Определение эдс внутреннего сопротивления источника напряжения. Электродвижущая сила. Внутреннее сопротивление источника тока

Цель: экспериментально вычислить ЭДС и внутреннее сопротивление источника тока.

Оборудование: источник электрической энергии, амперметр, вольтметр, реостат (6 – 8 Ом), ключ, соединительные провода.

Величина, численно равная работе, которую совершают сторонние силы при перемещении единичного заряда внутри источника тока, называется электродвижущей силой источника тока ε, из закона Ома:

где I – сила тока, U – напряжение.

В СИ ε выражается в вольтах (В).

Электродвижущую силу и внутреннее сопротивление источника тока можно определить экспериментально.

Порядок выполнения работы

1.Определить цену деления шкалы измерительных приборов.

2.Составить электрическую цепь по схеме, изображенной на рис. 1

3.После проверки цепи преподавателем замкнуть ключ и, пользуясь реостатом, установить силу тока, соответствующую нескольким делениям шкалы амперметра снять показания вольтметра и амперметра.

4.Опыт повторить 2 раза, изменяя силу тока цепи при помощи реостата.

5.Полученные данные записать в таблицу 1.

Рисунок 4.10 – Экспериментальная схема

Напряжение на внешней части цепи U, В Сила тока в цепи I,А Внутреннее сопротивление r, Ом Среднее значение внутреннего сопротивления r ср, Ом ЭДС e, В Среднее ЭДС e c р, В

Таблица 1 – Экспериментальные данные

1. Результаты измерений подставить в уравнение 1 и, решая системы уравнений:

определить внутреннее сопротивление источника по формулам:

__________________________________________________________________________________________________________________________________________________________

3.Записать данные в таблицу 1.

5.Сделать вывод.

__________________________________________________________________________________________________________________________________________________________


Контрольные вопросы

1. Какова физическая суть электрического сопротивления?

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Какова роль источника тока в электрической цепи?

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Каков физический смысл ЭДС? Дать определение вольту.

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. От чего зависит напряжение на зажимах источника тока?

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. Пользуясь результатами произведенных измерений, определить сопротивление внешней цепи.

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________


Отчет по лабораторной работе №__________

студента группы__________________

ФИО_______________________________________________________________

ТЕМА: ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ МОЩНОСТИ ЭЛЕКТРИЧЕСКОГО ТОКА ЛАМПЫ НАКАЛИВАНИЯ ОТ НАПРЯЖЕНИЯ

Цель: освоить метод измерения мощности, потребляемой электроприбором, основанный на измерении силы тока и напряжения; исследовать зависимость мощности, потребляемой лампочкой от напряжения на её зажимах; исследовать зависимость сопротивления проводника от температуры.

Оборудование: электрическая лампа, источник постоянного напряжения и переменного, реостат ползунковый, амперметр; вольтметр, ключ, соединительные провода, миллиметровая бумага.

Краткие теоретические сведения

Величина, равная отношению работы тока А ко времени t, за которое она совершается, называется мощностью P:

Следовательно, (1)

Порядок выполнения работы

Эксперимент №1

1.Составить электрическую цепь по схеме, изображенной на рисунке 1, для нулевого опыта соблюдая полярность приборов

Рисунок 1 – Схема подключения

2.Определить цену деления шкалы измерительных приборов

_____________________________________________________________________________

3.После проверки схемы преподавателем, снять показания напряжения U и силы тока I.

4.Данные приборов записать в таблицу 1.

Таблица 1 – Экспериментальные данные №1


Эксперимент №2.

1.Собрать схему по рис.2, где лампочка через реостат подключается к переменному току.

Рисунок 4.12 – Схема подключения

2.После проверки схемы преподавателем, снять показания амперметра и вольтметра, изменяя положение ползунка на реостате 10 – 11 раз.

3.Данные приборов записать в таблицу 2.

Таблица 2 – Экспериментальные данные №2

Обработка результатов измерения

__________________________________________________________________________________________________________________________________________________________

2.Найти сопротивление R 0 , для нулевого опыта:

(5)

где ΔТ 0 К – изменение абсолютной температуры (в данном случае равна комнатной температуре по шкале Цельсия); α – коэффициент температурного сопротивления для вольфрама (Приложение Б).

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3.Полученные данные занести в таблицу 1.

Эксперимент №2

1.Для каждого опыта определить мощность Р, потребляемую лампой по формуле:

Р= U max ·I max (6)

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3.Найти температуру нити накала лампы для каждого опыта по формуле:

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4.Результаты измерений и вычислений занести в таблицу 2.

5.На миллиметровой бумаге построите графики: а) зависимость мощности Р, потребляемой лампой, от напряжения U, на ее зажимах; б) зависимость сопротивления R от температуры Т.

6.Сделайте вывод по результатам двум экспериментов.

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Контрольные вопросы

1. Каков физический смысл напряжения на участке электрической цепи?

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Как определить мощность тока с помощью амперметра и вольтметра?

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Для каких целей используют ваттметр. Как он включается в цепи?

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. Как изменится сопротивление металлического проводника с увеличением температуры?

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. Чем спираль 100 Вт лампы накаливания отличается от спирали лампы 25 – ваттной?

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Лабораторная работа № 8

Тема: « Определение электродвижущей силы и внутреннего сопротивления источника тока ».

Цель: научиться определять электродвижущую силу и внутреннее сопротивление источника электрической энергии.

Оборудование: 1. Амперметр лабораторный;

2. Источник электрической энергии;

3. Соединительные провода,

4. Набор сопротивлений 2 Ом и 4 Ом;

5. Переключатель однополюсный; ключ.

Теория.

Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами.

Силы неэлектрического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q внутри источника тока к величине этого заряда, называется электродвижущей силой источника (ЭДС):

ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах [В].

Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи .

Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют внутренним сопротивлением источника и обозначают r .

Если цепь разомкнута, то работа сторонних сил превращается в потенциальную энергию источника тока. При замкнутой цепи эта потенциальная энергия расходуется на работу по перемещению зарядов во внешней цепи с сопротивлением R и во внутренней части цепи с сопротивлением r , т.е. ε = IR + Ir .

Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то, согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где IR – напряжение на внешнем участке цепи, а Ir - напряжение на внутреннем участке цепи.

Таким образом, для участка цепи, содержащего ЭДС:

Эта формула выражает закон Ома для полной цепи : сила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.

ε и r можно определить опытным путем.

Часто источники электрической энергии соединяют между собой для питания цепи. Соединение источников в батарею может быть последовательным и параллельным.

При последовательном соединении два соседних источника соединяются разноименными полюсами.

Т.е., для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.

Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

1. ЭДС батареи равна сумме ЭДС отдельных источников ε= ε 1 + ε 2 + ε 3

2 . Общее сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников r батареи = r 1 + r 2 + r 3

Если в батарею соединены n одинаковых источников, то ЭДС батареи ε= nε 1, а сопротивление r батареи = nr 1

3.

При параллельном соединении соединяют между собой все положительные и все отрицательные полюсы двух или n источников.

Т.е., при параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).

Параллельно соединяют только источники с одинаковой ЭДС . Получившаяся при параллельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.



1. ЭДС батареи одинаковых источников равна ЭДС одного источника. ε= ε 1 = ε 2 = ε 3

2. Сопротивление батареи меньше, чем сопротивление одного источника r батареи = r 1 /n
3. Сила тока в такой цепи по закону Ома

Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы - параллельно или последовательно.

Внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора. Поэтому т.к.при параллельном соединении емкость аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов, т.е увеличивается, то внутреннее сопротивление уменьшается.

Ход работы.

1. Начертите таблицу:

2. Рассмотрите шкалу амперметра и определите цену одного деления.
3. Составьте электрическую цепь по схеме, изображенной на рисунке 1. Переключатель поставить в среднее положение.


Рисунок 1.

4. Замкнуть цепь, введя меньшее сопротивление R 1 1 . Разомкнуть цепь.

5. Замкнуть цепь, введя большее сопротивление R 2 . Записать величину силы тока I 2 . Разомкнуть цепь.

6. Вычислить значение ЭДС и внутреннего сопротивления источника электрической энергии.

Закон Ома для полной цепи для каждого случая: и

Отсюда получим формулы для вычисления ε и r:

7. Результаты всех измерений и вычислений запишите в таблицу.

8. Сделайте вывод.

9. Ответьте на контрольные вопросы.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

1. Раскройте физический смысл понятия «электродвижущая сила источника тока».

2. Определить сопротивление внешнего участка цепи, пользуясь результатами полученных измерений и законом Ома для полной цепи.

3. Объяснить, почему внутреннее сопротивление возрастает при последовательном соединении аккумуляторов и уменьшается при параллельном в сравнении с сопротивлением r 0 одного аккумулятора.

4. В каком случае вольтметр, включенный на зажимы генератора, показывает ЭДС генератора и в каком случае напряжение на концах внешнего участка цепи? Можно ли это напряжение считать также и напряжением на концах внутреннего участка цепи?

Вариант выполнения измерений.

Опыт 1. Сопротивление R 1 =2 Ом, сила тока I 1 =1,3 А.

Сопротивление R 2 =4 Ом, сила тока I 2 =0,7 А.

Закон Ома для полной цепи, определение которого касается значения электрического тока в реальных цепях, находится в зависимости от источника тока и от сопротивления нагрузки. Этот закон носит и другое название - закон Ома для замкнутых цепей. Принцип действия данного закона заключается в следующем.

В качестве самого простого примера, электрическая лампа, являющаяся потребителем электрического тока, совместно с источником тока есть не что иное, как замкнутая . Данная электрическая цепь наглядно показана на рисунке.

Электроток, проходя через лампочку, также проходит и через сам источник тока. Таким образом, во время прохождения по цепи, ток испытает сопротивление не только проводника, но и сопротивление, непосредственно, самого источника тока. В источнике сопротивление создается электролитом, находящимся между пластинами и пограничными слоями пластин и электролита. Отсюда следует, что в замкнутой цепи, ее общее сопротивление будет состоять из суммы сопротивлений лампочки и источника тока.

Внешнее и внутреннее сопротивление

Сопротивление нагрузки, в данном случае лампочки, соединенной с источником тока, носит название внешнего сопротивления. Непосредственное сопротивление источника тока называется внутренним сопротивлением. Для более наглядного изображения процесса, все значения необходимо условно обозначить. I - , R - внешнее сопротивление, r - внутреннее сопротивление. Когда по электрической цепи протекает ток, то для того, чтобы поддерживать его, между концами внешней цепи должна присутствовать разность потенциалов, которая имеет значение IхR. Однако, протекание тока наблюдается и во внутренней цепи. Значит, для того, чтобы поддержать электроток во внутренней цепи, также необходима разность потенциалов на концах сопротивления r. Значение этой разности потенциалов равно Iхr.

Электродвижущая сила аккумулятора

Аккумулятор должен иметь следующее значение электродвижущей силы, способной поддерживать необходимый ток в цепи: Е=IхR+Iхr . Из формулы видно, что электродвижущая сила аккумулятора составляет сумму внешнего и внутреннего . Значение тока нужно вынести за скобки: Е=I(r+R) . Иначе можно представить: I=Е/(r+R) . Двумя последними формулами выражается закон Ома для полной цепи, определение которого звучит следующим образом: в замкнутой цепи сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений этой цепи.

Источник – это устройство, которое преобразует механическую, химическую, термическую и некоторые другие формы энергии в электрическую. Другими словами, источник является активным сетевым элементом, предназначенным для генерации электроэнергии. Различные типы источников, доступных в электросети, представляют собой источники напряжения и источники тока. Эти две концепции в электронике различаются друг от друга.

Источник постоянного напряжения

Источник напряжения – устройство с двумя полюсами, напряжение его в любой момент времени является постоянным, и проходящий через него ток не оказывает влияния. Такой источник будет идеальным, имеющим нулевое внутреннее сопротивление. В практических условиях он не может быть получен.

На отрицательном полюсе источника напряжения скапливается избыток электронов, у положительного полюса – их дефицит. Состояния полюсов поддерживаются процессами внутри источника.

Батареи

Батареи хранят химическую энергию внутри и способны преобразовывать ее в электрическую. Батареи не могут быть перезаряжены, что является их недостатком.

Аккумуляторы

Аккумуляторы являются перезаряжаемыми батареями. При зарядке электрическая энергия сохраняется внутри в виде химической. Во время разгрузки химический процесс протекает в противоположном направлении, а электрическая энергия высвобождается.

Примеры:

  1. Свинцово-кислотный аккумуляторный элемент. Изготавливается из свинцовых электродов и электролитической жидкости в виде разведенной дистиллированной водой серной кислоты. Напряжение на ячейку – около 2 В. В автомобильных аккумуляторах шесть ячеек обычно соединены в последовательную цепь, на клеммах выхода результирующее напряжение – 12 В;

  1. Никель-кадмиевые аккумуляторы, напряжение ячейки – 1,2 В.

Важно! При небольших токах батареи и аккумуляторы можно рассматривать как хорошее приближение к идеальным источникам напряжения.

Источник переменного напряжения

Электроэнергия производится на электрических станциях с помощью генераторов и после регулирования напряжения передается к потребителю. Переменное напряжение домашней сети 220 В в блоках питания различных электронных устройств легко преобразуется в более низкий показатель при применении трансформаторов.

Источник тока

По аналогии, как идеальный источник напряжения создает постоянное напряжение на выходе, задача источника тока – выдать постоянное значение тока, автоматом контролируя требуемое напряжение. Примерами являются трансформаторы тока (вторичная обмотка), фотоэлементы, коллекторные токи транзисторов.

Расчет внутреннего сопротивления источника напряжения

Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.

Батарея аккумуляторов генерирует ЭДС:

ε = E/Q, где:

  • Е – энергия (Дж);
  • Q – заряд (Кл).

Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.

Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.

Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).

Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.

Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.

  1. Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
  1. Из этого выражения r = ε/I — R.

Пример. Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.

  1. По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
  2. Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.

В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.

Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.

Важно! Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.

Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.

Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.

В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.

Особенности внутреннего сопротивления источника тока

У идеального источника тока бесконечное сопротивление, а для подлинных источников можно представить приближенный вариант. Эквивалентная электросхема – это сопротивление, подключенное к источнику параллельно, и внешнее сопротивление.

Токовый выход от источника тока распределяется так: частично ток течет через наиболее высокое внутреннее сопротивление и через низкое сопротивление нагрузки.

Выходной ток будет находиться из суммы токов на внутреннем сопротивлении и нагрузочного Iо = Iн + Iвн.

Получается:

Iн = Iо — Iвн = Iо — Uн/r.

Эта зависимость показывает, что когда внутреннее сопротивление источника тока растет, тем больше снижается ток на нем, а резистор нагрузки получает большую часть тока. Интересно, что напряжение влиять не будет на токовую величину.

Выходное напряжение реального источника:

Uвых = I x (R x r)/(R +r) = I x R/(1 + R/r). Оцените статью:

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

- электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

- термоэлектрическая - в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

- фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

- химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.