Как доказать теорему. Как делать математические доказательства. Учитель руководит процессом

Работа учителя над теоремой многоэтапна. Выделим основные из этих этапов: 1)актуализация знаний, мотивация изучения теоремы; 2)формулировка теоремы и усвоение ее содержания; 3) доказательство теоремы; 4) закрепление и применение теоремы

Заметим, что в каждом конкретном случае учитель сам решает, какие этапы с какой полнотой использовать, а без каких можно обойтись. Это зависит от особенностей класса, предыдущего опыта учителя, сложности теоремы для восприятия и др.

1-ый этап – актуализация знаний (опорное повторение) и мотивация изучения теоремы.

Технология организации опорного повторения: учитель

– разбивает доказательство на максимальное число шагов;

– вычленяет все математические факты, на которые опирается доказательство;

– анализирует, все ли они и в какой степени известны учащимся;

– организует опорное повторение в форме беседы, фронтального опроса, системы подготовительных задач (чаще всего “на готовых чертежах” – см. далее).

Мотивация изучения теоремы чаще всего связывается учителем с решением практической задачи, в которой необходим факт, отраженный в теореме (см. пример на с. 30).

2-й этап – введение формулировки теоремы и усвоение ее содержания .

Опишем два основных способа введения формулировки теоремы.

1-й способ. Учитель сам формулирует теорему с предварительной мотивировкой либо без нее.

Спешить с формулировкой не следует. Только в том случае, если она проста, доходчива, можно начинать с формулировки. Если формулировка не отличается простотой, то учитель прежде всего вычерчивает фигуру, выясняет и записывает на доске условие, заключение теоремы и только после этого формулирует ее полностью.

Преимущества способа – краткость, четкость, экономия времени; недостаток – возможен формализм, догматизм.

2-й способ. Учащиеся подготавливаются к самостоятельному формулированию теоремы.

В планиметрии для этого часто используют упражнения на построение и измерение соответствующих фигур.

Пример . Для самостоятельного открытия учащимися теоремы о хордах окружности учитель предлагает следующие вопросы и задания:

– Проведите в окружности две неравные хорды.

– Установите на глаз, какая из них ближе к центру.

– Сформулируйте свой вывод.

Преимущества способа – развитие творческих способностей учеников, повышение интереса к изучению геометрии; недостатки – большие затраты времени, возможное распыление внимание на несущественные детали.

После того, как теорема сформулирована, работаем над уточнением: оговариваем терминологию, выделяем условие и заключение теоремы. Параллельно выполняется краткая запись данных и того, что требуется доказать; строится чертеж.

Требования к чертежу:

– должен быть изображен общий, а не частный случай;

– размеры чертежа должны быть оптимальны;

– данные и искомые выделяются на чертеже цветом, используются специальные метки и символы для обозначения.

3-й этап – доказательство теоремы .

Ранее (см. 3. 2) мы охарактеризовали основные логические и математические методы доказательства теорем.

Учебник во много определяет выбор метода доказательства: логического (прямое или косвенное, аналитическое, синтетическое или метод от противного) и математического (метод геометрических преобразований или метод равенства или подобия треугольников).

Учитель должен хорошо разбираться в структуре всех видов доказательства, уметь перевести синтетическое доказательство в аналитическое и наоборот ; осознанно выбрать аналитический или синтетический путь рассуждений на уроке (в зависимости от возраста и уровня подготовки учащихся, профиля класса, возможных затрат времени и др.).

Учащиеся должны понимать, что процесс доказательства заключается в построении последовательной цепочки рассуждений, обоснованных с помощью уже известных математических фактов. Заключение – последнее ее звено.

Как мы знаем, каждый шаг этой цепочки – силлогизм. В школе нет возможности, да и необходимости вводить термины “силлогизм”, “большая посылка”, “меньшая посылка”. Обычно в обучении геометрии в основной школе пользуются терминами “шаг”, “этап”: на каждом шаге доказательства указывается утверждение и его обоснование.

На первых порах для понимания структуры доказательства, после того, как оно найдено, полезно оформление его в виде двух колонок, в одной из которых – утверждения, в другой – обоснования.

Пример . Признак параллельности прямых.

Теорема: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Наибольшая трудность – усвоение логики доказательства. Большую помощь тут могут оказать специальные карточки, которые могут применяться в качестве самостоятельной работы, домашнего задания, задания для индивидуального опроса и др. 1

Техника их изготовления проста: опуская некоторые пункты в колонках “утверждение”, “обоснование”, получаем один из вариантов индивидуальной карточки, который может быть использован как лист с печатной основой (ученик вписывает недостающие фрагменты доказательства).

Методика использования карточек: выдается карточка, предлагается заполнить пустые места; разным группам учащихся предлагаются карточки с различной насыщенностью текста, осуществляя таким образом индивидуализацию обучения математике.

Для подготовки учащихся к изучению доказательства теоремы многие учителя пользуются приемом составления плана доказательства . Обычно выделяется два этапа.

1 подход . Дается готовый план доказательства новой теоремы, учащимся предлагается самим доказать ее с помощью плана.

Пример. К теореме «Если в четырехугольнике противоположные стороны попарно равны, то он является параллелограммом» предлагается такой план:

1. Провести диагональ

2. Доказать равенство полученных треугольников

3. Доказать параллельность противоположных сторон четырехугольника

4. Сделать вывод. 

План демонстрируется классу, например, на экране с помощью интерактивной доски, мультимедиапроектора или кодоскопа. Такую новую форму задания учащиеся воспринимают с исключительным интересом. Как только план появляется на экране, они затихают – думают. Очень многие изъявляют затем желание отвечать. Чем объяснить такой повышенный интерес?

Во-первых, план разбивает доказательство теоремы на ряд простых, элементарных шагов, которые учащиеся уже могут выполнить. Если они еще не научились их выполнению, то план давать не стоит.

Во-вторых, учащиеся чувствуют, что с помощью плана они смогут доказать новую теорему. Не слушать и запоминать, а самостоятельно доказать. Это весьма импонирует им.

В-третьих, план позволяет охватить все доказательство в целом, добиться полноты понимания. Следовательно, ослабляется отрицательное влияние, когда установка на запоминание затрудняет понимание. Это приводит к уверенности, возрастает желание работать.

2-й подход . Учащихся учат составлять план уже доказанной теоремы. Сначала эта работа выполняется коллективно, а затем самостоятельно. Причем, здесь учителю приходится неоднократно показывать образцы составления плана. Учащиеся свободно воспринимают готовый план, но не сразу у них появляются умения и навыки составления плана. Очень хорошие результаты получаются в тех случаях, когда для доказательства нескольких теорем дается один общий план. Такие теоремы, объединенные общей идеей, усваиваются особенно продуктивно.

Как мы уже говорили, в учебниках планиметрии представлены краткие синтетические доказательства теорем. Учитель должен систематически учить учащихся:

1) конструировать доказательства из шагов;

2) превращать сокращенные книжные доказательства в развернутые цепочки шагов с указанием обоснований;

3) оформлять полные записи доказательства отдельных теорем.

Приведем пример полной записи доказательства теоремы по шагам.

Пример . Полное доказательство признака параллельности прямых (формулировка и краткая запись доказательства даны на предыдущей странице).

Пусть при пересечении прямых а и в секущей с имеем углы, например, 2 и 3 – вертикальные, 1 и 3 – накрест лежащие.

1. Так как 3 и 2 – вертикальные углы, то 3 = 2 (вертикальные углы равны).

2. Так как 1 = 2 и 3 = 2, то 1 = 3 (если правые части в верных равенствах равны, то равны их левые части).

3. Так как 1 и 3 – накрест лежащие углы при пересечении прямых а и в секущей с и 1 = 3, то а в (если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны).

Теорема доказана .

В процессе доказательства необходимо полностью использовать условие теоремы. Один из путей – обсуждение, на каких этапах и как применена та или другая часть условия, все ли они использованы при доказательстве.

Для обеспечения усвоения доказательства широко применяется прием двукратного доказательства : сначала обсуждается только идея, план; доказательство излагается фрагментарно. После этого доказательство излагается полностью, со всеми тонкостями и нюансами.

В опыте В.Ф. Шаталова используется сверхмногократное повторение доказательства, причем, часто на уровне идеи, плана.

4-й этап – закрепление и применение теоремы

Этап закрепления теоремы предполагает работу по выявлению, поняты ли сущность самой теоремы, идея, метод доказательства и отдельные его шаги. Приемы закрепления могут быть таковы:

– в процессе беседы с учащимися еще раз выделить основную идею, метод и шаги доказательства;

– предложить объяснить отдельные шаги доказательства;

– перечислить все аксиомы, теоремы и определения, которые используются в доказательстве;

– выяснить, где используется то или иное условие, все ли они оказались использованными;

– нет ли других способов доказательства;

– при закреплении полезно варьировать обозначения на чертеже, а также сам чертеж и т.п.

Применение теоремы организуется в процессе решения задач, в которых она используется. Нужно иметь в виду, что не всегда учебник предлагает систему задач на применение конкретной теоремы, чаще даются отдельные задачи, которые опытный учитель может дополнять. Применяются теоремы и при доказательстве других теорем последующего курса планиметрии и стереометрии.

Тема 13. Теоремы и доказательства

В этой теме Вы ознакомитесь с отличительной особенностью математики по сравнению с физикой и другими науками – признавать только те истины или законы, которые доказаны. В связи с этим будет проанализировано понятие теоремы и рассмотрены некоторые виды теорем и методы их доказательства.

09-13-03. Отличительная особенность математики

Теория

1.1. Если сравнить математику и физику, то обе эти науки используют как наблюдения, так и доказательства. Наряду с экспериментальной физикой существует теоретическая физика, в которой некоторые утверждения, как и теоремы в математике, доказываются на основе физических законов путем последовательного выведения одних суждений из других. Однако физические законы признаются истинными лишь в том случае, когда они подтверждаются большим числом экспериментов. Эти законы со временем могут уточняться.

Математика также использует наблюдения.

Пример 1. Наблюдая, что

можно сделать предположение, что сумма первых тысячи нечетных натуральных чисел равна 1000000.

Это утверждение можно проверить, непосредственными вычислениями, затратив огромное количество времени.

Можно сделать также общее предположение, что для любого натурального числа сумма начальных нечетных чисел равна . Это утверждение непосредственными вычислениями проверить нельзя, потому что множество всех натуральных чисел бесконечно. Тем не менее сделанное предположение верно, потому что его можно доказать.

Пример 2. Мы можем измерить углы многих треугольников..gif" height="20">, является верным, если мы принимаем за аксиому пятый постулат Евклида. Это было доказано в 7 классе .

Пример 3. Подставляя в многочлен

вместо натуральные числа от 1 до 10, мы получим простые числа 43, 47, 53, 61, 71, 83, 97, 113, 131, 151. Можно высказать предположение, что при любом натуральном значение квадратного трехчлена является простым числом. Проверка показала, что это действительно так при любом натуральном от 1 до 39. Однако, при предположение неверно, так как получается составное число:

Использование доказательств, а не наблюдений для установления истинности теорем является отличительной особенностью математики.

Заключение, сделанное на основе даже многочисленных наблюдений, считается математическим законом лишь тогда, когда оно доказано .

1.2. Ограничимся интуитивным понятием доказательства, как последовательного выведения одних суждений из других, не проводя точного анализа понятия выведения или вывода. Детальнее проанализируем понятие теоремы.

Теоремой принято называть утверждение, истинность которого устанавливается путем доказательства. Понятие теоремы развивалось и уточнялось вместе с понятием доказательства.

В классическом смысле под теоремой понимают высказывание, которое доказывается путем выведения одних суждений из других. При этом должны быть выбраны некоторые начальные законы или аксиомы , которые принимаются без доказательства.

Впервые система аксиом в геометрии была построена древнегреческим математиком Евклидом в его знаменитом труде Начала. Вслед за аксиомами в Началах Евклида излагаются теоремы и задачи на построение под общим названием предложения. Теоремы расположены в строгой последовательности.

Каждая теорема сначала формулируется, затем указывается, что дано и что требуется доказать. Потом излагается доказательство со всеми ссылками на ранее доказанные предложения и аксиомы. Иногда доказательство заканчивается словами что и требовалось доказать. Переведенные на все европейские языки Начала Евклида, включающие 13 книг, оставались до 18 века единственным учебным пособием , по которому изучали геометрию в школах и университетах.

1.3. Чтобы было легче выделить, что дано и что требуется доказать, теоремы формулируются в виде если..., то.... Первая часть формулировки теоремы между если и то называется условием теоремы, а вторая часть, которая записывается после то, называется заключением теоремы.

Условие теоремы содержит описание того, что дано, а заключение – что требуется доказать.

Иногда такую запись теоремы называют логической формой теоремы, а сокращенно называют формой если - то.

Пример 4. Рассмотрим следующую теорему.

Если - четное натуральное число, то является нечетным числом.

В этой теореме условие состоит в том, что берется любое четное число ..gif" width="32 height=19" height="19"> нечетно.

Часто условие и заключение записываются при помощи других слов.

Пример 5. Теорему из примера 1 можно записать в следующей форме:

Пусть - четное натуральное число. Тогда является нечетным числом.

В этом случае вместо слова если используют слово пусть, а вместо слова то пишут слово тогда.

Пример 6. Теорему из примера 1 можно записать также в следующей форме:

Из того, что четное натуральное число, следует, что число .gif" width="13" height="15"> влечет нечетность числа .

В этом случае слово если опускается, а вместо слова то используется слово влечет.

Иногда употребляют и другие виды записи теорем.

1.4. В некоторых случаях условие теоремы в ее формулировке не записывают. Это происходит тогда, когда из текста ясно, какой вид может иметь это условие.

Пример 8. Вы знаете теорему: медианы треугольника пересекаются в одной точке.

В логической форме эта теорема может быть записана так:

Если в любом треугольнике провести все медианы, то эти медианы пересекутся в одной точке.

Пример 9. Теорема о бесконечности множества простых чисел может быть записана в виде:

Если - множество всех простых чисел, то оно бесконечно.

Для установления связей между теоремами в математике используют особый язык, который частично будет рассмотрен в последующих параграфах данной главы.

Контрольные вопросы

1. Какие примеры наблюдений в математике Вам известны?

2. Какие аксиомы геометрии Вы знаете?

3. Какую запись теоремы называют логической формой теоремы?

4. Что называется условием теоремы?

5. Что называется заключением теоремы?

6. Какие формы записи теорем Вы знаете?

Задачи и упражнения

1. Какие предположения Вы можете сделать, наблюдая:

а) произведения двух соседних натуральных чисел;

б) суммы двух соседних натуральных чисел;

в) суммы трех последовательных натуральных чисел;

г) суммы трех нечетных чисел;

д) последние цифры в десятичной записи чисел .gif" width="13 height=15" height="15">;

е) число частей, на которые плоскость разбивается различными прямыми, проходящими через одну точку;

ж) число частей, на которые плоскость разбивается различными прямыми, из которых прямых попарно параллельны и пересекают .gif" width="13" height="20">.gif" height="20"> числа вида , где - натуральное число;

г) суммы двух иррациональных чисел?

3. Какое предположение Вы можете сделать, наблюдая центры окружностей, описанных около тупоугольных треугольников?

4. Запишите в логической форме теорему:

а) сумма внутренних углов выпуклого https://pandia.ru/text/80/293/images/image017_1.gif" width="81 height=24" height="24">;

б) любые два прямоугольных равнобедренных треугольника подобны;

в) равенство выполняется для любых целых чисел и ;

г) высота равнобедренного треугольника, проведенная к его основанию, делит пополам угол при вершине этого треугольника;

д) для любых неотрицательных чисел и выполняется неравенство ;

е) сумма двух противоположных углов вписанного в окружность четырехугольника равна 180;

ж) число не является рациональны числом;

з) все простые числа, которые больше 10, нечетны;

и) у квадрата диагонали равны, перпендикулярны и в точке пересечения делятся пополам;

к) из всех четырехугольников, вписанных в заданную окружность, квадрат имеет наибольшую площадь;

л) существует четное простое число;

м) ни одно простое число не может быть представлено в виде суммы двух различных нечетных натуральных чисел;

н) сумма кубов первых натуральных чисел является квадратом некоторого натурального числа.

5.* Каждую из теорем, приведенных в предыдущей задаче, запишите в нескольких различных видах.

Ответы и указания

Задача 1. Какие предположения вы можете сделать, наблюдая:

а) произведения двух соседних натуральных чисел;

б) суммы двух соседних натуральных чисел;

в) суммы трех последовательных натуральных чисел;

г) суммы трех нечетных чисел;

д) последние цифры в десятичной записи чисел при натуральных ;

е) https://pandia.ru/text/80/293/images/image011_0.gif" width="9 height=20" height="20"> число частей, на которые плоскость разбивается https://pandia.ru/text/80/293/images/image014_1.gif" width="17" height="15"> прямых попарно параллельны и пересекают .gif" width="13 height=20" height="20"> число частей, на которые плоскость разбивается https://pandia.ru/text/80/293/images/image011_0.gif" height="20 src="> могут получаться только четыре цифры:

0, 1, 5, 6; е)https://pandia.ru/text/80/293/images/image011_0.gif" height="20 src=">.gif" width="13" height="20 src=">.gif" width="13" height="15">-угольника равна ;

б) любые два прямоугольных равнобедренных треугольника подобны;

в) равенство выполняется для любых целых чисел и ;

Аксиома есть очевидная истина, не требующая доказательства .

Теорема или предложение есть истина, требующая доказательства .

Доказательство есть совокупность рассуждений, делающих данное предложение очевидным .

Доказательство достигает своей цели, когда при помощи его обнаруживается, что данное предложение есть необходимое следствие аксиом или какого-нибудь другого предложения, уже доказанного.

Всякое доказательство основано на том начале, что при правильном умозаключении из истинного предложения нельзя вывести ложного заключения.

Состав теоремы . Всякая теорема состоит из двух частей, a) условия и b) заключения или следствия .

Условие иногда называют предположением. Оно дано и поэтому иногда получает название данного.

Обратная теорема . Предложение, у которого заключение данной теоремы делается условием, а условие заключением, называется теоремой обратной данной .

В таком случае данная теорема называется прямой.

Две теоремы в совокупности, прямая и обратная, называются взаимно-обратными теоремами.

Они находятся в таком взаимном отношении, что, выбрав любую из них за прямую, можно другую принять за обратную.

В двух взаимно-обратных предложениях одно из них вытекает как необходимое следствие другого.

Если в теореме мы обозначим условие буквой, стоящей на первом месте, а заключение буквой, стоящей на втором месте, то прямую теорему можно схематически представить выражением (Aa), а обратную выражением (aA).

Выражение (Aa) схематически представляет предложение: если имеет место A, то имеет место a.

Если для данного предложения (Aa) имеет место и теорема (aA), то обе теоремы (Aa) и (aA) называются взаимно-обратными теоремами.

Примером двух таких взаимно-обратных теорем могут послужить теоремы:

Первая теорема . В треугольнике против равных сторон лежат равные углы .

Вторая теорема . В треугольнике против равных углов лежат равные стороны .

В первой теореме данным условием будет равенство сторон треугольника, а заключением равенство противолежащих углов, а во второй наоборот.

Не всякая теорема имеет свою обратную.

Примером арифметического предложения, не имеющего своего обратного, может послужить следующая теорема . Если в двух произведениях множители равны, то и произведения равны .

Обратное предположение несправедливо. Действительно, из того, что произведения равны, не следует, что множители равны.

Примером геометрического предложения, для которого обратное предложение не имеет места, может послужить теорема : во всяком квадрате диагонали равны .

Предложение обратное этому будет: если диагонали четырехугольника равны, то он будет квадратом.

Это предположение неверно, ибо диагонали бывают равными не в одном квадрате.

Так как обратное предположение не всегда справедливо, то каждый раз обратное предложение требует особого доказательства.

В теории геометрических доказательств весьма важно иногда знать, когда данное предложение допускает свое обратное.

Для этой цели может послужить следующее правило обратимости . Когда в предположении всем возможным и различным условиям соответствуют все возможные и различные заключения, обратное предложение имеет место.

Рассмотрим для примера.

Прямое предложение . Если два треугольника имеют по две равные стороны, то третья сторона будет больше, равна или меньше третьей стороны другого треугольника, смотря по тому, будет ли угол между равными сторонами больше, равен или меньше соответствующего угла другого треугольника.

В этом предложении трем различным и возможным предположениям об угле соответствуют три различных и возможных заключения о противолежащей стороне, поэтому, согласно с правилом обратимости, данная теорема допускает обратное предположение :

Когда два треугольника имеют по две равных стороны, угол между ними будет больше, равен или меньше соответствующего угла другого треугольника, смотря по тому, будет ли третья сторона больше, равна или меньше третьей стороны данного треугольника.

Кроме обратной прямая теорема может иметь свою противоположную.

Противоположная теорема есть такая, в которой из отрицания условия вытекает отрицание заключения .

Противоположная теорема может иметь свою обратную.

Чтобы обобщить все эти теоремы, мы их представим схематически в следующей общей форме:

    Прямая или основная теорема. Если имеет место условие или свойство A, то имеет место заключение или свойство B.

    Обратная . Если имеет место B, то имеет место A.

    Противоположная . Если не имеет места A, то не имеет места B.

    Обратная противоположной . Если не имеет места B, то не имеет места A.

Следующие примеры поясняют на частных случаях взаимное отношение этих теорем:

    Прямая теорема . Если при пересечении двух данных прямых третьей соответственные углы равны, то данные прямые параллельны.

    Обратная теорема . Если две прямые параллельны, то при пересечении их третье, соответственные углы равны.

    Противоположная . Если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.

    Обратная противоположной . Если прямые не параллельны, соответственные углы не равны.

При геометрическом изложении теорем достаточно доказать только две из этих трех теорем, тогда остальные две теоремы справедливы без доказательства.

На этой связи теорем основан прием, по которому для доказательства обратной теоремы ограничиваются часто только доказательством теоремы противоположной.

Способы геометрических доказательств

Для доказательства геометрических теорем существует два основных способа: синтетический и аналитический .

Эти методы называют иногда сокращенно синтезом и анализом .

Синтез есть такой метод доказательства, в котором данное предложение является необходимым следствием другого, уже доказанного .

В синтезе цепь доказательств начинается с какого-нибудь известного предложения и оканчивается данным предложением. При доказательстве исходное предложение сопоставляется с аксиомой или с другим уже известным предложением. Синтетический способ удобен для вывода таких новых предложений, которые заранее не обозначены. Для доказательства же данного предложения он представляет много неудобств. В нем не видно: a) какую из известных теорем нужно выбрать для того, чтобы доказываемое предложение вытекало как ее необходимое следствие, и b) какое из следствий выбранного предложения приводит к доказываемому предложению.

Синтез называют поэтому не методом открытия новых истин, а методом их изложения.

Впрочем и при самом изложении теорем методом синтетическим является неудобство в том отношении, что не видно, почему за исходную истину в цепи доказательств выбрано то, а не другое предложение, то, а не другое его следствие.

Примером синтетического способа доказательства может послужить следующая теорема.

Теорема . Сумма углов треугольника равна двум прямым .

Дан треугольник ABC (черт. 224).

Требуется доказать, что A + B + C = 2d.

Доказательство . Проведем прямую DE параллельную AC.

Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно,

α + B + γ = 2d

то, заменяя в предыдущем равенстве углы α и γ равными им углами, имеем:

A + B + C = 2d (ЧТД).

Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, лежащих по одну сторону прямой.

Она поставлена в связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною.

Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.

Анализ есть способ обратный синтезу. В анализе цепь рассуждений начинается доказываемой теоремой и оканчивается какой-нибудь другой уже известной истиной .

Анализ является в двух видах. От доказываемого предложения мы можем перейти к предложению, служащему его ближайшим основанием или его ближайшим следствием.

Переходя от данного предложения к предложению, служащему его ближайшим основанием, мы смотрим на данное предложение как на необходимое следствие.

Переходя от данного предложения к его ближайшему следствию, мы смотрим на данное предложение как на основание для цепи умозаключений.

Первый способ анализа . Совершая анализ переходом к основанию, отыскивают то первое ближайшее предложение, из которого данное вытекает как необходимое следствие. Если это предложение было прежде доказано, то доказано и данное предложение, если же нет, то отыскивают второе предложение, служащее основанием для первого.

Такой переход к основанию следует продолжать до тех пор, пока не дойдем до предложения вполне доказанного. Данное предложение явится как необходимое следствие последнего доказанного предложения.

Обозначая каждое предложение буквой и ставя ее впереди или позади другой, смотря по тому, будет ли оно служить основанием или следствием другого предложения, мы схематически можем этот прием анализа выразить в виде

где M есть данное предложение, L его ближайшее основание, а H предложение, вполне доказанное. Если верно предложение H, то верно предложение K; если верно K, то верно L; если верно L, то верно и M.

Второй способ анализа состоит в переходе от данного предложения к его следствию. Этот прием применяют чаще, потому что легче находить необходимое следствие, нежели отыскивать основание какой-нибудь истины. По этому способу выводят из данного предложения ту теорему, которая служит его ближайшим следствием. Если это следствие есть предложение прежде доказанное, то на нем и останавливаются; если же нет, переходят к следующему ближайшему следствию и вообще продолжают такой последовательный вывод следствий до тех пор, пока не дойдут до предложения, вполне доказанного.

Если последнее предложение не верно, то и данное не верно, ибо неверное следствие нельзя получить из верного предложения.

Если же последнее предложение верно, то для убеждения в верности данного предложения требуется, чтобы были соблюдены некоторые условия.

Схематически этот прием анализа можно представить в виде

M - N - O - P - Q - R - S

где M данное предложение, N предложение, служащее его ближайшим следствием, а S то последнее предложение, в справедливости которого мы вполне убеждены.

Из двух предложений R и S, стоящих в такой связи, что если справедливо R, то справедливо и предложение S, мы, как известно, не всегда можем обратно заключать, что если справедливо S, то справедливо и предложение R.

Чтобы последнее заключение имело место, требуется, чтобы теоремы R и S были взаимно-обратными предложениями.

Итак, для того, чтобы убедиться, что теоремы R и S стоят в такой связи, что она удовлетворяет схеме R - S и схеме S - R, требуется доказать, что предложения R и S взаимно-обратны.

Таким образом, чтобы можно было по верности последнего предложения S заключить о верности данного предложения M, требуется доказать, что каждые два рядом стоящие предложения R и S, P и R, O и P, N и O, M и N удовлетворяют закону обратимости.

Если это доказано, то цепь предложений можно обратить, и рядом со схемой M - N - O - P - Q - R - S справедлива и схема

S - R - Q - P - O - N - M

по которой мы имеем право заключить, что если справедливо предложение S, то справедливо и предложение M.

Так как затруднительно всякий раз доказывать обратимость двух предложений, то этого избегают, соединяя способ аналитический с синтетическим. После того, как из предложения M выведено предложение S как его следствие, смотрят, нельзя ли обратно вывести предложение M как необходимое следствие предложения S.

Если синтез есть способ, называемый дедукцией или выводом , то анализ можно назвать редукцией (приведение, наводка).

Примером аналитического способа доказательства может послужить следующая теорема.

Теорема . Диагонали параллелограмма пересекаются пополам.

Доказательство . Если диагонали пересекаются пополам, то треугольники AOB и DOC равны (черт. 225). Равенство же треугольников AOB и DOC вытекает из того, что AB = CD как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ как накрест-лежащие углы.

Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до предложения уже доказанного.

Сравнение синтеза с анализом . Способ аналитический вернее ведет к доказательству данной теоремы, ибо от данной теоремы легче переходить к его ближайшему основанию или следствию.

Хотя анализ лучше синтеза объясняет, почему выбран тот или другой путь для доказательства теоремы, однако неопределенность при доказательствах не устраняется вполне в том смысле, что при последовательных заменах одного предложения другим, мы не всегда можем дойти до предложения нам известного, ибо иногда не видно, какое из следствий или какое из оснований данного предложения нужно выбрать для того, чтобы его доказать. Затруднения увеличиваются еще больше, когда приходится для доказательства проводить новые вспомогательные прямые. Иногда трудно дать верные указания, какие из них облегчают доказательство данной теоремы.

Анализ, как и все логические приемы, только облегчает и помогает находить доказательство данного предложения, но не всегда необходимо ведет к самому доказательству.

Кроме этих прямых существует непрямой способ доказательства, известный под именем доказательства от противного или способа приведения к нелепости.

Способ доказательства от противного состоит в том, что для доказательства данного предложения убеждают в невозможности предположения противоположного .

На этом основании это доказательство называется доказательством от противного. Оно достигает своей цели всякий раз, когда из двух предложений, данного и противоположного, одно непременно имеет место.

В этом случае для доказательства данного, допустив противоположное предложение, выводят из него такие следствия, которые противоречат аксиомам или теоремам, уже доказанным. Если одно из следствий этого предложения ложно, то и противоположное предложение ложно, а следовательно данное предложение справедливо.

Этот прием часто применяют для доказательства теорем обратных или противоположных данным.

Не трудно заметить, что этот способ есть второй способ анализа, в котором от данного предложения последовательно переходят к его следствиям.

Примером применения такого способа может послужить приведенное выше доказательство теоремы: против равных углов в треугольнике лежат равные стороны (теорема 26).

В геометрии также применяют способы, зависящие от самого содержания геометрических истин. Геометрические истины относятся к геометрическим протяжениям. Эти протяжения обладают определенными свойствами, подлежащим внешним чувствам. Геометрическое протяжение может рассматриваться как целое, доступное наблюдению внешними чувствами. Убедительности доказательства содействует и самое чувственное созерцание. Обойтись без него в геометрии невозможно.

К числу приемов, имеющих место в геометрии, принадлежат: способ наложения, способ пропорциональности и способ пределов .

Способ наложения состоит в том, что одну геометрическую величину накладывают на другую . Этим способом убеждаются в равенстве или неравенстве геометрических протяжений, смотря по тому, совмещаются или не совмещаются ни при наложении.

Способ пропорциональности состоит в применении к геометрическим протяжениям свойств пропорций . Этот способ применяется при доказательстве теорем, относящихся к подобным фигурам и к пропорциональным отрезкам.

Способ пределов состоит в том, что вместо данных протяжений рассматривают свойства протяжений близких по своим свойствам к данному, и выводы, получаемые из рассмотрения одних, применяют к другим сходным протяжениям.

Способы решения геометрических задач

При решении геометрических задач синтез и анализ применяют точно так же как и при доказательстве теорем.

Решая задачу синтетически, берут такую другую задачу, которую умеют решить, потом из ее решения выводят решение следующей задачи, как ее необходимое следствие, и поступают так до тех пор, пока не доходят до решения данной задачи.

Синтетический метод решения задачи обладает всеми теми же недостатками, какими обладает и синтетический метод доказательства.

Поэтому чаще и успешнее для решения задач применяют анализ.

При решении задачи анализом заменяют данную задачу новой. Эту новую задачу будем называть заменяющей .

Если две задачи находятся в таком отношении, что условия второй есть необходимые следствия условий первой, то первую задачу будем называть начальной , а вторую - производной .

При анализе существуют два способа.

Первый способ . Заменяющую задачу выбирают так, чтобы условия данной задачи вытекали как необходимое следствие условий новой заменяющей задачи, т. е. по нашей терминологии от данной задачи переходят к первой начальной задаче. Если решение этой задачи известно, то решение данной является как необходимое следствие решения начальной задачи. Если же ее решение неизвестно, то от нее переходят ко второй, третьей начальной задаче и продолжают так поступать до тех пор, пока не получат задачу, решение которой известно.

Решив эту последнюю задачу, вместе с этим последовательно доходят и до решения данной задачи.

Второй способ . Можно переходить от данной задачи к такой другой, условия которой являются следствием условий данной, т. е. от данной задачи переходят к ее производной.

Заменяя таким образом последовательно одну задачу другой ее производной, мы можем дойти до задачи, решение которой уже известно. Решение этой задачи дает иногда возможность решить и данную задачу.

Такой переход от данной задачи к ее производной применяют чаще, ибо переходить к следствию легче, нежели подыскивать основание для какой-нибудь истины.

В этом частном случае анализа обыкновенно полагают, что задача решена, и из этого предположения выводят соотношения, дающие возможность решить данную задачу.

При переходе от данной задачи к ее заменяющей весьма важно обращать внимание на то, будут ли две задачи обладать свойством взаимной обратимости. Эта взаимность в условиях двух задач является тогда, когда одна задача, будучи начальной для другой, может быть в то же время и ее производной; иначе когда две задачи находятся в таком отношении, что условия одной могут быть и необходимыми следствиями другой и наоборот.

Если две задачи, данная и новая, обладают такими свойствами, то новая задача вполне заменяет данную. В этом случае все решения одной будут и решениями другой.

Если же условия двух задач не обладают свойствами взаимной обратимости, то, заменяя данную задачу новой, мы можем найти или лишние решения или иметь некоторые из решений потерянными.

Если заменяющая задача будет производной для данной, то мы можем найти некоторые лишние решения; если же она будет начальной для данной, то мы можем найти некоторые решения потерянными.

Так как чаще от данной задачи переходят к задаче производной, то чаще приходится получать решения лишние.

Чтобы отделить лишние решения и отыскать потерянные, поверяют все найденные решения.

Поверка есть способ отделения посторонних (лишних) решений . Она дополняет анализ.

Аналитическое решение задачи указывает на то построение, которое нужно сделать для решения задачи. Совершая это построение, поступают при решении задачи способом обратным анализу, т. е. прибегают к синтетическому способу. Этот синтетический способ часто может заменить и самую поверку найденных решений.

Совместное применение синтеза и анализа дает средство избегнуть тех ошибок, которые могут получиться при применении только одного из этих методов решения.

Решим одну и ту же задачу синтетически и аналитически. Для примера может послужить следующая задача.

Задача . Разделить данный отрезок AB в крайнем и среднем отношении.

Решение . Восставим из конца отрезка AB перпендикуляр BO равный половине AB (черт. 226). Из центра O опишем окружность радиусом BO, соединим центр O с точкой A и отложим на отрезке AB отрезок AC равный AD, тогда отрезок AC или AD будет искомый.

Доказательство . Прямая AB - касательная к окружности, следовательно

откуда имеем:

(AE - AB)/AB = (AB - AD)/AD

Так как DE = AB и AD = AC, то в предыдущей пропорции имеем:

AE - AB = AE - DE = AD = AC
AB - AD = AB - AC = BC

откуда имеем пропорцию

Это решение синтетическое. В нем мы отправляемся от известной теоремы о свойствах касательной и решение данной задачи вытекало как необходимое следствие этой теоремы.

Решение аналитическое . Допустим, что задача решена, а следовательно и отрезок AC найден, тогда

AB/AC = AC/CB (1)

(AB + AC)/AB = (AC + CB)/AC

(AB + AC)/AB = AB/AC (2).

Из последней пропорции видно, что AB есть касательная, AB + AC пересекающаяся, AC ее внешний и AB внутренний отрезок.

Отсюда вытекает и само построение . Нужно из конца B восставить перпендикуляр равный ½AB, провести окружность, соединить O с A и отложить на отрезке AB часть AC = AD.

В этом аналитическом решении мы данную задачу, удовлетворяющую условию (1), заменяем задачей, удовлетворяющей условию (2).

Условие (2) указывает и путь для решения самой задачи построением.

Обыкновенно, найдя решение задачи способом аналитическим, совершают построение, в котором, применяя способ рассуждений синтетический, доказывают, что это построение действительно разрешает задачу и этим доказательством заменяют поверку, имеющую в виду устранить посторонние решения.

В данном примере между задачами, удовлетворяющим условиям (1) и (2), существует полная обратимость, ибо из условий (1) вытекают условия (2) как необходимое следствие и наоборот, поэтому здесь нет ни потерянных, ни посторонних решений.

Исследование второстепенных и вспомогательных приемов решения задач еще не достигло в своей обработке полной и совершенной законченности. Мы пока устраняемся от их подробного рассмотрения.

Когда-то геометрия олицетворяла всю математику. Геометрия, как и всякая наука, возникла под влиянием жизненных потребностей. Необходимость повседневного удовлетворения их ставит человека перед целым рядом вопросов о форме окружающих его предметов, вычислениях, связанных с землемерием, строительным делом и т. д. Слово "геометрия" означает "землемерие" и ясно указывает на источник его происхождения.

Имеются вполне достоверные сведения о значительном развитии геометрических знаний в Египте более чем за две тысячи лет до нашей эры. Узкая плодородная полоса земли между пустыней и рекой Нилом ежегодно подвергалась затоплению, и каждый раз разлив смывал границы участков, принадлежавших отдельным лицам. После спада воды требовалось с возможно большей точностью восстановить эти границы, ибо каждый из участков ценился весьма высоко. Это заставило египтян заниматься вопросами измерения, то есть землемерием. Помимо этого, они вели развитую торговлю и поэтому нуждались в умении измерять емкость сосудов. Искусство кораблевождения привело их к астрономическим сведениям. Выдающиеся постройки египтян - пирамиды, которые сохранились до нашего времени, свидетельствуют, что их сооружение требовало знания пространственных форм. Все это указывает на чисто опытное происхождение геометрии.

Но математика росла и развивалась, особенно бурно последние 200 лет. Возникли новые направления: математический анализ, теория множеств, топология, совсем иначе стала выглядеть алгебра. Конечно, развивалась и геометрия, однако некоторые математики начали в последнее время относить ее к числу второстепенных математических направлений. Это мнение нашло свое отражение и в содержании школьных программ по математике, как в США, так и в ряде других стран.

Возможно тот факт, что в школьной программе геометрия занимает одно из последних мест, объясняется тем, что педагоги мало знают о природе геометрии и об успехах, которые были достигнуты ее исследователями. Я имею в виду многие блестящие результаты, такие, как теорема Фейрбаха, теореме Чевы, теорема Менелая и т. д.

Элементарная геометрия – часть геометрии, входящая в элементарную математику. Границы элементарной геометрии, как и вообще элементарной математики, не являются строго очерченными. Говорят, что элементарная геометрия есть та часть геометрии, которая изучается в средней школе; это определение, однако, не только не вскрывает содержания и характера элементарной геометрии, но и никак ее не исчерпывает, так как в не включается обширный материал, лежащий вне школьных программ (например, аксиоматика, сферическая геометрия). можно сказать, что элементарная геометрия есть исторически и, соответственно, логически первая глава геометрии (поскольку из нее развились другие геометрические направления); в свои основах она сложилась в Древней Греции, и изложение ее основ дают уже «Начала» Евклида (3 в. до н. э.). Такое историческое определение закономерно, но и оно также не уточняет общего содержания и характера элементарной геометрии, тем более, что развитие ее продолжается и в настоящее время. Потому определение элементарной геометрии может быть раскрыто и дополнено.

Элементарная геометрия исходит из простейших фигур – точка, отрезок, прямая, угол, плоскость, и основного понятия о равенстве отрезков или углов или вообще о совмещении фигур при наложении, чем определяется их равенство.

Предмет элементарной геометрии составляют:

1) фигуры, определяемые конечным числом простейших фигур;

2) фигуры, определенные тем или иным свойством, формулируемым в исходных понятиях.

Изучаемая в школе геометрия является иллюстрацией метода построения теории, которая получила название аксиоматического метода.

К началу III в. до н. э. в работах древнегреческого ученого Аристотеля была сформулирована идея построения научной теории. Применительно к геометрии ее реализовал Евклид в своей работе «Начала». На основании накопленных к тому времени фактов и знаний он выделил и сформулировал несколько утверждений (постулатов), принимаемых без доказательства, из которых выводились их логические следствия в виде теорем. система Эвклида явилась первым опытом применения аксиоматического метода и просуществовала без изменения до XIX века н. э. Однако она обладала рядом недостатков с современной точки зрения на аксиоматический метод, и на рубеже XIX – XX веков была построена геометрическая система, свободная от этих недостатков.

К середине XIX века, как уже было отмечено, основания евклидовой геометрии оставались на том же уровне, как они были изложены в работах Евклида. Однако общая тенденция к повышению математической строгости во второй половине XIX века побудила многих авторов к пересмотру основ геометрии с целью предложить полную, непротиворечивую, независимую систему аксиом. наибольшее признание среди различных сформулированных систем получила аксиоматика немецкого Давида Гильберта, изложенная в его книге «Основания геометрии» в 1899 г. Ему удалось построить аксиоматику геометрии, расчлененную настолько естественны образом, что логическая структура геометрии становилась совершенно прозрачной: три группы аксиом управляют каждая своим основным отношением – принадлежности, порядка, равенства. Такое расчленение позволило, во-первых, формировать аксиомы кратким и простым образом; во-вторых, исследовать, как далеко можно развить геометрию, если положить в основу не всю аксиоматику, а только ту или иную ее группу. При этом система задавала действительно абстрактную теорию, в которой объекты и отношения между ними – это просто какие-то мыслимые «вещи», про которые известно только то, что они удовлетворяют аксиомам.

Элементарная геометрия включает те вопросы геометрии, которые в своей постановке и решении не включают общей концепции бесконечного множества, но лишь конструктивно определенные множества (геометрические места). Когда говорят, что евклидова геометрия основана, скажем, на системе аксиом Гильберта или на иной, близкой по характеру системе аксиом то забывают, что при введении общих понятий кривой выпуклого тела длины и др. Фактически используют способы образования понятий, вовсе не предусмотренные в аксиомах, а опирающихся на общую концепцию множества, последовательности и предела, отображения или функций. То, что выводится из аксиом Гильберта без таких добавлений, и составляет элементарную часть евклидовой геометрии. Это разграничение можно уточнить в терминах математической логики. Вместе с тем, соответственно такому пониманию элементарной геометрии, можно говорить об элементарной геометрии n-мерного эвклидова пространства, о элементарной геометрии Лобачевского и др. При этом имеются в виду те разделы, теоремы и выводы этих геометрических теорий, которые характеризуются теми же чертами.

Тема моей работы: «Различные доказательства теорем элементарной геометрии не изучаемых в школе». Она рассматривает «именные теоремы, или теоремы великих ученых. Эта тема интересна тем, что доказывая теоремы школьного курса геометрии мы не всегда знаем, что они основаны на доказательстве какой-либо теоремы, доказанной еще в древние времена.

Рассмотрим доказательства именных теорем, не забывая о великих математиках, доказавших их.

1. Чева Джованни (Ceva Giovanni) (3. 3. 1648, Милан,- 13. 12. 1734, Мантуя) - итальянский инженер и математик. Окончил Пизанский университет. Основные работы по геометрии и механике. Доказал (1678) теорему о соотношении отрезков некоторых прямых, пересекающих треугольник (теорема Чевы). Построил учение о секущих, которое положило начало синтетической геометрии; оно изложено в соч. "О взаимно пересекающихся прямых" ("De line is rectis se inuicem secantibus", Mediolani, 1678).

Теорема. Пусть дан треугольник АВС и три прямые, проходящие через его вершины. Прямая, проходящая через его вершинуА, пересекает прямую ВС в точке А1, прямая, проходящая через вершину В пересекает сторону АС в точке В1, прямая, проходящая через вершину С, пересекает сторону АВ в точке С1. Эти прямые проходят через одну точку тогда и только тогда, когда

Доказательство

Необходимость.

Для случая пересекающихся прямых

Рассмотрим треугольник АВВ1 и прямую СС1, которая его пересекает.

По теореме Менелая

Рассмотрим треугольник СВВ1 и прямую АА1, которая его пересекает.

По теореме Менелая

Разделим первое соотношение на второе

Для случая непересекающихся прямых

По теореме Фалеса запишем пропорции: и

Перемножим пропорции: , значит

Достаточность.

По уже доказанному.

Но тогда, что означает, что А и А’ совпадут ч. т. д.

2. Теоре́ма Менела́я - это классическая теорема аффинной геометрии.

Подобный результат в сферической геометрии упоминается в трактате «Sphaerica» Менелая Александрийского (приблизительно 100-ый год нашей эры) и по-видимому, аналогичный результат на плоскости был уже известен. Эта теорема носит имя Менелая, поскольку более ранних письменных упоминаний об этом результате не сохранилось.

Хотя обоих математиков - древнегреческого и итальянского - разделяют 17 веков, теоремы, названные их именами, обладают двойственностью. Если в любой из них заменить прямую точкой и точку прямой, то теорема Менелая станет теоремой Чевы, и наоборот. Полезны они вот почему: те задачи, которые традиционно решаются довольно сложно с помощью аппарата векторной алгебры, решаются буквально в одну строчку с помощью теорем Менелая и Чевы. Это касается и обратных теорем. Доказательство принадлежности трех точек одной прямой решается очень просто с помощью теоремы, обратной теореме Менелая, доказательство того, что три прямые пересекаются в одной точке, так же легко решается с помощью теоремы, обратной теореме Чевы. Это наиболее важное событие в истории геометрии (открытие этих теорем), оказавшее влияние как на процесс развития математики, так и на развитие техники и смежных областей науки!

Теорема. Пусть на прямых BC, CA, AB, содержащих стороны треугольника ABC, даны соответственно точки A", B", C". Для того, чтобы эти точки лежали на одной прямой, необходимо и достаточно, чтобы имело место равенство

Доказательство.

Необходимость.

Проведем BKA"B". Из подобия треугольников CA"/A"B=CB"/B"K; BC"/C"A=KB"/B"A. Тогда AB"/B"C*CA"/A"B*BC"/C"A= =AB"/CB"*CB"/KB"*KB"/AB"=1. Если записать тоже самое в векторах, то с учетом направленности вектора получим требуемое равенство.

Достаточность.

Пусть A", B", C" не лежат на одной прямой, но верно равенство (1). Тогда пусть A"B" пересекается с AB в точке C". Тогда верно равенство (1) и для точек A", B", C". Но тогда при записи равенства один, сокращением на AB"/CB"*CA"/BA" (2), получаем, что BC"/AC"=BC"/AC". Если записать все это в векторах, то получится равенство (2) с векторами. Отсюда C"=C", т. е. A", B", C" лежат на одной прямой.

Если точки A",B" и C" лежат соответственно на прямых BC,CA и AB треугольника, то они коллинеарны, тогда и только тогда когда

Проведем через точку С прямую, параллельую прямой AB, и обозначим через K точку пересечения этой прямой с прямой B"C". Поскольку треугольники и подобны (по двум углам), то и, значит -

С тругой стороны, так как подобными являются также и треугольники и, то и, следовательно -

Но в таком случае

Остаётся заметить возможны два расположения точек A",B" и C", либо две из них лежат на соответствующих сторонах треугольник а одна на продолженни, либо все три лежат на продолжениях соответствующих сторон, отсюда для отношений направленных отрезков имеем ч. т. д.

Теорема. Если стороны ВС, СА, АВ треугольника АВС пересекаются в одной и той же точках a, b,c, то между отрезками, определенными таким образом на сторонах, имеем соотношение:

Доказательство.

Чтобы это доказать, проведем через вершины треугольника до пересечения с трансверсалью (трансверсалью называется любая прямая, пересекающая стороны треугольника) три прямые, параллельные какому-нибудь одному и тому же направлению, на которых установим одно и то же положительное направление.

Пусть α, β, γ – расстояния вершин от трансверсали, считая по проведенным параллельным прямым; имеем

Откуда, перемножая, получим:

Если бы трансверсаль была параллельна стороне ВС, то точку а следовало бы рассматривать как лежащую в бесконечности, а отношение как равное 1. Искомое соотношение обратилось бы при этом в, т. е. в теорему о прямой, параллельной какой-либо стороне треугольника. Если бы две стороны АВ и АС треугольника сделались параллельными, то точка А лежала бы в бесконечности; написав выражение в виде, мы заменили бы через 1 и получили бы теорему о прямой, параллельной одной из сторон треугольника.

Обратная теорема. Если не сторонах ВС, СА, АВ треугольника АВС взяты три точки a, b, c, удовлетворяющие соотношению то эти три точки лежат на одной прямой.

Действительно, прямая ab пересекает сторону АВ в некоторой точке c" так, что имеет место равенство:

Это равенство при сравнении его с предыдущим, показывает, что и что, следовательно, точки с и с" совпадают.

Примечание. Эта теорема, в сущности, сводится к теореме о прямой параллельной какой-либо стороне треугольника. Действительно, можно найти такие три отрезка α, δ и γ (заданные по величине и по знаку), что имеют место равенства:

Откуда в силу соотношения следует

Вследствие этого три попарно гомотетичные фигуры, в которых точки А, В и С будут тремя соответвенными точками и α, δ, γ – тремя соответственными отрезками, будут иметь точки a, b, c центрами подобия.

3. Теорема Фейербаха. Доказанная в 1822 году теорема Карла Вильгельма Фейербаха (1800–1834) утверждает, что окружность девяти точек (окружность, проходящая через середины сторон, основания высот и середины отрезков, соединяющих ортоцентр с вершинами) касается вписанной окружности треугольника и трёх его вневписанных окружностей. Эта теорема - один из самых красивых фактов элементарной геометрии.

Теорема Фейербаха. Окружность Эйлера касается вписанной и вневписанных окружностей.

Доказательство.

Пусть центр вписанной окружности - I, центр вневписанной окружности, касающейся BC - I", точки их касания с BC - L" и L", середины сторон DABC - A", B", C". GH - отрезок, симметричный отрезку BC относительно AI. Т. к. I, I" лежат на AI, BC - внутренняя касательная к этим 2-м окружностям, то GH тоже внутренняя касательная. Пусть GH∩A"B" - M, GH∩A"C" - N. Пусть GH∩BC=P, тогда P лежат на AI. Т. к. GH симметрична BC, то AG=AC, т. е. AI пересекает GC в середине. A"B", как средняя линия пересекает CG в середине, т. е. AI, A"B", CG пересекаются в одной точке. Назовем ее K. Из св-в вневписанной и вписанной окружностей получаем CL"=BL"; L"L"=AB-AC (обозначим вершины так, чтобы AB>AC). A"L"=(AB-AC)/2=BG/2=A"K(ср. лин.). DA"PK~DAPB, т. е. A"M/A"K=BG/BA; DA"CB"~DACB, т. е. BG/BA=A"K/A"B", т. е. A"M/A"K=A"K/A"B". Отсюда A"M*A"B"=A"K2=A"L"2=A"L"2. Из этого соотношения A"M=(c-b)2/(2c). Т. к. c>b, то A"M

4. Птолемей (Птоломей) Клавдий, знаменитый греческий геометр, астроном и физик; жил в Александрии в первой пол. II в. Главный труд "Великое Собрание", более известный в арабск. переводе под назв. "Альмагест". В геометрии имя П. носит теорема о произведении диагоналей вписанного четырехугольника. В астрономии П. дана теория эпициклов для объяснения видимого движения небесн. светил вокруг неподвижной земли (Птолемеева система). Другие соч: "География", "Harmonicorum libri III" (учение о гармонии) вполне сохранились, и "Оптика" (часть и в арабском переводе; в ней содержится учение об отражении и преломлении света); также 3 книги о музыке, важный источник сведений о древней музыке.

Теорема. Для того, чтобы около четырехугольника можно было описать окружность, необходимо и достаточно, чтобы сумма произведений противоположных сторон равнялась произведению его диагоналей.

Доказательство.

Необходимость.

Пусть a=AB; b=BC; c=CD; d=DA; e=AC; f=BD, тогда, пользуясь соотношением Бретшнайдера(В любом четырехугольнике (ef)2=(ac)2+(bd)2-2abcdcos(A+C), где e=AC; f=BD; a=AB; b=BC; c=CD; d=DA, ÐBAC=ÐA; ÐBCD=ÐC.), получаем: (ef)2=(ac)2+(bd)2-2abcdcos(A+C). Т. к. ABCD вписан в окружность, то ÐA+ÐC=180o, т. е. cos(A+C)=-1, т. е. (ef)2=(ac)2+(bd)2+2abcd. Отсюда (ef)2=(ac+bd)2, т. е. ef=ac+bd.

Достаточность.

ef=ac+bd, т. е. (ef)2=(ac)2+(bd)2+2abcd. По соотношению Бретшнайдера (ef)2=(ac)2+(bd)2-2abcdcos(A+C). Отсюда cos(A+C)=-1. Т. к. A+C

Теорема. Сумма произведений противоположных сторон вписанного четырехугольника равна произведению их диагоналей.

Проведем СМ так, чтобыМСD=ВАС.

ΔАВС~ΔDМС

ΔАDС~ΔВСМ

Сложим полученные равенства АВ*DC+BC*AD=AC*DM+AC*BM ч. т. д.

5. Блез Паскаль родился в 1623 г. в провинциальном городке. Блез оказался одарённым блестящим умом. В 14 лет он начал посещать математический кружок (из которого впоследствии выросла Французская академия наук), а в 16 - уже написал работу о конических сечениях («теорема Паскаля»), названную коллегами «наиболее сильным и ценным вкладом в математическую науку со дней Архимеда».

Теорема. У вписанного в окружность шестиугольника точки пересечения противоположных (если они есть) лежат на прямой, называемой прямой Паскаля вписанного шестиугольника.

Доказательство.

Пусть наш шестиугольник - AB"CA"BC". Пусть M=(AB")∩(A"B); P=(BC")∩(B"C); N=(CA")∩(C"A); X=(AB")∩(CA"); P=(BC")∩(CA"); N=(CA")∩(BC"). По свойству секущих XA*XB"=XC*XA" (1); YB*YC"=YC*YA" (2); ZB*ZC"=ZA*ZB" (3). По теореме Менелая к DXYZ и к тройкам точек (A; C"; N); (C; B"; P); (B; A"; M) получаем:

После перемножений данных выражений и применения формул (1); (2); (3) получаем, что:

Отсюда по теореме Менелая следует, что M, N, P коллинеарны.

Теорема. Во всяком шестиугольнике, вписанном в окружность, точки пересечения противоположных сторон лежат на одной прямой.

Доказательство.

Пусть ABCDEF – шестиугольник, противоположные стороны которого AB и DE пересекаются в точке L, стороны BC и EF – в М, стороны CD и FA – в N. рассмотрим треугольник IJK, образованный сторонами AB, CD, EF, другими словами, сторонами данного шестиугольника, взятыми через одну.

Точки L, М, и N расположены соответственно на сторонах JK, KI, IJ этого треугольника. Эти точки лежат на одной прямой, если имеет место соотношение:

Но, если мы пересечем последовательно треугольник IJK каждой из оставшихся сторон DE, BC, FA шестиугольника, мы получим соотношения:

Перемножив почленно эти три равенства, мы можем написать, группируя надлежащим образом множители числителя и знаменателя:

Но каждая из трех последних дробей, которые входят в левую часть, равна 1. Например, произведения CI*DI и EI*FI равны как произведения отрезков, отсеченных окружностью на секущих, выходящих из точки I. Таким образом, получается соотношение и теорема доказана.

Примечание. Предыдущее доказательство остается в силе, если точки A и B, C и D, E и F попарно совпадают и стороны треугольника IJK являются касательными к кругу.

При этом теорема принимает следующую форму: Касательные, проведенные через вершины треугольника, вписанного в круг, пересекают соответствующие стороны в трех точках, лежащих на одной прямой.

6. Жерар Дезарг родился в 1593 году (по другим источникам - в 1591г.). Паскаль называл его старшим свом современником и именно под влиянием работ Дезарга занялся проективной геометрией. В эпоху, когда не существовало еще научных журналов, активность таких математиков как Дезарг находила свое выражение в переписке ученых и деятельности дискуссионных кружков. Он состоял в переписке c Мареном Мерсенном, Декартом, Ферма, Паскалем и многими другими учеными. Из дискуссионных кружков ученых вырастали академии. Свою "теорему Дезарга" о перспективном отображении треугольников он обнародовал в 1648 году. Плодотворность этих идей в полной мере раскрылась лишь в девятнадцатом столетии. Так, Виктора Понселе, ученика Гаспара Монжа, директора Политехнической школы в Париже, в 1813 году привлекла система представлений, которую на два столетия раньше создавал Дезарг. Научные труды Дезарга легли в основу проективной геометрии. Проективно - геометрические идеи Дезарга привлекли интересы ряда ученых.

Теорема. Треугольники А1В1С1 и А2В2С2 расположены на плоскости так, что прямые А1А2, В1В2 и С1С2 имеют общую точку О. Пусть А – точка пересечения прямых В1С1 и В2С2, В – точка пересечения прямых А1С1 и А2С2, С – точка пересечения прямых А1В1 и А2В2. Тогда точки А, В, и С лежат на одной прямой.

Доказательство.

Применим теорему Менелая к треугольнику ОВ1С1 и прямой АВ2С2.

Аналогично для треугольников ОС1А1 и ОА1В1, пересекаемых прямыми ВС2А2 и СА2В2 соответственно.

Перемножив, после сокращений получим

Точки А, В и С лежат на сторонах или продолжениях сторон треугольника А1В1С1 и по теореме Менелая лежат на одной прямой.

Для того, чтобы доказать теорему Дезарга следующим способом надо вспомнить три пространственные аксиомы:

1. Две плоскости определяют одну и только одну прямую; три плоскости, не проходящие через одну прямую, определяют одну и только одну точку.

2. Две пересекающиеся прямые определяют одну и только одну точку и одну и только одну плоскость.

3. Две точки определяют одну и только одну прямую. Три точки, не лежащие на одной прямой, определяют одну и только одну плоскость.

Эта система аксиом остается неизменной, если обменять местами слова «точка» и «плоскость» (при этом первая аксиома поменяется местами с третьей, а вторая останется неизменной).

Теорема. Пусть даны в пространстве два треугольника АВС и А"B"C". Пусть эти треугольники расположены так, что прямые, соединяющие соответствующие вершины, пересекаются в одной точке О. Тогда, во-первых, три пары соответствующих сторон треугольников пересекаются в трех точках R, S, T и, во-вторых, эти три точки лежат на одной прямой.

Доказательство.

Первая часть этой теоремы доказывается весьма просто. Две пересекающиеся прямые АА" и ВВ" определяют согласно второй пространственной аксиоме некоторую плоскость. Но в этой плоскости расположены также прямые АВ и А"В" так, что согласно второй плоскостной аксиоме они пересекаются в некоторой точке R. Остается неопределенным, лежит ли точка R в конечной части пространства или в бесконечности. Существование двух других точек пересечения S и T можно доказать таким же образом.

Вторую часть теоремы легко установить в том случае, когда треугольники расположены в различных плоскостях. Тогда эти плоскости определяют одну – конечную или бесконечно удаленную – прямую пересечения (по первой пространственной аксиоме). Из каждой пары соответствующих сторон треугольника: одна расположена в одной плоскости, другая – в другой. А так как обе стороны пересекаются, то точка их пересечения должна лежать на прямой, принадлежащей обеим плоскостям. Таким образом мы доказали теорему Дезарга для общего случая.

Однако особенно важен как раз тот частный случай, когда оба треугольника лежат в одной плоскости. В этом случае доказательство можно провести при помощи проектирования в пространстве, подобно тому как доказывалась теорема Брианшона. Нам следует только доказать, что всякая плоская дезаргова фигура может быть представлена как проекция некоторой пространственной дезорговой фигуры. Для этой цели соединим все точки и прямые плоской дезарговой фигуры с некоторой точкой S, лежащей вне плоскости фигуры. Далее проведем через прямую АС плоскость; пусть эта плоскость пересекается с прямой ВS в точке В0, отличной от точки S. Затем проведем прямую ОВ0. Эта прямая лежит в одной плоскости с прямой В"S, и таким образом обе прямые пересекаются в точке В0". Но тогда треугольники АВ0С и А"В0"С" образуют пространственную дезаргову фигуру, так как прямые, соединяющие соответствующие вершины, проходят чрез точку О. Линия пересечения плоскостей обоих треугольников изображается при проектировании из точки S в виде прямой на плоскости проекций, причем точки пересечения соответствующих пар сторон рассмотренных первоначально треугольников АВС и А"В"С" должны лежать на этой прямой. Теорема Дезарга доказана полностью.

7. Папп Александрийский греческий геометр. Жил в конце III в. после Рождества Христова, стоял во главе философской школы, о которой, кроме факта ее существования, нет других сведений. Из не дошедших до нас сочинений Паппа известны по имени, а иногда и по некоторым сведениям о содержании: "Замечания" или комментарий на Альмагест Птолемея, комментарий к "Аналемме" Диодора и комментарий к "Элементам" Эвклида. Важнейшим из сочинений Паппа является известное под именем "Собрания" (συναγωγή), излагающее содержание тех математических сочинений, которые особенно ценились современниками.

Теорема. Если на одной прямой взяты точки A1, B1, C1, а на другой - точки A2, B2, C2, то прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в трех коллинеарных точках.

Доказательство.

Пусть прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в точках C, A, B соответственно, а прямые A1B2 и A2C1, B1C2 и B2A1, C1A2 и C2B1 пересекаются в точках A0, B0, C0 соответственно. Теперь применим теорему Менелая к следующим пяти тройкам точек: (A, B2, C1), (B, C2, A1), (C, A2, B1), (A1, B1, C1) и (A2, B2, C2). В результате получим:

После перемножения пяти данных равенств получим, т. е. точки A, B и C коллинеарны.

8. Гаусс Карл Фридрих (1777-1855). С именем К. Ф. Гаусса связаны многие замечательные страницы в истории математики. Он дал доказательство основной теоремы алгебры (всякое алгебраическое уравнение с действительными коэффициентами имеет корень). Гаусс создал теорию поверхностей. До него были изучены геометрии только на двух поверхностях: на плоскости (планиметрия Евклида) и на сфере (сферическая геометрия). Гаусс нашел способ построения геометрии на любой поверхности, определил, какие линии играют на поверхности роль прямых, как мерить расстояния между точками на поверхности и т. д. Теория Гаусса получила название внутренней геометрии. Он не опубликовал своих работ по неевклидовой геометрии и теории эллиптических функций. Эти результаты были открыты заново его младшими современниками: русским математиком Я. И. Лобачевским и венгерским математиком Я. Больяй в первом случае и норвежским математиком Г. X. Абелем и немецким математиком К. Г. Якоби во втором.

Теорема. Для того, чтобы три точки, лежащие на прямых, содержащих стороны треугольника BC, CA, AB (A", B", C" соответственно) были коллинеарны, необходимо и достаточно, чтобы середины отрезков AA", BB", CC" были бы коллинеарными.

Доказательство.

Необходимость.

Пусть M, N, P – середины соответственно AA", BB", CC" соответственно, A", B", C" – середины BC, CA, AB соответственно. По свойству средней линии PAB; MBC; NCA. Также по свойству средних линий имеем: (1).

По теореме Менелая. Пользуясь (1), получаем, что, откуда A", B", C" коллинеарны по теореме Менелая.

Достаточность.

Пусть A", B", C" коллинеарны, тогда по т. Менелая (2). По свойству средних линий имеем: (3). По (2) и (3) получаем, что, т. е. по теореме Менелая A", B", C" коллинеарны.

Изучая данную тему я пришла к заключению, что данные теоремы в основном рассматривают геометрию треугольника. И многие имена остались в истории математики только благодаря этим теоремам. Геометрия треугольника – это основа всей планиметрии. Теоремы сложны в доказательствах и восприятии, но на основе этих теорем доказываются многие теоремы школьного курса планиметрии и решаются практические задачи.

... § 18. Ученики, начинающие геометрию, часто не чувствуют потребности в доказательстве тех истин, которые они встречают в начале курса геометрии. Ученик, прежде чем начал учиться геометрии, привык уже к вопросу: почему вы так думаете? Да и самому преподавателю геометрии приходилось не раз задавать ему этот вопрос, прежде чем он признал своевременным приступить к объяснению, что такое теорема и что такое доказательство. А поэтому при таком объяснении учителя главное дело заключается в том, чтобы указать преимущества умозрительного доказательства перед другими, его обязательность при решении геометрических вопросов. Преподавателю предстоит избрать какую-либо из теорем, стоящих в начале курса, и воспользоваться ею для разъяснения значения и цели геометрического доказательства. Предлагают избрать для этого такую теорему, справедливость которой для учеников может быть не вполне очевидной, и, пользуясь этим, возбудить сомнение как в самой истинности ее, гак и в непригодности тех способов решения вопроса, какие известны учащимся, и таким образом привести их к необходимости искать подтверждения или опровержения ее в ином способе доказательства. Как мы видели, есть даже мнение, что было бы еще правильнее ожидать, пока ученики сами не натолкнутся на сомнение при решении какого-либо геометрического вопроса, и тогда уже приступать к толкованию о теореме. Такое предложение, как мне кажется, основано на недоразумении. Дело стояло бы так в том случае, если б, повторим еще раз, учащиеся до того времени не доказывали истин, принимали бы все сообщаемое им учителями за аксиомы. На самом же деле ученики понимают различие между.истиной и не истиной, различают даже истины, требующие подтверждения, от аксиом. Признавая что-либо истинным, они высказываются при этом по убеждению, могут представить доводы в пользу своего мнения. Но, начиная геометрию, они еще не знакомы с более точным доказательством, примеры которого в учебном курсе они впервые встречают в геометрии. Мало того, они еще не признают, может быть, самой необходимости найти более точные приемы доказательства, чем те, которые они употребляли. Поясним это примером. Ученик может принимать равенство всех прямых углов за аксиому, т. е. вполне довериться при этом своему непосредственному впечатлению и не сомневаться, что в мнении о величине прямых углов все сходятся, что в этом никто не сомневается. Но если б вы усомнились и потребовали доказательства, то он нашелся бы и произвел наложение их, как он это делал на уроках рисования и в пропедевтическом курсе. Тот же прием он употреблял и в систематическом курсе: смерив две прямые, он говорил, которая из них больше, и, поступая так, был убежден, что это измерение служит доводом, доказательством справедливости его вывода о сравнительной длине двух прямых. Это-то убеждение и составляет тот пункт, на который в данном случае должен обратить все свое внимание преподаватель. Для него важно не поселить сомнение в справедливости содержания теоремы,- ученики признают такое сомнение законным и не удивятся вопросу учителя: почему? докажите! - а внушить ученикам, как важно иметь возможность обобщить истину, найдя для нее умозрительное доказательство. Если речь идет о двух прямых, то, решая вопрос об,ix сравнительной длине, вполне возможно или довериться впечатлению глаза, или, если этого недостаточно, смерить их. Но геометрия имеет в виду не такие практические потребности: она как наука интересуется не какими-либо произвольно взятыми прямыми, а прямыми, величина которых определяется известными условиями. Истины, принадлежащие геометрии, имеют известную долю общности, но справедливы лишь при существовании определенных условий. Выбор темы для показания значения умозрительного доказательства определяется поэтому тем, удобно ли ее доказательство для уяснения характера и ценности его, а не тем, можно ли возбудить в учениках сомнение в справедливости самого содержания теоремы. Чтобы сделать яснее свою мысль, предположим, что нами выбрана теорема: каждая хорда меньше диаметра одного с нею круга, и отметим главные части урока, посвященного убеждению учеников в необходимости доказательства. 1. Проводится диаметр и хорда в одном и том же круге. На вопрос, которая из этих линий длиннее, ученики с убеждением скажут, что этот диаметр больше этой хорды. Если в том же круге проведем еще несколько хорд, то заключение о том, что вся она будет короче диаметра, получится с той же легкостью и с той же степенью верности. Можно, конечно, потребовать, чтобы сравнение было произведено точнее, т. е. не на глазомер, а путем измерения. 2. Далее решается вопрос: можно ли теперь сказать, что и все хорды также меньше диаметра? Предстоит убедить учеников, что такое обобщение невозможно. С одной стороны, нельзя перемерить все хорды, ибо их бесчисленное множество (а не потому, что потребовалось бы много времени), а с другой, если нельзя все перемерить, то всегда возможно сомневаться, не встретилась ли бы в числе неизмеренных такая хорда, которая окажется больше или хотя бы равна диаметру. Если из конца диаметра провести хорду под весьма малым углом к нему, то нетрудно дать почувствовать ученикам, что сравнение измерением может повести нас к неверному заключению, вследствие возможности ошибки при самом измерении, которая может иметь очень большое значение, когда сравниваемые протяжения весьма близки между собой по величине. Отсюда вывод о необходимости приискать другой способ решения вопроса, который дал бы возможность распространить наш вывод на все хорды. 3. Общность рассуждения или умозрительного доказательства выводится не из повторения его на нескольких чертежах, а из разбора частей доказательства. Можно ли концы каждой хорды соединить с центром? Всегда ли в таком случае хорда будет прямой, а радиусы образуют ломаную, опирающуюся на одни с прямой концы? Всегда ли эта ломаная будет состоять из двух радиусов и будет, следовательно, равна диаметру? Разобрав таким образом доказательство, мы вправе сказать, что, говоря об одной хорде, мы разумеем все хорды. Если б в нашем доказательстве хотя одна часть не могла быть применима к каждой хорде, то доказательство утратило бы всю свою цену. Повторение доказательства на другом чертеже имеет значение как повторение, как прием лучшего усвоения его, а не как подтверждение его общности. Следует оговориться, что нельзя ожидать, чтобы ученики сразу вполне поняли эту сторону геометрических доказательств. При дальнейшем изложении курса необходимо будет возвращаться к этой стороне дела и с этою целью заставлять учеников проверять доказательство шаг за шагом, все ли его части имеют общий характер, не ввели ли в него чего-либо справедливого лишь случайно, вследствие особенностей чертежа. Для полного выяснения значения теоремы и ее доказательства необходимо остановиться на стоящих в теореме словах: хорда и диаметр одного круга. Лучше всего, следуя тому же пути, который указан выше, сослаться на то, что ломаная в данном случае равна двум радиусам, а следовательно, и диаметру того же круга, в который вписана и хорда, что если взять хорду одного круга, а диаметр-другого, то упомянутого равенства существовать не будет, и если б мы в своем рассуждении упоминали о нем, то само рассуждение было бы неверно. Ссылаться же в подтверждение прибавляемых слов на чертеж (взяв хорду большого круга, а диаметр другого-маленького) значило бы возвращаться к непосредственному впечатлению, тогда как формальная сторона урока и заключается в том, чтобы убедить учеников в необходимости пользоваться умозрением...