - шаг интервала

х max , x min – минимальное и максимальное значение группировочного признака

n - число групп

Теперь обозначим границы групп:

1 – я группа 156,0-197,8
2 – я группа 1297,8-239,6
3 – я группа 239,6-281,4
4 – я группа 281,4-323,2

После того, как определен группировочный признак – капитал, шаг интервала и образованы группы, мы определим показатели, которые характеризуют группы и их величины по каждой группе.

Таблица 5 –– Группировка коммерческих банков по величине капитала

Группы банков по величине капитала Число банков Капитал Активы Работающие активы
156,0-197,8 2699,5 35,48 16,25
197,8-239,6 1501,8 17,99 8,25
239,6-281,4 730,0 8,74 4,01
281,4-323,2 958,8 11,5 5,37
Итого 6157,1 73,71 33,88

Структурная группировка коммерческих банков будет иметь вид:

Таблица 6 – Группировка коммерческих банков по величине каритала (% к итогу)

Группы банков по величине капитала Число банков, % к итогу Капитал,% к итогу Активы, % к итогу Работающие активы, % к итогу
156,0-197,8 56,7 48,2 48,1 48,0
197,8-239,6 23,3 24,4 24,4 24,3
239,6-281,4 10,0 11,9 11,9 11,8
281,4-323,2 10,0 15,5 15,6 15,9
Итого

Вывод:

Из таблицы 6 видно, что в основном преобладают мелкие банки – 56,7 %, на их долю приходится 48,2% капитала. Крупные и средние банки занимают по 10%, доля их капитала составила 15,5 и 11,9 % соответственно.

Закрепление знаний

1 В чем состоит значение метода группировок в анализе статистических данных?

2 Что представляет собой группировка?

3 Виды группировок

4 Охарактеризуйте каждый вид группировки

5 Понятие интервала

6 Виды интервалов

7 Формула интервала

4 Выдача домашнего задания

Записать в тетрадь примеры количественных и качественных признаков, которые могут быть положены в основание группировки для предприятия (3-5 примеров)

Доделать практическую работу