Влияние невесомости на человека. Реакции организма на невесомость. Влияние невесомости на пищеварение

Астронавты на Международной космической станции

Невесомость - состояние тела, при котором отсутствует внутреннее напряжение, обусловленное силой тяжести. Хотя термин нулевая гравитация часто используется как синоним, невесомость на орбите не является результатом отсутствия силы тяжести или даже ее значительному уменьшению (фактически, сила притяжения Земли на высоте 100 км только на 3% меньше, чем на поверхности). Причина невесомости заключается в том, что сила тяжести придает телу и его опоре одинаковое ускорение. Этот вывод истинный для всех тел, движущихся только под действием силы тяжести.


Влияние невесомости на здоровье человека

После появления космических станций, которые имеют возможность для жизни людей в течение долгих промежутков времени, было продемонстрировано, что пребывание в невесомости имеет некоторые вредные последствия на здоровье человека. Люди хорошо адаптируются к физическим условиям на поверхности Земли, но после длительного периода пребывания в среде невесомости различные физиологические системы начинают меняться и атрофироваться. Хотя эти изменения являются обычно временными, они могут привести к более серьезным болезням.

Во время первых часов в невесомости примерно 45% всех людей испытывают симптомов синдрома космической адаптации (СКА), также известный как космическая болезнь. К признакам космической болезни относятся тошнота и рвота , головокружение , головная боль , вялость или полное недомогание. Первый случай СКА был уведомлен космонавтом Германом Титовым в году. Продолжительность космической болезни меняется, но не было зафиксировано случаев, когда она продолжалась более 72 часов.

Значительные негативные воздействия от долгосрочной невесомости - атрофия мышц и ухудшение скелета . Эти эффекты можно минимизировать путем осуществления специальных упражнений. Другими существенными последствиями является перераспределение жидкостей в теле, замедление сердечно-сосудистой системы , уменьшение производства эритроцитов , нарушения равновесия и ослабление иммунной системы . Менее опасными последствиями, которые исчезают после возвращения на Землю, является потеря массы тела, носовая гиперемия , нарушение сна, избыточное скопление газов в кишечника и отечность лица.

Многие из осложнений, вызванных невесомостью, похожи на признаки старения . Ученые считают, что исследование пагубных воздействий невесомости может извлечь пользу для медицины, например, возможно лечение остеопороза и улучшенное медицинское обслуживание о старых людях, прикованных к постели.


Эффекты на нечеловеческие организмы

Российские ученые наблюдали различия между тараканами , рожденными в космосе и их земных родственниками. Выращенные в космосе тараканы росли быстрее и также были большими и сильными.

Яйца домашней птицы, которые были оплодотворены в микрогравитации очень редко развивались должным образом.

Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем Лисицын В. Ю.

Глава 6. Влияние гравитации на земные живые организмы

Полагают, что силы гравитации принимают активное участие в эволюции, влияют на развитие растений и животных, включая отдельные клетки. По-видимому, существенно было влияние гравитации при выходе организмов на сушу, так как это привело к их большой перестройке – уменьшению размеров тела, усовершенствованию энергетической базы и т. д.

Ученые считают, что этапы вращения вокруг центра галактики можно сопоставить с различными этапами развития органического мира и изменением гравитационного поля, особенно с различными критическими периодами. Так, гибель гигантских рептилий может связываться в числе других гипотез с резким изменением величины гравитационного поля. Однако при этом не исключают возможность существования и других причин – изменение магнитного поля, влияние слоя озона и т. д. Какой фактор преобладает, пока недостаточно ясно. Тем не менее, все ученые признают тот факт, что гибель группы животных происходит в результате изменения характеристик среды их обитания.

На Земле нет растений и животных, нейтральных по отношению к действию силы тяжести. Известно, что организмы имеют специальные органы ориентации. У одноклеточных эту функцию берут на себя отдельные органеллы внутри клетки – митохондрии, аминопласты, пищевые вакуоли и др.

Еще 100 лет тому назад Ч. Дарвин так описывал свои наблюдения: «Если поместить побег какого-нибудь обыкновенного растения в темноте, установив его в наклонном положении в стакане с водой, то верхушка через несколько часов загнется кверху, а если затем перевернуть побег (верхней стороной вниз), то наклоненный книзу побег перегнется в обратную сторону… Направляющим стимулом в этом случае, без сомнения, служат действующие силы тяжести».

Сегодня хорошо известно о геотропизме – свойстве растений принимать определенное положение под влиянием земного притяжения. Это свойство жизнедеятельности растений и направляет стебли всегда вверх, а корни – вниз.

Многочисленные опыты, проделанные Ч. Дарвином, обнаружили обстоятельство, настолько поразившее ученого, что он признал кончик корешка «самым удивительным образованием у растений». Оказалось, что гравитационное воздействие воспринимает только самая крайняя часть корня длиной всего в несколько десятых долей миллиметра. Но изгибается при этом не сам кончик, а соседний участок, значительно от него отстоящий. В связи с этим ученый сделал вывод о том, что кончик корня передает «некоторое влияние или стимул», который и заставляет корень изгибаться.

Оставляя корень в несвойственном ему горизонтальном положении час – полтора, т. е. на время, достаточное, для того чтобы кончик успел передать свои необычные «ощущения», исследователь затем отрезал чувствительную верхушку. Потом растение переводил в нормальное, вертикальное положение, и тем не менее, его корешок уже без видимых причин, как бы «по памяти» изгибался под прямым углом. Дарвин приводит такую обратную аналогию: «Чтобы найти что-нибудь в этом роде в царстве животных, мы должны были бы предположить, что животное, лежа на земле, решило подняться в определенном направлении, и что после того, как голова его была отрезана, некоторый импульс продолжал очень медленно распространяться по нервам к соответствующим мускулам, так что через несколько минут обезглавленное животное поднялось в первоначальном направлении».

Конечно, это сравнение растения с животным не более чем нарочито яркая иллюстрация, но мысль о действительном сходстве движения растительных и животных организмов волновала ученого. «Нельзя не изумляться, – пишет он, – сходству между описанными выше движениями растений и многими действиями, производимыми бессознательно низшими животными».

Англичанин Т.Э. Найт сделал огород, используя обод колеса действующей ветряной мельницы, где размещались подопытные растения. Он убедился, что семена фасоли дали ростки по направлению к ступице колеса, а корни – наружу. ВРАЩЕНИЕ КОЛЕСА ДЕЙСТВОВАЛО на РАСТЕНИЯ также, КАК СИЛА ТЯЖЕСТИ. Опыт был поставлен для проверки гипотез, высказанных философами. Французские материалисты XVIII века придавали большое значение силе тяжести и считали ее единственной причиной, которая вынуждает корень направлять свой рост к центру планеты, а стебель – наружу.

Так был фактически изобретен КЛИНОСТАТ, который и сейчас используется в лабораториях для изучения влияния силы тяжести на растения. При работе на клиностате растения размещаются в пробирках по краям медленно вращающегося диска, а пробирки, в свою очередь, тоже вращаются. Вращение колеса создает центробежную силу, моделирующую силу тяжести. Вращение пробирок исключает действие на растение силы тяжести. Растения, находящиеся во вращающихся пробирках, как бы теряют способность ориентироваться, запутываются в ориентировке по отношению к «верху» и «низу».

В начале 20 столетия были обнаружены особые клетки в чехликах корешков и верхушках самых первых листков, устройство которых было похоже на органы равновесия беспозвоночных животных, так называемые статосциты. В основе чувства клеток, реагирующих на силу тяжести, лежит подвижное крахмальное зерно: перемещаясь под действием силы тяжести, оно оказывает давление на протоплазму, что ощущается клеткой. Дальше действие силы тяжести ведет к изгибу стебля. Примерно 30 лет назад ученые выяснили, в чем дело: оказывается, верхушки ростков вырабатывают особое вещество ауксин, являющийся регулятором роста. С его помощью объясняется искривление стебля – неравномерное распределение ауксина ведет к изменению скорости роста тех или иных частей растения. Дарвин был прав в своих тонких наблюдениях за природой.

Изменяя скорость вращения колеса клиностата, можно ослаблять или, наоборот, усиливать действие силы тяжести. При этом выяснилась очень большая чувствительность растений к полю силы тяжести – даже когда центробежная сила становилась в 10 тысяч раз меньше поля силы тяжести Земли, растения ее чувствовали. Растения в какой-то степени страхуются и на случай резких изменений силы тяжести, которые могут встретиться в их жизни. Ослабление влияния силы тяжести, моделируемой при вращении колеса и пробирок, показало, что у растений в пробирках после всходов замедляется рост стеблей листьев, а потом некоторые из них пожелтели и завяли. Плоды образовались лишь на половине растений. Выжили те растения, которые своими чувствительными датчиками ощутили небольшое действие силы тяжести. Растения, которые не смогли этого сделать и приняли вращение за полную невесомость, погибли. Эта работа выполнена группой литовских ботаников под руководством А.И. Меркиса.

Одним из первых ученых, обративших внимание на роль сил гравитации, особенно космических сил, как фактора, оказавшего влияние на живые организмы, был великий русский ученый К.Э. Циолковский. Он писал, что «даже маленькая сила тяжести может быть полезной для растений». И его предвидение оказалось справедливым. Полеты в космос показали, что влияние гравитации на рост растений очень значительно, практически в целом подтвердились лабораторные опыты на клиностате, где растения совершали сложные движения.

По словам Э. Синиоста, сила тяжести служит как бы остовом, в отношении к которому регулируется весь характер роста растений. Высказываются соображения о том, что именно из-за силы тяжести мы видим леса и поля такими, какие они есть. Отметим, однако, что другие ученые говорят о преобладающем действии электромагнитного поля. Скорее всего, все поля своими совместными действиями определяют облик окружающего нас мира.

В то же время известны исследования о влиянии сил гравитации на организм позвоночных животных. В связи с этим Г.С. Франтов (1994 г.) в своей работе писал: «П.К. Коржуев выявил ряд конкретных путей воздействия гравитации на их организмы. В основу исследования был положен факт о крови, о ее составных частях – эритроцитах и гемоглобине – и органах, их производящих. Ученые долго думали о таком факте: почему водные позвоночные – рыбы имеют небольшое количество крови, небольшое количество гемоглобина, тогда как позвоночные животные, живущие в условиях суши, обладают существенно большим количеством крови и гемоглобина. Возник еще вопрос, почему выход на сушу позвоночных животных привел к увеличению крови по сравнению с тоже позвоночными, но рыбами?

Вот тут и появилась гипотеза о возникновении кроветворной функции скелета и о гравитации как о кроветворной функции скелета. С физической точки зрения, количество гемоглобина в организме характеризует энергетический баланс организма.

Наблюдаемые параметры крови, гемоглобина и веса скелета показывают, что рыбы обладают существенно меньшим количеством крови и гемоглобина, птицы и сухопутные млекопитающие имеют в 5–6 раз большее количество крови и гемоглобина. Наблюдаемое соотношение в обеспечении гемоглобином рыб и наземных животных свидетельствует о том, что энергетическая потребность рыб в 5–6 раз меньше по сравнению с более молодыми представителями – птицами и млекопитающими. Объяснение этому факту П.К. Коржуев находит в том, что в воде и на суше имеет место различное действие гравитационных сил.

Мы знаем, что при купании в соответствии с законом Архимеда в воде значительно легче передвигаться, чем на суше; в водной среде организмы из-за высокой плотности воды как бы взвешены, поэтому им не приходится затрачивать энергию на поддержание собственного тела, в отличие от наземных собратьев. Различие в поведении животного в воде и на суше послужило отправной точкой в исследованиях о выявлении конкретных путей воздействия сил гравитации.

Рыбы, как водные животные менее обеспечены гемоглобином, чем наземные животные. Очагами синтеза гемоглобина у рыб является селезенка и почки, тогда как у позвоночных – скелет, а именно его костномозговая часть. Сразу же возникает вопрос, почему произошла замена органов синтеза гемоглобина и его носителей – эритроцитов? Почему природа отказалась от более простого способа усиления деятельности той же селезенки или почки при переходе позвоночных животных на сушу?

Мы уже сталкивались с изменениями функций живой ткани, она всегда находит нагрузку для работы, соответствующую имеющимся возможностям.

Однако увеличение объема почек и селезенки, связанное с усилением их работы, могло неблагоприятно сказаться на нормальной работе других органов, а с другой стороны, увеличенные почки и селезенка при работе на суше не смогли бы нормально работать из-за необходимости преодолевать гравитационное тяготение при движении организма. В наземных условиях нормально и усиленно функционировать могут органы синтеза гемоглобина, охраняемые самим скелетом, поскольку он выносит основную нагрузку от действия сил тяжести в наземных условиях. Более того, действие органов синтеза гемоглобина – костного мозга – регулируется по мере изменения нагрузок на разные части скелета.

…Итак, при освоении суши скелет взял новую функцию – он стал новым очагом кроветворения. О мощности кроветворной функции скелета высших представителей позвоночных животных – птиц и млекопитающих – можно судить из следующих цифр: на долю кроветворной части скелета приходится 45 % веса скелета и до 7 % веса тела, а на долю собственно костной части приходится в этом случае лишь 55 % всего скелета. Наибольшее количество костномозгового вещества по отношению к весу скелета свойственно наиболее активным и подвижным представителям среди млекопитающих, наименьшее количество – самым пассивным по подвижности.

На этом основании П.А. Коржуевым был выдвинут тезис, по которому все способы передвижения животных, в первую очередь наземных позвоночных, представляют собой не что иное, как способы преодоления сил гравитации, требующие в каждом отдельном случае особых затрат энергии. Силы гравитации представляют при этом как один из самых мощных факторов, определяющих эволюцию наземных позвоночных животных.

Сегодня мы сталкиваемся с тем, что невесомость резко действует на космонавтов, на растения, с которыми делаются опыты, и на кристаллы. Но и здесь мы сталкиваемся с несколько изолированным подходом: а электромагнитное поле? Ведь оно тоже действует на воде и на суше, и в космосе, и во всех случаях несколько по-разному, но в конечном случае мы имеем дело все же с общим итогом.

Интересно, что, используя анализ внешних воздействий, К.Э. Циолковский разбирает возможное действие поля. Он пишет очень интересно: «Животное – есть сложное сочетание из твердых, полутвердых, жидких и газообразных тел.

Конечный органический продукт, поэтому будет зависеть от тяжести и даст при малой тяжести огромные тела.

Чем плотнее атмосфера, тем размеры летающих животных будут больше»».

В то же время необходимо помнить, что, кроме пятен и вспышек на Солнце, большое значение для жизнедеятельности живых организмов имеют воздействия сил гравитации Солнца, Земли и Луны. Так, показано (В.И. Хаснулин, 1989 г.), что из имевших место двадцати землетрясений в текущем столетии, лишь три совпадают с возмущениями на Солнце (1968, 1970, 1989), а остальные нет. Предполагается, что в жизнедеятельности организмов, крупнейших, глобальных переменах на Земле большую роль играют силы гравитации Солнца, Луны и других планет. Считают, что именно в периоды возмущения гравитационных сил, связанных с неравномерным ритмом притяжения Земли Солнцем, Луной и планетами, и возникают изменения в погоде, геомагнитном поле, а также здоровье людей; в дни гравитационных возмущений увеличивается количество людей со стенокардией, гипертоническими кризами, ухудшается психофизиологическое состояние человека, меняются показатели метаболизма. Учеными показано, что гравитационные возмущения несут увеличение атерогенных липидов в крови, приводят к функциональному иммунодефициту. По мнению В.И. Хаснулина (из СССР), Земля движется неравномерно, в виде «скачков» по орбите вокруг Солнца и именно в периоды торможения, резких толчков и возникают критические ситуации для организмов.

Из книги Мухтасар «Сахих» (сборник хадисов) автора аль-Бухари

Глава 310: Когда находящимся позади имама следует совершать земные поклоны? 388 (690). Сообщается, что аль-Бара бин ‘Азиб, да будет доволен им Аллах, сказал: «Когда посланник Аллаха, да благословит его Аллах и приветствует, произносил слова “Да услышит Аллах того, кто воздал Ему

Из книги Достижение цели (сборник хадисов) автора Мухаммед

Глава 8 Земные поклоны для невнимательных и прочие 326.Передают, что ‘Абдуллах ибн Бухейна, да будет доволен им Всевышний Аллах, рассказывал:«Однажды во время полуденного намаза после первых двух рак‘атов Пророк не сел для чтения ташаххуда, а встал, и люди встали вслед за

Из книги Доказательства существования Бога. Аргументы науки в пользу сотворения мира автора Фомин А В

ЧУДЕСА СВЕТА И ГРАВИТАЦИИ Парадокс света «О свете было так много написано и сказано, что люди и в самом деле думают, что они уже все о нем знают. Что же касается вопроса, заданного Богом многострадальному Иову: «По какому пути разливается свет?», то вопрос этот еще ждет

Из книги Почему человечество приближает конец света? Пути выхода из трагической ситуации на земле автора Лисицын В. Ю.

О гравитации «Нам всем так хорошо известна сила тяжести, а вот природа ее загадочна до сих пор. Неизвестен и механизм ее действия. Если природа гравитации корпускулярная, а корпускулы, так называемые гравитоны, - материальны, как тогда объяснить, что при коллапсе

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 3. Проблема вредного влияния космической информации на земные организмы Понятие «космическая информация»Прежде чем перейти к рассмотрению влияния космической информации небесных тел (звезд, планет и т. д.) на земные живые организмы, включая человека, нам

Из книги Мастера иллюзий. Как идеи превращают нас в рабов автора Носырев Илья Николаевич

Часть 6. Влияние ритмов вселенной на земные организмы Космос – это огромное живое тело, частью которого мы являемся. Солнце – большое СЕРДЦЕ, пульсации которого проходят по нашим мельчайшим сосудам. Луна – большой нервный центр, обрекающий нас на вечный трепет. Кто

Из книги Открытая тайна автора Вэй У Вэй

Глава 2. Влияние Солнца на живые организмы Земли Что же может происходить в нашем организме во время повышенной солнечной активности и какая существует от нее защита? Чтобы ответить на этот вопрос, необходимо иметь определенное представление о механизмах повреждения

Из книги Христианство и религии мира автора Хмелевский Генрик

Глава 3. Влияние естественного радиационного фона Земли на живые организмы «И с детства раннего уже я ощущал, что организм мой бесчисленным числом тончайших нитей связан с внешним миром». А.Л.Чижевский Основной вклад в изучение этой проблемы внесли ученые мира, имеющие

Из книги Книга Урантии автора жители Небесные

Глава 4. Влияние естественного радиационного фона земли на живые организмы Особый интерес представляют взгляды относительно роли радиации в естественном внутривидовом отборе живых организмов. В связи с этим Е.П. Подрушняк(1993 г.) писал: «Фундаментальные Физические Силы

Из книги Люди Грузинской Церкви [Истории. Судьбы. Традиции] автора Лучанинов Владимир Ярославович

Глава 5. Влияние земного и искусственного электромагнитных полей на живые организмы В XX веке накоплено большое количество научных исследований, позволяющих глубже познать биологическую сущность влияния земного и искусственного электромагнитных полей на живые

Из книги автора

Глава 2 Мемы - «живые» культурные идеи Что предполагает каждая сила природы? Она хочет воспроизвести себя самое! Мейстер Экхарт Человеку, получившему классическое гуманитарное образование, мысль, что у элементов культуры могут быть какие-то собственные эволюционные

Из книги автора

30. «Живые, живые, о!» Несомненно, сейчас растет тенденция преувеличивать важность самого факта жизни - нашего видимого существования как индивидуальных феноменов. Фразы «у нас только одна жизнь» и «мы должны ценить ее» звучат почти как поговорки и понятны всем.Откуда

Из книги автора

Из книги автора

1. КОНТУР ДУХОВНОЙ ГРАВИТАЦИИ Всё, что говорится об имманентности, вездесущности, всемогуществе и всеведении Бога, одинаково справедливо и в отношении Сына в сферах духа. Наблюдаемая во всём творении чистая и всеобщая духовная гравитация, этот исключительно духовный

Из книги автора

6. КОНТУР ГРАВИТАЦИИ РАЗУМА Третий Источник и Центр - всеобщий интеллект - лично осознает каждый разум, каждый интеллект во всём творении и поддерживает личную и совершенную связь со всеми физическими, моронтийными и духовными разумными созданиями необъятных

Энциклопедичный YouTube

  • 1 / 5

    В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

    Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя , предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также - процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

    Воздействие на организм человека

    При переходе из условий земной гравитации к условиям невесомости (в первую очередь - при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации .

    При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер .

    Первое и самое очевидное последствие невесомости - стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма . Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин) .

    Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности .

    Вес и гравитация

    Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения. Это не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 / ², что всего лишь на 10 % меньше, чем на поверхности Земли . Космонавты находятся в состоянии свободного падения (это и есть невесомость). Но при этом удерживаются на орбите благодаря первой космической скорости .

    Невесомость на Земле

    На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолет под воздействием одной лишь силы земного притяжения. Эта траектория является параболой при небольших скоростях движения, из-за чего её иногда ошибочно называют «параболической»; в общем случае траектория представляет собой эллипс или гиперболу.

    Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолет покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе, а нить не была натянута. Для достижения этого эффекта самолёт должен иметь постоянное ускорение g, направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она имеет специальное мягкое покрытие на стенах, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

    Подобное чувство невесомости человек испытывает при полетах рейсами гражданской авиации во время посадки. Однако в целях безопасности полета и из-за большой нагрузки на конструкцию самолета, гражданская авиация сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полета в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

    Утверждения, что самолет для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова » - не более чем миф. Тренировки выполняются в слегка модифицированных серийных машинах пассажирского или грузового класса, для которых фигуры высшего пилотажа и подобные режимы полета являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному разрушению несущих конструкций.

    Состояние невесомости можно ощутить в начальный момент

    Мы привыкли к тому, что все предметы вокруг нас имеют вес. Происходит это потому, что сила гравитации притягивает их к Земле. Даже если мы летим в самолёте или прыгаем с парашютом, вес никуда от нас не девается. Но что же произойдёт, если вес всё же исчезнет, когда это бывает и какие интересные явления наблюдаются в условиях невесомости? Обо всём этом — в данном посте.

    Закон всемирного тяготения, открытый ещё Ньютоном, гласит, что все тела, имеющие массу, притягиваются друг к другу. Для тел с маленькой массой такое притяжение практически не заметно, но если тело имеет большую массу, такую, как наша планета Земля (а её масса в килограммах выражается 25-значным числом), то притяжение становится заметным. Поэтому все предметы притягиваются к Земле — если их поднять, они падают вниз, а когда упадут, сила тяжести прижимает их к поверхности. Это и приводит к тому, что всё на Земле имеет вес, даже воздух прижимается к Земле силой тяжести и своим весом давит на всё, что находится на её поверхности.

    Когда вес может исчезнуть? Либо тогда, когда сила тяжести вообще не действует на тело, либо тогда, когда она действует, но телу ничто не мешает свободно падать. Хотя с удалением от Земли сила притяжения к ней уменьшается, даже на высоте в сотни и тысячи километров она остаётся ещё большой, поэтому избавиться от силы тяжести непросто. А вот оказаться в состоянии свободного падения вполне возможно.

    Например, можно оказаться в состоянии невесомости, если оказаться в самолёте, движущемся по специальной траектории — так же, как тело, которому не мешало бы сопротивление воздуха.

    Выглядит всё это так:

    Конечно, долго по такой траектории самолёт двигаться не может, т. к. врежется в землю. Поэтому с длительным пребыванием в условиях невесомости сталкиваются только космонавты, живущие на орбитальной станции. И им приходится привыкать к тому, что многие привычные нам явления в условиях невесомости происходят совсем не так, как на Земле.

    1) В невесомости можно легко перемещать тяжёлые предметы и перемещаться самому, приложив лишь небольшое усилие. Правда, по этой же причине любые предметы нужно специально закреплять, чтобы они не летали по орбитальной станции, а на время сна космонавты забираются в специальные мешки, прикреплённые к стене.

    Для того, чтобы научиться двигаться в невесомости, нужно время, и у новичков это получается не сразу. «Они толкаются со всей силы и ударяются головой, путаются в проводах и прочее, так что это источник бесконечного веселья» — сказал на эту тему один из американских астронавтов.

    2) Жидкости в невесомости принимают шарообразную форму. Воду не получится, как мы привыкли на Земле, хранить в открытой посуде, вылить из чайника и налить в чашку, даже вымыть руки не получится привычным для нас способом.

    3) Пламя в условиях невесомости очень слабое и со временем затухает. Если в обычных условиях зажечь свечу, она будет гореть ярко, пока не сгорит. Но происходит это потому, что нагретый воздух становится легче и поднимается вверх, освобождая место для свежего воздуха, насыщенного кислородом. В невесомости конвекции воздуха не наблюдается и со временем кислород вокруг пламени выгорает и горение прекращается.

    Горение свечи в обычных условиях и в невесомости (справа)

    Но постоянный приток кислорода нужен не только для горения, но и для дыхания. Поэтому если космонавт неподвижен (например, спит), то в отсеке должен работать вентилятор, чтобы перемешивать воздух.

    4) В невесомости можно получать уникальные материалы, которые трудно или вообще невозможно получить в земных условиях. Например, сверхчистые вещества, новые композиционные материалы, большие правильные кристаллы и даже лекарства. Если бы удалось снизить стоимость доставки грузов на орбиту и обратно, это решило бы многие технологические проблемы.

    5) В невесомости на борту орбитальной станции были впервые обнаружены некоторые ранее неизвестные эффекты. Например, образование структур, напоминающих кристаллические, в плазме, или «эффект Джанибекова» — когда вращающийся предмет через определённые промежутки времени внезапно меняет ось вращения на 180 градусов.

    Эффект Джанибекова:

    6) Невесомость оказывает существенное влияние на человека и живые организмы. Хотя к жизни в невесомости можно приспособиться, сделать это не так просто. Оказавшись в состоянии невесомости впервые, человек теряет ориентацию в пространстве, возникает головокружение, т. к. вестибулярный аппарат перестаёт нормально работать. Другие изменения в организме включают перераспределение жидкости в организме, из-за чего отекает лицо и закладывает нос, из-за пропадания нагрузки на позвоночник увеличивается рост, а при длительном пребывании в невесомости атрофируются мышцы и теряют прочность кости. Чтобы уменьшить негативные изменения, космонавтам приходится регулярно выполнять специальные упражнения.

    После возвращения на Землю космонавтам приходится вновь приспосабливаться к прежним условиям не только физически, но и психологически. Они могут, например, по привычке оставить стакан в воздухе, забыв, что он упадёт.

    «Физика невесомости». Как работают законы физики в условиях невесомости, рассказывают космонавты на МКС:

    Реакции организма на невесомость

    Первые научно-теоретические разработки вопросов, связанных с оценкой возможного влияния на организм человека отсутствия силы тяжести, были проведены К. Э. Циолковским (1883, 1911, 1919). В трудах этого выдающегося ученого, признанного «отцом космонавтики», выдвигаются предположения о том, что при невесомости изменится двигательная функция, пространственная ориентировка, могут возникнуть иллюзорные ощущения положения тела, головокружения, приливы крови к голове. Длительное отсутствие тяжести, по его мнению, может постепенно привести к изменению формы живых организмов, утрате или перестройке некоторых функций и навыков. Циолковский проводил аналогии между состоянием невесомости и условиями, с которыми человек сталкивается на Земле (погружение в воду, пребывание в постели). Он указывал, в частности, что поскольку постоянное пребывание в постели может быть вредным для здоровых людей, то и в «среде без тяжести» можно ожидать развития аналогичных нарушений. И хотя автор предполагал возможность приспособления человека к этому состоянию, «на всякий случай» он предусматривал необходимость создания искусственной тяжести за счет вращения космического корабля. Трудами Циолковского, по существу, были предопределены основные направления экспериментальных исследований влияния невесомости на биологические объекты (изучение сенсорных, двигательных, вегетативных реакций), заложены отправные положения, необходимые для понимания механизмов возникновения тех или иных изменений в условиях невесомости, определен наиболее радикальный путь к предупреждению такого рода расстройств и указаны возможные способы имитации невесомости в наземных условиях.

    Началом систематических экспериментальных исследований влияния невесомости на биологические объекты было осуществление у нас и в США (начиная с 1951) серии вертикальных запусков ракетных систем с подопытными животными на борту. Биологические исследования были затем продолжены с помощью искусственных спутников Земли. Результаты исследований, выполненных при суборбитальных и орбитальных полетах подопытных животных, явились той основой, на которой был сформулирован вывод о возможности осуществления космического полета человека. В порядке подготовки к этому важному и ответственному событию были проведены исследования влияния на организм человека кратковременной (до 45 с) невесомости, воспроизводимой при полетах самолета по параболической траектории. После выдающегося орбитального полета Ю. А. Гагарина 12 апреля 1961 года начался период бурного освоения человеком космического пространства. Возможности проведения медицинских и физиологических исследований влияния невесомости на организм человека существенно возросли, однако одновременно повысилось и значение прикладных медицинских задач, связанных с прогнозированием, обеспечением безопасности и эффективности еще более продолжительных перспективных полетов.

    Последовательное увеличение продолжительности космических экспедиций само по себе создает достаточно хорошие предпосылки для суждения о возможности и безопасности очередных более длительных полетов. Однако этот путь, по-видимому, не может быть единственным в формировании прогноза. Для него, в частности, характерны и довольно существенные ограничения, связанные с небольшим количеством наблюдений, методов исследования, отсутствием опережающей информации, а следовательно, и наличием известного риска при планировании длительных полетов. Кроме того, в этом случае неизбежны и некоторые другие недостатки: отставание в создании защитных мероприятий, большие затраты времени, неэкономичность. Указанные ограничения удачно восполняются за счет использования чисто экспериментального подхода к изучению проблемы невесомости.

    У нас в стране широко развернута экспериментальная работа с лабораторным моделированием невесомости (погружение в воду, пребывание в горизонтальном положении, ограничение подвижности). В такого рода экспериментах изучаются эффекты, обусловленные снижением величины и отсутствием колебаний гидростатического давления крови, уменьшением весовой нагрузки на опорные структуры, состоянием гиподинамии, т. е. теми факторами, значение которых в развитии нарушений, обусловленных влиянием невесомости на организм, по-видимому, является ведущим.

    С помощью иммерсионной модели достаточно оперативно воспроизводятся сдвиги со стороны водно-солевого обмена, ортостатической устойчивости и физической работоспособности. Однако для решения вопроса о влиянии на организм длительной невесомости иммерсионная модель неприемлема. В значительно большей степени этим задачам отвечает состояние гиподинамии в сочетании с горизонтальным положением. Оно в достаточной мере воспроизводит первичные реакции, связанные со многими сторонами действия невесомости, и не содержит сколько-нибудь выраженных побочных эффектов, способных существенно исказить течение основного синдрома. В силу этого названная модель, очевидно, не вносит каких-либо ограничений и в сроки проведения эксперимента, кроме, естественно, тех, которые вытекают из особенностей развития воспроизводимого состояния. С экономической точки зрения путь, основанный на лабораторном моделировании невесомости, является вполне приемлемым, что, в свою очередь, создает предпосылки для проведения многочисленных и разнообразных серий экспериментов и накопления статистического материала. В широко практикуемых экспериментах на животных изучается влияние гиподинамии на клеточные, тканевые структуры, обменные процессы, системные сдвиги, на устойчивость к различным экстремальным воздействиям.

    Разумеется, методы экспериментального моделирования невесомости позволяют получить далеко не полный эквивалент реального фактора. Они не воспроизводят, в частности, специфических для невесомости сенсорных реакций. Тем не менее приемлемость методов лабораторного моделирования подтверждается большим количеством сходных черт между реакциями на реальную и имитированную невесомость. Так, прогнозы, сделанные на основе экспериментов с лабораторным моделированием невесомости, в основном подтвердились результатами проведенных космических полетов, что свидетельствует о достаточной адекватности описанных моделей состоянию невесомости. Важно, что модели могут использоваться также в качестве основы при решении таких практически важных вопросов, как разработка и испытание средств профилактики неблагоприятного влияния невесомости на организм человека.



    Таким образом, сложная проблема изучения невесомости как экстремального фактора, реально невоспроизводимого в наземных условиях, основывается на синтезе прямых, т. е. получаемых при космических полетах человека, и косвенных экспериментальных данных. Такого рода синтез представляет собой наиболее плодотворный путь, способный обеспечить прогресс в деле успешного освоения человеком космического пространства.

    Механизмы адаптации к невесомости. В настоящее время накоплен обширный экспериментальный материал, характеризующий многообразные реакции организма человека на невесомость и ее лабораторные модели. Существует и целый ряд концепций относительно вероятных механизмов формирования этих реакций. Наиболее распространенные из них связывают возникновение всей совокупности изменений со стороны организма с отсутствием весовой нагрузки на костно-мышечную систему, а также с первичным влиянием невесомости на функцию афферентных систем и распределение жидкой среды в организме.

    Переход к состоянию невесомости, по существу, означает функциональную деафферентацию обширных рецепторных полей, которые в наземных условиях реагируют на гравитационные силы и в значительной мере обеспечивают функцию пространственного анализа, пространственной координации движений, а также регуляцию постоянства внутренней среды организма. К числу этих рецепторных полей в первую очередь относятся:

    – отолитовая часть вестибулярного аппарата, которая является специфическим гравирецептором и обеспечивает восприятие гравитационной вертикали;

    – проприоцептивный аппарат опорно-двигательной системы. Значение баро-, механо– и волюморецепторов сосудистого русла и внутренних полостей, заполненных подвижными органами, в создании специфического для действия силы тяжести комплекса ощущений еще недостаточно изучено. Однако нельзя сомневаться в участии этих видов рецепции в общей реакции на невесомость и формировании тех новых взаимоотношений, которые устанавливаются между афферентными системами в этом состоянии.

    Изменения в деятельности афферентных систем состоят в возникновении специфических субъективных ощущений («легкости тела», падения, подъема, переворота, вращения), которые характеризуются различной выраженностью, длительностью и приобретают разнообразную эмоциональную окраску (страх, радость) в зависимости от индивидуальных особенностей, опыта и тренированности испытуемого. Основное содержание этих ощущений состоит в утрате представлений о направлении гравитационной вертикали и пространственном положении тела, в особенности при отсутствии зрительного и тактильного контроля. Хотя зрительный анализатор в безопорном состоянии остается единственным информационным каналом, обеспечивающим пространственную ориентировку, он также может оказаться, особенно в первоначальный период пребывания в невесомости, источником возникновения иллюзорных ощущений пространственного расположения окружающих предметов, что выражается в кажущемся смещении рассматриваемых объектов и «промахивании» при попытках их достижения.

    Изменение взаимоотношений в деятельности афферентных систем в состоянии невесомости рассматривается также в качестве одной из возможных причин возникновения симптомов, характерных для болезни движения или укачивания.

    Существует, в частности, мнение, что длительное постоянное возбуждение отолитовых рецепторов вестибулярного аппарата подавляет реакции с полукружных каналов. С этой точки зрения функциональная деафферентация отолитового прибора должна способствовать растормаживанию рефлексов с полукружных каналов и повышать их чувствительность к воздействию угловых ускорений.

    К объяснению вегетативных проявлений вестибулярного происхождения может быть привлечен также закон Вебера – Фехнера. Поскольку постоянно действующая величина адекватного раздражителя вестибулярного аппарата при переходе к невесомости уменьшается, его чувствительность к ускорениям в этом состоянии в соответствии с законом Вебера – Фехнера должна быть выше, чем в наземных условиях. Действительно, резкие движения головой и туловищем в начале полета вызывали у некоторых космонавтов головокружение и другие сенсорные реакции, которые на Земле обычно проявлялись при более сильном воздействии, например при вращении на кресле Барани. Впрочем, возникновение тошноты и рвоты, характерных для болезни движения, может в состоянии невесомости определяться не только характером вестибулярной афферентации. Существует предположение, что необычное распределение газов и жидкостей в различных областях пищеварительного тракта в невесомости может провоцировать тошноту. В экспериментах на делабиринтированных собаках показано, что возбудимость рвотного центра при действии угловых ускорений может повышаться и за счет интероцептивной афферентации, исходящей от органов брюшной полости. Была также выдвинута гипотеза об участии гемодинамического механизма, связанного с увеличением кровенаполнения черепно-мозговых сосудов, в генезе вестибуловегетативных расстройств.

    Со стороны соматического компонента вестибулярной реакции (нистагм) и порогов чувствительности вестибулярного аппарата к неадекватным раздражениям (к постоянному току) в условиях длительной невесомости не было выявлено существенных отличий от данных предполетного периода. Вместе с тем при кратковременной невесомости на самолете нистагм в ответ на вращательную пробу и электростимуляцию подавлялся. На основании этих фактов исследователи рассматривают невесомость как своеобразный «минус-раздражитель» отолитового аппарата. Отсутствие калорического нистагма в невесомости имеет иную причину и связано с тем, что конвекция любых жидкостей, в том числе и эндолимфы, в этом состоянии физически невозможна.

    Полеты на орбитальных станциях, проведенные в последние годы, показали, что по мере адаптации к невесомости нарушения, связанные с действием ускорений, возникающих при перемещении космонавтов в кабине и при исследованиях на вращающемся кресле, полностью исчезают. С другой стороны, появились сообщения о возникновении вестибулярных расстройств после завершения длительных космических полетов, в то время как изменения со стороны пороговой чувствительности отолитового аппарата к линейным ускорениям отсутствовали. Таким образом, продолжение исследований по оценке вестибулярной функции в космическом полете остается актуальной задачей, в особенности применительно к разработке систем искусственной весомости.

    Одним из проявлений уравновешивания организма с внешней средой в состоянии невесомости может быть изменение функционального состояния рецепторных образований. Нейрофизиологическая основа этого процесса может состоять в развитии адаптации рецепторов или изменении их «настройки» в результате центробежных влияний. Если допустить, что длительное отсутствие гравитационных стимулов также сопровождается изменением чувствительности соответствующих рецепторных образований, то возникает вопрос: в какой мере обратимы эти изменения? Стойкие изменения функционального состояния рецепторов способны неблагоприятно отразиться на переносимости стрессовых воздействий, характерных для космического полета, и на течении послеполетного периода.

    Анализ особенностей процесса реадаптации у космонавтов, а также наблюдения, проведенные при длительной гиподинамии, свидетельствуют об изменениях со стороны общей реактивности, регуляции вегетативных и двигательных функций. Происхождение упомянутых сдвигов трудно связать исключительно с изменениями рецепторного, афферентного звена рефлекторной дуги, но в принципе такая связь возможна.

    Несовершенством обратной афферентации можно объяснить нарушения координации движений в статике и динамике после окончания космических полетов.

    С изменением функционального состояния рецепторов можно связать и некоторые особенности регуляции водного обмена у космонавтов в полете и послеполетном периоде.

    На функциональное состояние организма в длительном космическом полете немаловажное влияние может оказать также уменьшение потока внешних раздражений, связанное с отсутствием гравитационных стимулов и с однообразными условиями обитания в замкнутом пространстве кабины космического корабля, недостатком привычных колебаний параметров внешней среды и т. д. Хотя опыт проведенных космических полетов не выявил отчетливых ограничений, вытекающих из этого фактора, при дальнейшем увеличении продолжительности он может привести к изменениям общего психического тонуса, эмоционального настроя, самочувствия и работоспособности космонавтов. Так, в исследованиях с длительной гиподинамией, при которых однообразие внешней обстановки, пребывание в вынужденной позе, существенное изменение стереотипа повседневной деятельности также являлись причиной обеднения афферентного фона, довольно часто отмечается возникновение неустойчивого настроения испытуемых, раздражительности, навязчивых идей, конфликтных ситуаций, а в отдельных случаях и психических расстройств. Естественно, в генезе этих реакций нельзя исключить значения типологических особенностей испытуемых и разнообразных эндогенных факторов.

    Таким образом, первичное влияние невесомости на функцию афферентных систем приводит к развитию многообразных сенсорных, двигательных, вегетативных и психологических реакций, отдельные из которых способны снизить эффективную роль человека в выполнении космической программы и осложнить течение периода реадаптации. Значение изменений со стороны интероцептивной афферентной системы более подробно будет рассмотрено в связи с описанием других первичных механизмов влияния невесомости на организм.

    Распределение жидкости в системе эластичных резервуаров определяется законами гидростатики. Гидростатическое давление, величина которого пропорциональна высоте столба жидкости и ее удельному весу, воздействуя на стенки резервуара, вызывает их растяжение и соответствующее перераспределение объемов жидкости вниз. Такого рода закономерность проявляется и в распределении биологических жидкостей (главным образом, крови) у человека и животных в наземных условиях. Пребывание в вертикальном положении сопровождается относительным депонированием некоторого объема крови в нижней половине тела, снижением венозного возврата к сердцу, систолического выброса и комплексом соответствующих компенсаторных реакций.

    Ходьба, бег, прыжки, изменения положения тела в пространстве меняют величину и направление гравитационных смещений крови у человека, благодаря чему организм находится в состоянии постоянной готовности к включению компенсаторных реакций, связанных с действием гидростатического фактора. Постоянное пребывание в горизонтальном положении уменьшает величину и изменяет направление гидростатических сил, а погружение в воду способствует их нейтрализации. Поскольку вода через мягкие ткани оказывает эквивалентное противодавление на сосудистые стенки, депонирования крови в нижней половине тела даже при вертикальной позе не происходит. В состоянии невесомости действие гидростатического давления снимается полностью.

    Результатом всех этих процессов оказывается перемещение некоторого объема крови из нижней половины тела в верхнюю. Существует мнение, что перераспределение жидкой среды в организме является наиболее важной биологической реакцией на гравитацию. Многие космонавты испытывали в состоянии невесомости ощущение прилива крови к голове. Оно уменьшалось при «закрутке» корабля, если космонавт располагался вдоль радиуса вращения и головой по направлению к его центру. Гиперемия кожных покровов лица, развитие отечности носоглотки и тканей лица в условиях невесомости также могут быть поставлены в связь с перераспределением крови. Электроплетизмографические исследования, проведенные при кратковременной невесомости на самолете, выявили увеличение кровенаполнения сосудов органов грудной клетки. В полете экипажей на орбитальных станциях обнаружено повышение давления в системе яремных вен, а также развитие венозного застоя в бассейне черепно-мозговых сосудов.

    Объективные признаки перераспределения крови регистрируются и в экспериментах с имитацией невесомости. Например, при длительном пребывании на постельном режиме выявлена застойная дилятация сосудов глазного дна.

    Относительное возрастание центрального объема крови при снижении гидростатического давления составляет у человека, по данным Д. Гауэра и соавторов, приблизительно 400 см 2 . Оно является пусковым механизмом рефлекса, приводящего к изменениям водно-солевого обмена, потере плазмы и уменьшению общего объема циркулирующей крови до величины, при которой заполнение кровью центральных вен возвращается к гомеостатической норме. Рецепторная зона этого рефлекса локализована преимущественно в области левого предсердия. Д. Гауэр и В. Генри установили, что дыхание под отрицательным давлением и раздувание левого предсердия за счет сужения просвета митрального клапана резиновым баллоном увеличивают диурез у собак с 5 мл за 10 мин в норме до 13–21 мл за 10 мин. Импульсация от обнаруженных ими волюморецепторов левого предсердия поступает по вагусу в продолговатый мозг, а затем в супраоптическую область гипоталамуса, затем в нейрогипофиз, где осуществляется секреция антидиуретического гормона. Последний накапливается в нейрогипофизе и при поступлении в кровь, помимо антидиуретического, оказывает вазопрессорное действие, поэтому его называют также вазопрессином. Растяжение левого предсердия при увеличении венозного притока к сердцу тормозит секрецию антидиуретического гормона, что ведет к уменьшению реабсорбции воды и натрия в почках, возрастанию диуреза и потере плазмы. Большое значение в регуляции водно-солевого равновесия придается также механизму осморецепции и выработке в коре надпочечников альдостерона, который усиливает реабсорбцию натрия. Регуляция секреции альдостерона осуществляется, в частности, при участии рецепторов правого предсердия. Вместе с тем в конкуренции объемного и осмотического механизмов регуляции массы циркулирующей крови первому придается более важное значение, поскольку при нарушении постоянства ее объема осмотический механизм может уже не проявлять себя. Гормональные изменения, отмеченные в многосуточном космическом полете, включали в себя уменьшение концентрации в моче антидиуретического гормона, возрастание активности ренина в плазме крови и концентрации альдостерона в моче.

    В экспериментах с лабораторной имитацией невесомости потеря плазмы составляла от 300 до 800 мл. При проведении орбитальных полетов у космонавтов также обнаруживалось снижение объема циркулирующей плазмы на 100–500 мл.

    Одновременно с полиурией, обусловленной возрастанием центрального объема крови, судя по опыту лабораторных исследований и космических полетов, уменьшается жажда и устанавливается отрицательный водный баланс. Процессы перестройки водно-солевого обмена и развитие относительной дегидратации протекают довольно быстро, преимущественно в течение первых двух суток воздействия, а затем водный обмен устанавливается на новом, более низком балансовом уровне. Уменьшаются интенсивность диуреза, количество потребляемой жидкости, а также скорость обновления воды.

    Обусловленное потерей плазмы сгущение крови сопровождается возрастанием показателей гематокрита и вязкости, хотя в дальнейшем может происходить и уменьшение массы эритроцитов. В результате соотношение форменных элементов крови и плазмы нормализуется. Снижение общей массы гемоглобина, отмеченное при послеполетном обследовании космонавтов, обусловлено подавлением эритропоэза и, как показали лабораторные исследования с имитацией невесомости, становится более выраженным, по мере того как возрастает перераспределение крови из нижней половины тела в верхнюю. В поздние сроки экспериментального моделирования невесомости намечается тенденция к восстановлению объема циркулирующей крови. Механизм этого процесса неясен, однако его можно связать с развитием вторичного альдостеронизма или с изменением других механизмов регуляции водного обмена.

    Потеря жидкости служит одной из причин снижения веса тела, которое неоднократно регистрировалось в послеполетном периоде. Величина этого снижения составляла в среднем от 2 до 5 % от исходного веса тела, не зависела от продолжительности воздействия и относительно быстро компенсировалась за счет увеличенного потребления воды и пониженного диуреза. Отмечено, правда, что по мере увеличения продолжительности полетов восстановление веса происходило медленнее, что, вероятно, связано с изменением структуры потерь веса и увеличением доли тканевых потерь.

    Патогенетическая связь описанных изменений водного обмена с гидростатическим фактором была подтверждена также исследованиями, проведенными на иммерсионной модели невесомости. Оказалось, что уменьшение величины компенсирующего противодавления воды на нижнюю часть тела, при котором действие гидростатического давления крови восстанавливалось, уменьшало диурез, увеличивало жажду, а тем самым эффективно предотвращало дегидратацию и снижение веса тела. Кроме того, было показано, что положение сидя или подъем головного конца кровати на 6° по отношению к горизонтали предотвращали развитие отрицательного водного баланса или потерю общей воды в организме, которые обычно возникают при имитации невесомости методом антиортостатической гиподинамии.

    Одним из важных последствий изменений распределения крови при антиортостатической модели невесомости является сдвиг в сторону метаболического ацидоза в крови, оттекающей от мозга. С явлениями ацидоза связываются функциональные сдвиги со стороны вестибулярного, зрительного и вкусового анализаторов, обнаруженные в этом исследовании.

    Еще одним специфическим результатом отсутствия гидростатического давления может быть возникновение изменений венозного тонуса (особенно на нижних конечностях), регуляция которого в наземных условиях в значительной мере определяется колебаниями гидростатического давления. В частности, в экспериментах с имитацией невесомости меняются упругоэластичные свойства вен, лишенных этого привычного раздражителя. Возрастает их ригидность, ухудшается растяжимость и сократимость. Эта закономерность подтверждается и результатами послеполетного обследования космонавтов, хотя во время полета при воздействии отрицательного давления обнаружено возрастание растяжимости сосудов на ногах.

    Патогенез других изменений сердечно-сосудистой системы в невесомости и при ее лабораторном моделировании более сложен и не может быть в столь определенной степени поставлен в зависимость только от отсутствия гидростатического давления крови.

    Теснее всего, хотя и не полностью, связано с этим механизмом ухудшение постуральных реакций сердечно-сосудистой системы. Снижение ортостатической устойчивости обнаружилось уже после первых космических полетов человека. В дальнейшем это наблюдение многократно подтверждалось. Ортостатические нарушения закономерно проявляются и после экспериментов с водной иммерсией и постельным режимом.

    Происхождение ортостатических расстройств связывается, в частности, с явлениями дегидратации, а точнее, с уменьшением общего объема циркулирующей крови, поскольку оно усугубляет снижение венозного возврата крови к сердцу при вертикальном положении тела. Следует заметить, что дегидратация любого происхождения (кровопускание, ограниченное потребление воды, тепловой стресс) отрицательно сказывается на переносимости воздействий, связанных с перераспределением крови к ногам. Правда, не все авторы находят четкую корреляцию между степенью дегидратации или уменьшением объема циркулирующей крови, с одной стороны, и выраженностью ортостатических нарушений – с другой, так что этот механизм не является единственным в формировании ортостатической неустойчивости. Большое значение в генезе ортостатических расстройств придается также снижению мышечного тонуса, в особенности на нижних конечностях, утомлению, емкости венозного депо в нижней половине тела, проницаемости сосудистых стенок и выходу плазмы в межклеточное пространство, особенностям нервно-гуморальной регуляции функций в вертикальном положении. Установлено, что ортостатические расстройства после полета бывают более выраженными у тех космонавтов, у которых устойчивость к вертикальной позе была относительно ниже и перед полетом.

    Однонаправленность сдвигов при имитации невесомости и ортостатических воздействиях создает предпосылки для суммации эффектов в период перехода к вертикальному положению после окончания гиподинамии. Быстрее исчерпываются компенсаторные возможности сердечно-сосудистой системы и наступает срыв компенсации (предколлаптоидное состояние). Дальнейшее развитие декомпенсации выражается в падении минутного объема, нарушении мозгового кровообращения и появлении обморока.

    Наличие связи между изменениями, которые возникают со стороны сердечно-сосудистой системы при имитации невесомости и при ортостатических пробах, позволяет по выраженности сдвигов, зарегистрированных в покое, судить об ожидаемых изменениях ортостатической устойчивости. Еще большие возможности для такого прогнозирования открываются в случае использования функциональных проб, воспроизводящих дозированное затруднение возврату венозной крови к сердцу. Обнаружена, в частности, высокая корреляция между реакциями на ортостатическую пробу и пробу Вальсальва. Особенно информативной является проба с воздействием отрицательного давления на нижнюю половину тела, которая используется во время самого полета, а также при предполетном и послеполетном обследовании космонавтов.

    Причины возникновения неустойчивости к этим нагрузкам после имитации или действия реальной невесомости состоят, таким образом, не только в развитии дегидратации, но и в изменениях функционального состояния сердечно-сосудистой системы.

    Дегидратация, обусловленная отсутствием или снижением гидростатического давления крови, по-видимому, является также одной из причин ухудшения переносимости ряда других стрессовых воздействий, в частности ускорений и физических нагрузок. Во всяком случае, экспериментальное обезвоживание на величину, составлявшую более 4 % веса тела, привело к нарушениям со стороны изометрического мышечного сокращения, физической работоспособности и переносимости продольных ускорений.

    Приведенные данные позволяют констатировать, что конечные эффекты, вытекающие из механизма перераспределения крови в состоянии невесомости, весьма серьезны. Понятно поэтому то большое значение, которое в настоящее время придается разработке мероприятий по профилактике изменений, связанных с отсутствием гидростатического давления крови в невесомости.

    Снятие весовой нагрузки на опорно-двигательный аппарат в условиях невесомости служит причиной возникновения системных сдвигов, патофизиологической основой которых является «неупотребление» органов.

    Отсутствие необходимости в активном противодействии гравитационным силам и поддержании позы, уменьшение мышечных затрат на перемещение тела и отдельных его частей в пространстве теоретически должно приводить к снижению энергообмена и уменьшению требований к системе транспорта кислорода. Недогрузка мышечной системы и опорных структур, существенная перестройка двигательной координации в безопорном состоянии, кроме этого, создают предпосылки для изменений метаболизма, нарушений нейрогуморальных механизмов регуляции соматических и вегетативных функций и развития так называемого синдрома гиподинамии.

    В длительных наземных исследованиях с пребыванием испытуемых на постельном режиме и контролируемым ограничением двигательной активности, ее пространственных (гипокинезия) и силовых (гиподинамия) компонентов чаще всего наблюдается снижение основного обмена в пределах от 3–7 до 20–22 %. Единичные измерения величины газообмена и легочной вентиляции во время космических полетов не дают оснований для окончательных выводов, поскольку отмечено как увеличение, так и уменьшение потребления кислорода.

    Выполнение ряда рабочих операций внутри и вне кабины космического корабля осложнено отсутствием привычной опоры и требует существенной перестройки координации движений. В результате мышечные и энергетические затраты на эти операции могут в состоянии невесомости возрасти по сравнению с наземными условиями.

    Исследование энергетической стоимости локомоций, выполняемых в условиях экспериментально воспроизводимой гипогравитации, показало снижение энерготрат на выполнение одинаковых по характеру движений по мере уменьшения «веса». Энерготраты американских космонавтов при работе на поверхности Луны (1/6 G) в специальном скафандре составляли в среднем 220–300 ккал/ч, что эквивалентно ходьбе без всякого снаряжения в наземных условиях со скоростью 5 км/ч.

    Снижение энергетического метаболизма является одной из причин уменьшения потребности в пище. Такие наблюдения проведены, в частности, в опытах с водной иммерсией и гиподинамией.

    К числу специфических последствий гиподинамии относятся и изменения со стороны опорно-двигательного аппарата.

    Деминерализация костной ткани, которая неоднократно регистрировалась в наземных исследованиях с гиподинамией и после окончания реальных космических полетов, по-видимому, является следствием снижения весовой нагрузки на скелет.

    Нельзя исключить возможности изменений механической прочности скелета вследствие его декальцинации. Снижение нагрузки на опорно-двигательный аппарат уменьшает эритропоэтическую функцию костного мозга.

    Недостаточная нагрузка на мышечную систему (даже при кратковременной невесомости выражается отчетливым снижением биоэлектрической активности мышц шеи, спины и бедра) приводит к уменьшению объема мышц и периметров нижних конечностей. Это явление, вероятно, связано с развитием атрофических процессов в мышцах, хотя в начальной фазе полета быстрое уменьшение периметров может зависеть и от уменьшения кровенаполнения нижних конечностей. Одновременно перестраивается белковый обмен, возникает отрицательный азотистый баланс. Уменьшается также общее содержание калия в организме, что свидетельствует о распаде мышечных белков.

    Невесомость и экспериментальная гиподинамия приводят к уменьшению тонуса мускулатуры, мышечной силы, выносливости и физической работоспособности.

    Уменьшение мышечного тонуса, физической напряженности и энергообмена в состоянии гиподинамии сопровождается развитием детренированности сердечно-сосудистой системы, что, в свою очередь, ухудшает переносимость различных нагрузок.

    Большинство авторов констатируют замедление процесса нормализации частоты пульса после воздействия перегрузок и в первые часы пребывания в состоянии невесомости, что, по-видимому, является следствием своеобразной ориентировочной реакции на новизну обстановки и нервно-эмоциональное напряжение. Когда значение эмоционального фактора снижалось, нормализация частоты пульса протекала быстрее. Таким образом, относительная тахикардия в первые часы воздействия невесомости не является результатом ее специфического влияния на сердечно-сосудистую систему. В пределах 5-суточного срока пребывания в невесомости наиболее характерно урежение частоты пульса и увеличение его колеблемости, что связывают с относительным повышением тонуса блуждающего нерва. При более продолжительных полетах после первоначального снижения и последующей стабилизации частоты пульса намечалась тенденция к повышению этого показателя. Аналогичная зависимость проявляется и в экспериментах с имитацией невесомости. Для более продолжительных сроков гиподинамии характерно увеличение частоты пульса.

    Обнаруженные в условиях длительной гиподинамии изменения частоты пульса рассматриваются многими авторами как проявление функциональной недостаточности вагуса и связанного с ней преобладания симпатических эффектов в регуляции сердечной деятельности.

    Аналогичные изменения соотношений между симпатическими и парасимпатическими влияниями на сердечно-сосудистую систему обнаруживаются в реакциях артериального давления. В экспериментах с имитацией невесомости после первоначального снижения артериального давления в дальнейшем могут наблюдаться как гипотензивный, так и гипертензивный типы реакций с общей тенденцией к возрастанию артериального давления и снижению пульсового давления. В длительных полетах обнаружено повышение артериального давления, что рассматривается как результат высокого рабочего и эмоционального напряжения.

    Электрокардиографические исследования, проведенные в условиях космических полетов, не выявили существенных изменений зубцов и интервалов электрокардиограммы. Ряд авторов отмечают, правда, некоторое удлинение времени предсердно-желудочковой или внутрижелудочковой проводимости и тенденцию к снижению амплитуды зубца Т, что свидетельствует об отклонениях со стороны функции проводимости и интенсивности обменных процессов в сердечной мышце в состоянии невесомости. Появление положительного феноменаХеклина, а также случаи экстрасистолии и даже бигемении, имевшие место у американских космонавтов, укладываются в картину гипокалиемии, что находит подтверждение в данных о возникновении отрицательного баланса калия во время космических полетов. В опытах с длительной гиподинамией также обнаружены позиционные сдвиги, замедление внутрисердечной проводимости и снижение амплитуды зубцов R и Т. В грудных отведениях выявляется синдром Т v-1 > Т v-6 , что связывают с увеличением венозного притока к сердцу.

    Изменения фазовой структуры сердечного цикла в исследованиях с имитацией невесомости часто укладываются в симптомокомплекс, который В. Л. Карпман именует фазовым синдромом гиподинамии сердца. Отдельные сдвиги, свидетельствующие об уменьшении механической активности сердечной мышцы, выявлены и в условиях космического полета. К их числу относятся уменьшение амплитуды и продолжительности колебательных циклов сейсмокардиограммы, возрастание электромеханической задержки, механоэлектрического коэффициента и механосистолического показателя, а также увеличение периода напряжения и уменьшение периода изгнания. Вскоре после приземления у космонавтов в отдельных случаях зарегистрированы признаки ухудшения сократительной функции миокарда.

    Изучение таких гемодинамических показателей, как величина систолического и минутного объемов крови, периферического сопротивления в условиях невесомости, было начато еще при полетах орбитальных станций «Салют». У космонавтов были отмечены признаки как уменьшения, так и увеличения систолического и минутного объемов. Ранее при исследованиях, проведенных во время кратковременной невесомости на самолете, было обнаружено замедление скорости кровотока. При функциональных пробах с физической нагрузкой во время полета отмечены более низкие, чем до полета, величины минутного объема крови.

    В модельных экспериментах, по мнению большинства исследователей, систолический объем крови уменьшается. Периферическое сопротивление в условиях гиподинамии возрастает, но может и уменьшаться. В космических полетах сопротивление сосудов менялось в соответствии с динамикой выброса крови. Разноречивы сведения о скорости распространения пульсовой волны по аорте и артериям мышечного типа. Имеются сообщения об отсутствии закономерных изменений этого показателя, его увеличении или, наоборот, снижении. Следует отметить, что для большинства описанных изменений функционального состояния сердечно-сосудистой системы характерна фазовость, что отчасти объясняет разноречивость оценок относительно направленности некоторых сдвигов.

    Основываясь на материалах, полученных в реальных космических полетах, различают последовательные фазы адаптации сердечно-сосудистой системы к невесомости. Переходные реакции, связанные с нормализацией показателей после действия перегрузок, сменяются реакциями «разгрузочного» характера и последующей стабилизацией на уровне, отражающем преобладание парасимпатических эффектов в регуляции кровообращения. Однако учитывая опыт лабораторных исследований и полетов, можно заключить, что на этом процесс адаптации не заканчивается. При длительных полетах возможно появление гиподинамически обусловленных реакций, включающих в себя преобладание симпатических эффектов, развитие фазового синдрома гиподинамии миокарда и детренированности сердечно-сосудистой системы.

    Общие циркуляторные сдвиги, связанные с гиподинамией и снижением гидростатического давления крови, сопровождаются и изменениями регионарного кровообращения, в частности развитием венозного застоя. После полетов с помощью реографической методики обнаружена асимметрия тонуса мозговых артериол и вен. Нарушения мозговой гемоциркуляции рассматриваются в качестве причины ряда неврологических расстройств при длительной гиподинамии. Последние характеризуются симптомами межполушарной асимметрии и правосторонней пирамидной недостаточности. Асимметрия сухожильных рефлексов с правосторонним преобладанием выявлена и после космических полетов.

    Изменяется и биоэлектрическая активность мозга, что авторы объясняют уменьшением функциональной подвижности корковых процессов и активирующего влияния ретикулярной формации. К числу других вероятных неврологических нарушений относят вегетативно-сосудистую дисфункцию, астеноневротический синдром и синдром нейромышечных нарушений.

    Условия реального космического полета ограничивают возможности проведения широких исследований обмена веществ, а также крови, мочи и других биологических субстратов. Чаще всего о воздействии невесомости судят по данным послеполетных обследований, хотя трактовка зарегистрированных изменений в ряде случаев затруднена.

    В длительных полетах на орбитальных станциях обнаружено снижение числа лейкоцитов и ретикулоцитов, а после приземления отмечались признаки торможения гемопоэза (уменьшение числа ретикулоцитов на 34 %, эритроцитов на 15,2 %, общей массы гемоглобина на 14–23, 6-34 %). К 7-12 суткам реадаптационного периода число ретикулоцитов возрастало почти в 3,5 раза, что сопровождалось постепенным повышением числа эритроцитов и массы гемоглобина.

    Увеличение СОЭ, возникновение нейтрофильного лейкоцитоза с лимфо– и эозинопенией, которые довольно часто регистрируются у космонавтов в послеполетном периоде, можно рассматривать как проявление реадаптационного стресса. Об этом, в частности, свидетельствует увеличение концентрации кортикостероидов и катехоламинов в крови и повышение их экскреции с мочой после полета. Напротив, в состоянии невесомости и в процессе проведения модельных экспериментов обнаруживается снижение активности кортикоадреналовой системы.

    Сведения о влиянии невесомости и имитирующих ее условий на свертываемость крови разноречивы.

    Характер двигательной активности и питания в условиях невесомости влияет на состояние липоидного обмена, о чем можно судить по увеличению содержания в крови холестерина, лецитина и неэстерифицированных жирных кислот.

    Изменения белкового обмена, обусловленные явлениями мышечной атрофии и связанные, по-видимому, со снижением ресинтеза белка и скорости включения в него аминокислот, проявлялись у космонавтов в повышении содержания мочевины в крови и в усиленном выведении креатинина с мочой. Важным проявлением изменений белкового обмена служит и снижение синтеза гемоглобина в космическом полете.

    Деминерализация костной ткани сопровождается усиленной экскрецией кальция в космическом полете и опытах с имитацией невесомости.

    Общая астенизация и довольно выраженные изменения метаболизма, связанные с гиподинамией, сопровождаются снижением иммунологической резистентности и повышением вероятности заболеваний в космическом полете. Увеличение микробной обсемененности кожных покровов и слизистых оболочек создает дополнительные основания для подобных опасений.

    Таким образом, снятие весовой нагрузки на костно-мышечный аппарат является самостоятельным и весьма важным пусковым механизмом в развитии разнообразных нарушений, обусловленных невесомостью. Целостная картина изменений, возникающих в состоянии организма человека под влиянием невесомости или имитирующих ее действие условий, включает в себя сложный комплекс реакций со стороны сердечно-сосудистой, костно-мышечной систем, системы крови, обменных функций, механизмов нервной и гуморальной регуляции, общей реактивности и иммунитета, состояния анализаторной и высшей нервной деятельности. Поскольку упомянутые реакции являются преимущественно выражением адаптационных сдвигов, они, как правило, не накладывают сколько-нибудь существенных ограничений на общее состояние и работоспособность космонавтов в процессе самого полета. Тем не менее имеющиеся научные данные не позволяют полностью исключить возможность развития более серьезных изменений при продолжительных полетах (большей выраженности деструктивных процессов, астенизации, возникновения заболеваний, требующих специализированной медицинской помощи, понижения физической и умственной работоспособности).

    В настоящее время наиболее критической формой проявления сдвигов, обусловленных влиянием невесомости на организм человека, являются нарушения, которые возникают в реадаптационном периоде. Основные из них состоят в снижении переносимости перегрузок, вертикальной позы, ухудшении физической работоспособности, координации ходьбы и других двигательных актов. Поэтому одной из важных в научно-практическом отношении задач медицинского обеспечения длительных космических полетов является разработка и внедрение системы мероприятий по профилактике расстройств, возникающих у космонавтов при возвращении на Землю.

    Наиболее перспективные направления профилактических воздействий определяются механизмами формирования изменений, происходящих в невесомости. На достаточно упрощенной схеме патогенеза нарушений, обусловленных влиянием невесомости (рис. 3.4), показаны некоторые из возможных направлений и средств профилактики (звенья патогенеза и связь между ними обозначены тонкими линиями и стрелками, профилактические средства и направления их воздействия – жирными линиями и стрелками).

    Наиболее естественным и практически осуществимым является применение профилактических воздействий на такие первичные, пусковые эффекты невесомости, как снятие гидростатического давления крови и весовой нагрузки на опорно-двигательный аппарат. В случае достаточно надежного блокирования этих первичных эффектов можно рассчитывать на прерывание цепи вторично обусловленных сдвигов, в том числе и тех, которые вызывают наибольшую озабоченность в реадаптационном периоде. Значительно более сложен выбор метода профилактики сдвигов, связанных с изменениями в деятельности афферентных систем. Самым радикальным решением всех проблем выглядит введение искусственной гравитации на космических кораблях, однако в настоящее время еще не накоплено достаточного количества обоснований в пользу этого решения и не проведена оценка возможных побочных эффектов длительного пребывания в постоянно вращающейся системе, чтобы оправдать необходимость в ее разработке. Тем не менее поиски оптимальных параметров системы искусственной гравитации (радиуса, угловой скорости вращения, минимально эффективной величины радиального ускорения) проводятся.

    Наиболее логичный путь профилактики последствий необычного распределения крови, связанного с отсутствием гидростатического давления, состоит в искусственном воспроизведении эффекта гидростатического давления. С этой целью в экспериментах с водной иммерсией и постельным режимом были испытаны следующие средства и методы: надувные манжеты на конечностях, дыхание под избыточным давлением и воздействие отрицательного давления на нижнюю половину тела.

    Изучались также эффекты, достигаемые использованием центрифуги с коротким радиусом, в которой действие продольных перегрузок имитировало гидростатическое давление, но одновременно оказывало влияние на костно-мышечную систему и гравирецепцию. К рассматриваемой группе средств относятся также воздействия, обеспечивающие инерционные смещения крови вдоль магистральных сосудов при ударных нагрузках, действующих в направлении продольной оси тела.

    Рис. 3.4. Схема патогенеза нарушений, обусловленных влиянием невесомости (по: И. Д. Пестов, 1979)

    Профилактические воздействия на некоторые промежуточные звенья этой патогенетической цепи могут осуществляться с помощью фармакологических и гормональных препаратов, а конечные эффекты (снижение ортостатической устойчивости после полета) – с помощью средств, оказывающих избыточное давление на нижнюю половину тела.

    Таким образом, в отношении профилактики последствий гиподинамического синдрома существует вполне реальная конструктивная основа, состоящая в создании постоянной (с помощью нагрузочных костюмов) и переменной (посредством выполнения комплексов упражнений на специальных тренажерах) нагрузки на костно-мышечный аппарат, использовании фармакологических препаратов и средств неспецифической профилактики.

    Разумеется, действие большинства описанных выше профилактических средств не является строго избирательным, часто распространяется на смежные звенья патогенеза и, таким образом, выходит за рамки предложенной классификации, которая подчеркивает лишь преимущественные эффекты, на которые рассчитано то или иное средство. К примеру, действие отрицательного давления на нижнюю половину тела, помимо перераспределения крови, сопровождается также осевой нагрузкой на организм, величина и точки приложения которой определяются особенностями конструкции вакуумной емкости. Кроме того, декомпрессия нижней половины тела способна воспроизводить и ощущения, характерные для действия силы тяжести. Применение вакуумной емкости при постельном режиме вызывает, в частности, ощущение пребывания в вертикальной позе. Другим примером профилактического воздействия, обладающего широким спектром и адресованного, по существу, ко всем пусковым механизмам изменений, связанных с невесомостью, служит применение бортовых центрифуг с коротким радиусом. Тем не менее на современном уровне знаний, теоретической и технической вооруженности достижение относительно гармоничного профилактического эффекта может быть обеспечено лишь комплексом профилактических воздействий, адресованных различным звеньям патогенетической цепи.