Древние методы решения по схеме горнера. Тема урока "Теорема Безу. Схема Горнера и ее применение". графическом методе решения

Существует алгоритм деления многочлена f (x ) на (x – a ), который называется схемой Горнера.

Пусть f (x ) = , deg f (x ) = n , a n 0. Разделим f (x ) на (x – a ), получим: (*) f (x ) = (x – а ) × q (x ) + r , где r Î F , deg q (x ) = n – 1.

Запишем q (x ) = b n -1 x n -1 + b n -2 x n -2 + … + b 1 x + b 0 . Тогда подставив в равенство (*) вместо f (x ) и q (x ) их выражения, получим:

a n x n + a n-1 x n-1 + … + a 1 x + a 0 = (х – а ) (b n-1 x n-1 + b n-2 x n-2 + … + b 1 x + b 0 ) + r

Так как многочлены равны, то и коэффициенты при соответствующих степенях должны быть равны.

r – ab 0 = a 0 r = a 0 + ab 0

b 0 – ab 1 = a 1 b 0 = a 1 + ab 1

…………… .. ……………

b n -1 = a n a n = a n -1

Вычисление коэффициентов многочлена q (x ) удобнее осуществлять с помощью таблицы (схемы Горнера).

a n a n-1 a 1 a 0
b n -1 = a n b n - 2 = ab n-1 + a n-1 b 0 = ab 1 +a 1 r = a 0 + ab 0

С помощью схемы Горнера можно решать такие типы задач:

1. Найти q(x) и r при делении f (x ) на (х – а );

2. Вычислить значение многочлена f (x ) при x = a ;

3. Выяснить, будет ли х = а корнем многочлена f (x ), а F ;

4. Определить кратность корня;

5. Разложить многочлен по степеням (х – а ).

6. Вычислить значение многочлена f (x ) и всех его производных при х = а .

Пример. Пусть f (x ) = x 5 – 15 x 4 + 76 x 3 – 140x 2 + 75x – 125 и а = 5.

Составим схему Горнера:

-15 -140 -125
-10 -10 0 = с 0
-5 -5 0 = с 1
0 =с 2
5 26 = с 3
10 = с 4
1 = с 5

1. Вычислим неполное частное q (x ) и остаток r при делении f (x ) на (х – 5). Во второй строке таблицы видим, что коэффициенты частного q (x ) равны: 1, – 10, 26, – 10, 25, поэтому q (x ) = 1х 4 – 10х 3 + 26х 2 – 10х + 25, а остаток r равен 0.

2. Вычислим значение многочлена f (x ) при x = 5. Воспользуемся теоремой Безу: f (5) = r = 0.

3. Выясним, будет ли х = 5 корнем многочлена f (x ). По определению а – корень f (x ), если f (а ) = 0. Так как f (5) = r = 0, то 5 – корень f (x ).

4. Из второй, третьей и четвертой строк таблицы мы видим, что f (x ) делится на (х – 5) 3 , но f (x ) не делится на (х – 5) 4 . Следовательно, число корень 5 имеет кратность 3.

5. Разложим многочлен f (x ) по степеням (х – 5), коэффициенты разложения с 0 , с 1 , с 2 , с 3 , с 4 , с 5 получаются в последних клетках второй, третьей, четвертой, пятой, шестой и седьмой строки схемы Горнера:

f (x ) = с 0 + с 1 (х – 5)+ с 2 (х – 5) 2 + с 3 (х – 5) 3 + с 4 (х – 5) 4 + с 5 (х – 5) 5 или

f (x ) = 26 (х – 5) 3 + 10 (х – 5) 4 + (х – 5) 5 .

6. Вычислим значение многочлена f (x ) и всех его производных при х = 5.

с 0 = f (5) = 0, с 1 = f ′ (5) = 0, с 2 = = 0 f ′′(5) = 0,

с 3 = = 26 f ′′′ (5) = 26 ∙ 3! = 156, с 4 = = 10 f ′ v (5) = 10 ∙ 4! = 240,

с 5 = = 1 f v (5) = 1 ∙ 5! = 120.

МЕТОДИКА 15. «Логарифмическая функция».

1. Логико – математический анализ темы.

Данная тема изучается в 10 классе.

Основные понятия:

Функцию, заданную формулой у=log а х, где а>0, а≠0 называют логарифмической функцией с основанием а.

Термин – логарифмическая функция.

Род – функция.

Видовые отличия: 1) а>0, а≠0; 2) функция задана формулой у=log а х.

Основные предложения:

Свойства логарифмической функции.

1°. Область определения логарифмической функции – множество всех положительных чисел R + , т.е. D(log)=R + .

2°. Область значений логарифмической функции – множество всех действительных чисел.

3°. Логарифмическая функция на всей области определения возрастает (при а>1) или убывает (при 0<а<1).

Справедливо следующее утверждение: графики показательной и логарифмической функций, имеющих одинаковое основание, симметричны относительно прямой у=х.

Основные идеи и методы изучения:

Определения понятий явные, через ближайший род и видовые отличия – конструктивные.

Методы доказательства:

Дедуктивные (на основе определения) с использованием математических методов: логарифмирование степени, основные свойства степени, метод от противного.

Например, свойство о том, что при а>1 функция возрастает, доказывается с помощью определения возрастающей функции, при этом применяется метод от противного.

Ранее изученный материал Теоретический материал темы Применение изученного материала
- показательная функция; - показательные уравнения и неравенства; - логарифмы и их свойства; - убывающая и возрастающая функции; - график функции. Область определения функции Множество значений функции График функции Логарифм числа Десятичный и натуральный логарифмы Основные логарифмические тождества Логарифмическая функция Свойства логарифма Логарифмические уравнения Логарифмические неравенства - при решении логарифмических уравнений и неравенств; - в астрономии (оценка яркости звезд); - в физике; - в высшей математике (математическая логика, математический анализ).
  1. Основные типы математических задач по теме

Найти область определения функции;



Построить график функции;

Найти область значения функции;

Найти промежутки знакопостоянства функции;

Исследовать функцию и построить ее график;

Найти наибольшее и наименьшее значение функции;

Найти значение выражения.

Типичные ошибки и затруднения изучения темы

Математические ошибки:

ü вычислительные ошибки: при решении уравнений и неравенств, при нахождении значений функции, при действиях со степенями;

ü логические ошибки: в выполнении тождественных преобразований, в использовании свойств логарифмов, при определении понятий, при выводе формул;

ü графические ошибки: при построении графиков функций (не учитывают свойства функций); неправильно применяют преобразование графиков.

3. методы и приемы работы учащихся с учебником математики в соответствии с возрастными особенностями учащихся.

В 5-6 классах используют следующие методы работы с учебником:

1. чтение правил, определений, формулировок теорем учащимися после объяснения учителя

2. чтение вслух учителя ученикам с выделением главного и существенного

3. работа с формулами и иллюстрациями на обложке учебника

4. чтение учебника учащимися и ответы на вопросы учителя

В 7-8 классах добавляются следующие методы работы с учебником:

1. чтение текстов после их объяснения учителем

2. чтение текста учащимися и разбивка его на смысловые абзацы

3. чтение текста из учебника учащимися и запись основных предложений темы по плану, предложенному учителем

В 9 – 11 классах ко всему предложенному добавляется:

1. разбор примеров учащимися в учебнике, после объяснения темы учителем

2. чтение текста учащимися и запись опорного конспекта по данному тексту

3. чтение текста учебника и самостоятельное составление учащимися плана по данному тексту.

4. чтение текста учебника и ответ учащегося по самостоятельно составленному плану

2. Фрагмент урока изучения новой темы: «Логарифмическая функция».

Цели урока:

Обучающие: обеспечить в ходе урока усвоения понятия логарифмическая функция, формировать умения определять свойства логарифмических функций, формировать умение изображать графики логарифмической функции.

Развивающие: способствовать развитию мышления, восприятия, памяти, воображению, внимания.

Воспитательные: воспитывать устойчивый интерес к математике, воспитывать отдельные качества личности: аккуратность, настойчивость, трудолюбие.

Тип урока: изучение нового материала

Структура урока:

1.организационный момент; 2. постановка целей урока; 3.проверка домашнего задания; 4. подготовка к изучению нового материала; 5. изучение нового материала; 6.первичное закрепление и осмысление нового материала; 7.постановка домашнего задания; 8.подведение итогов урока.;

Действия учителя Действия учеников
ответьте на вопрос 1. что называется функцией? 2. какие функции вы узнали в этом году? 3. какие свойства функций вы знаете? 4. что называется графиком функции? Сегодня мы изучим новую функцию логарифмическую. Когда мы изучали показательную функцию, мы оформляли ее свойства в таблицу. Сейчас я предлагаю открыть вам страницу 98 в ваших учебниках прочитать параграф 18 и записать в тетрадях опорный конспект по плану предложенному на доске. Опорный конспект вы будите оформлять так же, как оформляли при изучении показательной функции. План опорного конспекта. 3. определение логарифмической функции 4. свойства логарифмической функции оформите в таблицу.

А теперь к доске я приглашаю одного человека который оформит правильно конспект на доске.

5. Числовой функцией с областью определении D называется соответствие, при котором каждому числу х из множества D сопоставляется по некоторому правилу число у, зависящее от х. 6. степенная, показательная. 7. Область определения, область значений, непрерывность, возрастание, убывание функции. 8. Графиком функции f называют множество всех точек (х; у) координатной плоскости, где y=f(x), а х «пробегает» всю область определения функции f. Ответы: Функцию, заданную формулой у=log а х, где а>0, а≠0 называют логарифмической функцией с основанием а.

Многочлен вида
a n x n + a n-1 x n-1 + a n-2 x n-2 + ... + a 1 x + a 0
можно разложить на множители по схеме Горнера, если известен хотя бы 1 его корень.

Разберем деление по схеме Горнера на примере:

2x 4 + 9x 3 - 10x 2 - 27x - 10

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа -10 являются ±1, ±2, ±5, ±10. Начнем их подставлять по-очереди:

1: 2 + 9 - 10 - 27 - 10 = -36 ⇒ число 1

-1: 2 - 9 - 10 + 27 - 10 = 0 ⇒ число -1 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является -1, а значит исходный многочлен должен делиться на x + 1 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

2 9 -10 -27 -10
-1

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень -1. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

2 9 -10 -27 -10
-1 2
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
2 9 -10 -27 -10
-1 2 7
-1 ∙ 2 + 9 = 7
2 9 -10 -27 -10
-1 2 7 -17
-1 ∙ 7 - 10 = -17
2 9 -10 -27 -10
-1 2 7 -17 -10
-1 ∙ (-17) - 27 = -10
2 9 -10 -27 -10
-1 2 7 -17 -10 0
-1 ∙ (-10) - 10 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(2x 3 + 7x 2 - 17x - 10)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 7x 2 - 17x - 10.

Опять ищем корень среди делителей свободного члена. Как мы уже выяснили, делителями числа -10 являются ±1, ±2, ±5, ±10.

1: 2 + 7 - 17 - 10 = -18 ⇒ число 1 не является корнем многочлена

-1: -2 + 7 + 17 - 10 = 12 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 7 ∙ 4 - 17 ∙ 2 - 10 = 0 ⇒ число 2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11
2 ∙ 2 + 7 = 11
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5
2 ∙ 11 - 17 = 5
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
2 ∙ 5 - 10 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(x - 2)(2x 2 + 11x + 5)

Многочлен 2x 2 + 11x + 5 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант , а можно поискать корень среди делителей числа 5. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -5

2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2 1
-5 ∙ 2 + 11 = 1
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2 1 0
-5 ∙ 1 + 5 = 0

Таким образом мы исходный многочлен разложили на линейные множители:

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(x - 2)(x + 5)(2x - 1)








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Урок усвоения и закрепления первичных знаний.

Цель урока:

  • Ознакомить учеников с понятием корней многочлена, научить находить их. Усовершенствовать навыки применения схемы Горнера по разложению многочлена по степеням и деления многочлена на двучлен.
  • Научиться находить корни уравнения с помощью схемы Горнера.
  • Развивать абстрактное мышление.
  • Воспитывать вычислительную культуру.
  • Развитие межпредметных связей.

Ход урока

1. Организационный момент.

Сообщить тему урока, сформулировать цели.

2. Проверка домашнего задания.

3. Изучение нового материала.

Пусть F n (x)= a n x n +a n-1 x n-1 +...+ a 1 x +a 0 - многочлен относительно x степени n, где a 0 , a 1 ,...,a n –данные числа, причем a 0 не равно 0. Если многочлен F n (x) разделить с остатком на двучлен x-a, то частное (неполное частное) есть многочлен Q n-1 (x) степени n-1, остаток R есть число, при этом справедливо равенство F n (x)=(x-a) Q n-1 (x) +R. Многочлен F n (x) делится нацело на двучлен (x-a) только в случае R=0.

Теорема Безу: Остаток R от деления многочлена F n (x) на двучлен (x-a) равен значению многочлена F n (x) при x=a, т.е. R= P n (a).

Немного истории. Теорема Безу, несмотря на внешнюю простоту и очевидность, является одной из фундаментальных теорем теории многочленов. В этой теореме алгебраические свойства многочленов (которые позволяют работать с многочленами как с целыми числами) связываются с их функциональными свойствами (которые позволяют рассматривать многочлены как функции). Одним из способов решения уравнений высших степеней является способ разложения на множители многочлена, стоящего в левой части уравнения. Вычисление коэффициентов многочлена и остатка записывается в виде таблицы, которая называется схемой Горнера.

Схема Горнера – это алгоритм деления многочленов, записанный для частного случая, когда частное равно двучлену x–a .

Горнер Уильям Джордж (1786 - 1837), английский математик. Основные исследования относятся к теории алгебраических уравнений. Разработал способ приближенного решения уравнений любой степени. В 1819 г. ввёл важный для алгебры способ деления многочлена на двучлен х - а (схема Горнера).

Вывод общей формулы для схемы Горнера.

Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r

Запишем это равенство подробно:

f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n =(x-c) (q 0 x n-1 + q 1 x n-2 + q 2 x n-3 +...+ q n-2 x + q n-1)+r

Приравняем коэффициенты при одинаковых степенях:

x n: f 0 = q 0 => q 0 = f 0
x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0
x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1
... ...
x 0: f n = q n - c q n-1 => q n = f n + c q n-1.

Демонстрация схемы Горнера на примере.

Задание 1. С помощью схемы Горнера разделим с остатком многочлен f(x) = x 3 - 5x 2 + 8 на двучлен x-2.

1 -5 0 8
2 1 2*1+(-5)=-3 2*(-3)+0=-6 2*(-6)+8=-4

f(x) = x 3 - 5x 2 + 8 =(x-2)(x 2 -3x-6)-4, где g(x)= (x 2 -3x-6), r = -4 остаток.

Разложение многочлена по степеням двучлена.

Используя схему Горнера, разложим многочлен f(x)=x 3 +3x 2 -2x+4 по степеням двучлена (x+2).

В результате должны получить разложение f(x) = x 3 +3x 2 -2x+4 = (x+2)(x 2 +x-4)+12 = (x+2)((x-1)(x+2)-2)+12 = (((1*(x+2)-3)(x+2)-2)(x+2))+12 = (x+2) 3 -3(x+2) 2 -2(x+2)+12

Схему Горнера часто используют при решении уравнений третьей, четвертой и выших степеней, когда удобно разложить многочлен на двучлен x-a. Число a называют корнем многочлена F n (x) = f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n , если при x=a значение многочлена F n (x) равно нулю: F n (a)=0, т.е. если многочлен делится нацело на двучлен x-a.

Например, число 2 является корнем многочлена F 3 (x)=3x 3 -2x-20, так как F 3 (2)=0. это означает. Что разложение этого многочлена на множители содержит множитель x-2.

F 3 (x)=3x 3 -2x-20=(x-2)(3x 2 +6x+10).

Любой многочлен F n (x) степени n 1 может иметь не более n действительных корней.

Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.

Если старший коэффициент уравнения равен 1, то все рациональные корни уравнения, если они существуют, целые.

Закрепление изученного материала.

Для закрепления нового материала учащимся предлагается выполнить номера из учебника 2.41 и 2.42 (стр. 65).

(2 ученика решают у доски, а остальные, решив, в тетради задания сверяются с ответами на доске).

Подведение итогов.

Поняв структуру и принцип действия схемы Горнера, ее можно использовать и на уроках информатики, когда рассматривается вопрос о переводе целых чисел из десятичной системы счисления в двоичную и обратно. В основе перевода из одной системы счисления в другую лежит следующая общая теорема

Теорема. Для перевода целого числа Ap из p -ичной системы счисления в систему счисления с основанием d необходимо Ap последовательно делить с остатком на число d , записанное в той же p -ичной системе, до тех пор, пока полученное частное не станет равным нулю. Остатки от деления при этом будут являться d -ичными цифрами числа Ad , начиная от младшего разряда к старшему. Все действия необходимо проводить в p -ичной системе счисления. Для человека данное правило удобно лишь при p = 10, т.е. при переводе из десятичной системы. Что касается компьютера, то ему, напротив, “удобнее” производить вычисления в двоичной системе. Поэтому для перевода “2 в 10” используется последовательное деление на десять в двоичной системе, а “10 в 2” - сложение степеней десятки. Для оптимизации вычислений процедуры “10 в 2” компьютер использует экономную вычислительную схему Горнера.

Домашнее задание. Предлагается выполнить два задание.

1-е. Используя схему Горнера разделить многочлен f(x)=2x 5 -x 4 -3x 3 +x-3 на двучлен (x-3).

2-е. Найти целые корни многочлена f(x)=x 4 -2x 3 +2x 2 -x-6.(учитывая, что любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена)

Литература.

  1. Курош А.Г. “Курс высшей алгебры”.
  2. Никольский С.М, Потапов М.К. и др. 10 класс “Алгебра и начала математического анализа”.
  3. http://inf.1september.ru/article.php?ID=200600907.

1.1 Общее описание алгоритма

1.1.1 Решаемая задача

Первая оценка выполняется на основе характеристики daps, которая оценивает число выполненных обращений (чтений и записей) в память в секунду. Данная характеристика является аналогом оценки flops применительно к работе с памятью и является в большей степени оценкой производительности взаимодействия с памятью, чем оценкой локальности. Однако она служит хорошим источником информации, в том числе для сравнения с результатами по следующей характеристике cvg.

На рис.4 приведены значения daps для реализаций распространенных алгоритмов, отсортированные по возрастанию (чем больше daps, тем в общем случае выше производительность). Согласно данному рисунку, реализация схемы Горнера показывает низкую производительность работы с памятью. Может показаться странным, что значение daps в этом случае значительно меньше, чем для тестов STREAM, несмотря на то, что профиль обращений во всех случаях очень похож – несколько одновременно выполняемых последовательных переборов массивов.

Причина такого поведения связана с особенностями строения подсистемы памяти. В реализации схемы Горнера, как было отмечено выше, к элементам одного из массивов выполняется по два обращения подряд. Однако если посмотреть исходный код реализации, можно увидеть, что на самом деле второе обращение выполняется на следующей итерации – это обращение к предыдущему элементу:

for (int i = 1 ; i < size ; i ++ ) { c [ i ] = a [ i ] + c [ i - 1 ] * x ; }

В результате из-за зависимости итераций аппаратный префетчер гораздо хуже справляется с подтягиванием требуемых кэш-строк, что приводит к заметному замедлению выполнения программы по сравнению с другими реализациями, основанными на последовательном переборе (например, тесты STREAM).

Подобный пример лишний раз показывает, насколько сложно утроена подсистема памяти – совсем небольшое изменение строения тела цикла приводит к достаточно неожиданному серьезному замедлению программы.

Рисунок 4. Сравнение значений оценки daps

Вторая характеристика – cvg – предназначена для получения более машинно-независимой оценки локальности. Она определяет, насколько часто в программе необходимо подтягивать данные в кэш-память. Соответственно, чем меньше значение cvg, тем реже это нужно делать, тем лучше локальность.

На рис.5 приведены значения cvg для того же набора реализаций, отсортированные по убыванию (чем меньше cvg, тем в общем случае выше локальность). Можно увидеть, что реализация схема Горнера обладает очень высокой локальностью согласно оценке cvg.

Рисунок 5. Сравнение значений оценки cvg

Как мы видели ранее, это плохо соотносится с реальной производительностью работы с памятью из-за особенностей строения памяти. Однако здесь необходимо сделать два замечания. Во-первых, подобные случаи, когда производительность работы с памятью настолько сильно зависит от специфичных аппаратных особенностей строения подсистемы памяти, на практике встречаются не так часто. Во-вторых, cvg предназначена для получения машинно-независимой оценки локальности; на данном уровне учесть подобные аппаратные особенности, по крайней мере, без потери доли машинно-независимых свойств, вряд ли представляется возможным.

2.3 Возможные способы и особенности параллельной реализации алгоритма

Описываемый алгоритм не предполагает параллельной реализации.

2.4 Масштабируемость алгоритма и его реализации

Понятие масштабируемости неприменимо, поскольку описываемый алгоритм не предполагает параллельной реализации. Проведём исследование масштабируемости вширь реализации алгоритма согласно методике . Исследование проводилось на суперкомпьютере "Ломоносов" Суперкомпьютерного комплекса Московского университета . Набор и границы значений изменяемых параметров запуска реализации алгоритма:

  • число процессоров 1;
  • размер области с шагом 10240.

В результате проведённых экспериментов был получен следующий диапазон эффективности реализации алгоритма:

  • минимальная эффективность реализации 0.0324%;
  • максимальная эффективность реализации 0.0331%.

На следующих рисунках приведены графики производительности и эффективности выбранной реализации алгоритма в зависимости от изменяемых параметров запуска.

Рисунок 6. Реализация алгоритма. Изменение производительности в зависимости от размера вектора.

Рисунок 7. Реализация алгоритма. Изменение эффективности в зависимости от размера вектора.

Мизерная эффективность, по-видимому, связана с избыточной локальностью, описанной в разделе о .

2.5 Динамические характеристики и эффективность реализации алгоритма

В силу последовательности алгоритма и его избыточной локальности, исследование его динамических характеристик малоценно.

Для проведения экспериментов использовалась реализация алгоритма схемы Горнера, в реализации, доступной . Все результаты получены на суперкомпьютере "ГрафИТ!". Использовались процессоры Intel Xeon X5570 с пиковой производительностью в 94 Гфлопс, а также компилятор Gnu 4.4.7. На рисунках показана эффективность реализации алгоритма встречной прогонки.

И т.д. носит общеобразовательный характер и имеет большое значение для изучения ВСЕГО курса высшей математики. Сегодня мы повторим «школьные» уравнения, но не просто «школьные» – а те из них, которые повсеместно встречаются в различных задачах вышмата. Как обычно, повествование пойдёт в прикладном ключе, т.е. я не буду заострять внимание на определениях, классификациях, а поделюсь с вами именно личным опытом решения. Информация предназначена, прежде всего, для начинающих, но и более подготовленные читатели тоже найдут для себя немало интересных моментов. И, конечно же, будет новый материал, выходящий за рамки средней школы.

Итак, уравнение…. Многие с содроганием вспоминают это слово. Чего только стОят «навороченные» уравнения с корнями... …забудьте о них! Потому что дальше вам будут встречаться самые безобидные «представители» этого вида. Или занудные тригонометрические уравнения с десятками методов решения. Если честно, я и сам их не особо любил…. Без паники! – далее вас ожидают преимущественно «одуванчики» с очевидным решением в 1-2 шага. Хотя и «репейник», безусловно, цепляется – здесь нужно быть объективным.

Как ни странно, в высшей математике гораздо чаще приходится иметь дело с совсем примитивными уравнениями наподобие линейного уравнения .

Что значит решить это уравнение? Это значит – найти ТАКОЕ значение «икс» (корень), которое обращает его в верное равенство. Перебросим «тройку» направо со сменой знака:

и сбросим «двойку» в правую часть (или, то же самое – умножим обе части на ) :

Для проверки подставим завоёванный трофей в исходное уравнение :

Получено верное равенство, значит, найденное значение действительно является корнем данного уравнения. Или, как ещё говорят, удовлетворяет данному уравнению.

Обратите внимание, что корень можно записать и в виде десятичной дроби:
И постарайтесь не придерживаться этого скверного стиля! Причину я повторял неоднократно, в частности, на первом же уроке по высшей алгебре .

Кстати, уравнение можно решить и «по-арабски»:

И что самое интересное – данная запись полностью легальна! Но если Вы не преподаватель, то так лучше не делать, ибо оригинальность здесь наказуема =)

А теперь немного о

графическом методе решения

Уравнение имеет вид и его корень – есть «иксовая» координата точки пересечения графика линейной функции с графиком линейной функции (осью абсцисс) :

Казалось бы, пример настолько элементарен, что разбирать тут больше нечего, однако из него можно «выжать» ещё один неожиданный нюанс: представим то же самое уравнение в виде и построим графики функций :

При этом, пожалуйста, не путайте два понятия : уравнение – это уравнение, а функция – это функция! Функции лишь помогают найти корни уравнения. Коих может быть два, три, четыре и даже бесконечно много. Ближайшим примером в этом смысле является всем известно квадратное уравнение , алгоритм решения которого удостоился отдельного пункта «горячих» школьных формул . И это не случайно! Если вы умеете решать квадратное уравнение и знаете теорему Пифагора , то, можно сказать, «пол высшей математики уже в кармане» =) Преувеличено, конечно, но и не так далеко от истины!

А поэтому не поленимся и прорешаем какое-нибудь квадратное уравнение по стандартному алгоритму :

, значит, уравнение имеет два различных действительных корня:

Легко убедиться, что оба найденных значения действительно удовлетворяют данному уравнению:

Что делать, если вы вдруг позабыли алгоритм решения, и под рукой нет средств/рук помощи? Такая ситуация может возникнуть, например, на зачёте или экзамене. Используем графический метод! И тут есть два пути: можно поточечно построить параболу , выяснив тем самым, где она пересекает ось (если пересекает вообще) . Но лучше поступить хитрее: представим уравнение в виде , начертим графики более простых функций – и «иксовые» координаты их точек пересечения, как на ладони!


Если окажется, что прямая касается параболы, то уравнение имеет два совпавших (кратных) корня. Если окажется, что прямая не пересекает параболу, значит, действительных корней нет.

Для этого, конечно, нужно уметь строить графики элементарных функций , но с другой стороны эти умения по силам даже школьнику.

И вновь – уравнение – это уравнение, а функции , – это функции, которые лишь помогли решить уравнение!

И тут, кстати, уместно будет вспомнить ещё одну вещь: если все коэффициенты уравнения умножить на ненулевое число, то его корни не изменятся .

Так, например, уравнение имеет те же самые корни. В качестве простейшего «доказательства» вынесу константу за скобки:
и безболезненно её уберу (разделю обе части на «минус два») :

НО! Если мы рассматриваем функцию , то здесь уже избавляться от константы нельзя! Допустимо разве что вынесение множителя за скобки: .

Многие недооценивают графический метод решения, считая его чем-то «несолидным», а некоторые и вовсе забывают о такой возможности. И это в корне ошибочно, поскольку построение графиков иногда просто спасает ситуацию!

Ещё один пример: предположим, вы не помните корни простейшего тригонометрического уравнения: . Общая формула есть в школьных учебниках, во всех справочниках по элементарной математике, но они вам недоступны. Однако решить уравнение критически важно (иначе «двойка»). Выход есть! – строим графики функций :


после чего спокойненько записываем «иксовые» координаты их точек пересечения:

Корней бесконечно много и в алгебре принята их свёрнутая запись:
, где ( – множество целых чисел ) .

И, не «отходя от кассы», пару слов о графическом методе решения неравенств с одной переменной. Принцип такой же. Так, например, решением неравенства является любое «икс», т.к. синусоида почти полностью лежит под прямой . Решением неравенства является множество промежутков, на которых куски синусоиды лежат строго выше прямой (оси абсцисс) :

или, если короче:

А вот множество решений неравенства – пусто , поскольку никакая точка синусоиды не лежит выше прямой .

Что-нибудь не понятно? Срочно штудировать уроки о множествах и графиках функций !

Разминаемся:

Задание 1

Решить графически следующие тригонометрические уравнения:

Ответы в конце урока

Как видите, для изучения точных наук совсем не обязательно зубрить формулы и справочники! И более того, это принципиально порочный подход.

Как я уже обнадёжил вас в самом начале урока, сложные тригонометрические уравнения в стандартном курсе высшей математики приходится решать крайне редко. Вся сложность, как правило, заканчивается уравнениями вроде , решением которого являются две группы корней, происходящие от простейших уравнений и . С решением последнего сильно не парьтесь – посмотрите в книжке или найдите в Интернете =)

Графический метод решения может выручить и в менее тривиальных случаях. Рассмотрим, например, следующее «разношёрстное» уравнение:

Перспективы его решения выглядят... вообще никак не выглядят, однако стОит только представить уравнение в виде , построить графики функций и всё окажется невероятно просто. Чертёж есть в середине статьи о бесконечно малых функциях (откроется на соседней вкладке) .

Тем же графическим методом можно выяснить, что уравнение имеет уже два корня, причём один из них равен нулю, а другой, судя по всему, иррационален и принадлежит отрезку . Данный корень можно вычислить приближённо, например, методом касательных . Кстати, в некоторых задачах, бывает, требуется не отыскать корни, а выяснить, есть ли они вообще . И здесь тоже может помочь чертёж – если графики не пересекаются, то корней нет.

Рациональные корни многочленов с целыми коэффициентами.
Схема Горнера

А теперь я предлагаю вам обернуть свой взор в средние века и прочувствовать неповторимую атмосферу классической алгебры. Для лучшего понимания материала рекомендую хоть чуть-чуть ознакомиться с комплексными числами .

Они самые. Многочлены.

Объектом нашего интереса будут наиболее распространённые многочлены вида с целыми коэффициентами . Натуральное число называют степенью многочлена , число – коэффициентом при старшей степени (или просто старшим коэффициентом) , а коэффициент – свободным членом .

Данный многочлен я буду свёрнуто обозначать через .

Корнями многочлена называют корни уравнения

Обожаю железную логику =)

За примерами сходим в самое начало статьи:

С нахождением корней многочленов 1-й и 2-й степеней нет никаких проблем, но по мере увеличения эта задача становится всё труднее и труднее. Хотя с другой стороны – всё интереснее! И как раз этому будет посвящена вторая часть урока.

Сначала буквально пол экрана теории:

1) Согласно следствию основной теоремы алгебры , многочлен степени имеет ровно комплексных корней. Некоторые корни (или даже все) могут быть в частности действительными . При этом среди действительных корней могут встретиться одинаковые (кратные) корни (минимум два, максимум штук) .

Если некоторое комплексное число является корнем многочлена, то и сопряжённое ему число – тоже обязательно корень данного многочлена (сопряжённые комплексные корни имеют вид ) .

Простейший пример – квадратное уравнение, которое впервые встретилось в8 (вроде) классе, и которое мы окончательно «добили» в теме комплексных чисел . Напоминаю: квадратное уравнение имеет либо два различных действительных корня, либо кратные корни, либо сопряжённые комплексные корни.

2) Из теоремы Безу следует, что если число является корнем уравнения , то соответствующий многочлен можно разложить на множители:
, где – многочлен степени .

И опять же, наш старый пример: поскольку – корень уравнения , то . После чего нетрудно получить хорошо знакомое «школьное» разложение .

Следствие теоремы Безу имеет большую практическую ценность: если мы знаем корень уравнения 3-й степени , то можем представить его в виде и из квадратного уравнения легко узнать остальные корни. Если нам известен корень уравнения 4-й степени , то есть возможность разложить левую часть в произведение и т.д.

И вопроса здесь два:

Вопрос первый . Как найти этот самый корень ? Прежде всего, давайте определимся с его природой: во многих задачах высшей математики требуется отыскать рациональные , в частности целые корни многочленов, и в этой связи далее нас будут интересовать преимущественно они…. …они такие хорошие, такие пушистые, что их прямо так и хочется найти! =)

Первое, что напрашивается – метод подбора. Рассмотрим, например, уравнение . Загвоздка здесь в свободном члене – вот если бы он равнялся нулю, то всё было бы в ажуре – выносим «икс» за скобки и корни сами «вываливаются» на поверхность:

Но у нас свободный член равен «тройке», и поэтому мы начинаем подставлять в уравнение различные числа, претендующие на звание «корень». Прежде всего, напрашивается подстановка единичных значений. Подставим :

Получено неверное равенство, таким образом, единица «не подошла». Ну да ладно, подставляем :

Получено верное равенство! То есть, значение является корнем данного уравнения.

Для отыскания корней многочлена 3-й степени существуют аналитический метод (так называемые формулы Кардано) , но сейчас нас интересует несколько другая задача.

Поскольку – есть корень нашего многочлена, то многочлен можно представить в виде и возникает Второй вопрос : как отыскать «младшего собрата» ?

Простейшие алгебраические соображения подсказывают, что для этого нужно разделить на . Как разделить многочлен на многочлен? Тем же школьным методом, которым делят обычные числа – «столбиком»! Данный способ я подробнейшим образом разобрал в первых примерах урока Сложные пределы , и сейчас мы рассмотрим другой способ, который получил название схема Горнера .

Сначала запишем «старший» многочлен со всеми , в том числе нулевыми коэффициентами :
, после чего занесём эти коэффициенты (строго по порядку) в верхнюю строку таблицы:

Слева записываем корень :

Сразу же оговорюсь, что схема Горнера работает и в том случае, если «красное» число не является корнем многочлена. Однако не будем торопить события.

Сносим сверху старший коэффициент:

Процесс заполнения нижних ячеек чем-то напоминает вышивание, где «минус единица» – это своеобразная «игла», которая пронизывает последующие шаги. «Снесённое» число умножаем на (–1) и прибавляем к произведению число из верхней ячейки:

Найденное значение умножаем на «красную иглу» и к произведению прибавляем следующий коэффициент уравнения:

И, наконец, полученное значение снова «обрабатываем» «иглой» и верхним коэффициентом:

Ноль в последней ячейке говорит нам о том, что многочлен разделился на без остатка (как оно и должно быть) , при этом коэффициенты разложения «снимаются» прямо из нижней строки таблицы:

Таким образом, от уравнения мы перешли к равносильному уравнению и с двумя оставшимися корнями всё ясно (в данном случае получаются сопряжённые комплексные корни) .

Уравнение , к слову, можно решить и графически: построить «молнию» и увидеть, что график пересекает ось абсцисс () в точке . Или тот же «хитрый» приём – переписываем уравнение в виде , чертим элементарные графики и детектируем «иксовую» координату их точки пересечения.

Кстати, график любой функции-многочлена 3-й степени пересекает ось хотя бы один раз, а значит, соответствующее уравнение имеет по меньшей мере один действительный корень. Данный факт справедлив для любой функции-многочлена нечётной степени.

И тут ещё хочется остановиться на важном моменте , который касается терминологии: многочлен и функция-многочлен это не одно и то же ! Но на практике частенько говорят, например, о «графике многочлена», что, конечно, небрежность.

Однако вернёмся к схеме Горнера. Как я недавно упомянул, эта схема работает и для других чисел, но если число не является корнем уравнения , то в нашей формуле появляется ненулевая добавка (остаток):

«Прогоним» по схеме Горнера «неудачное» значение . При этом удобно использовать ту же таблицу – записываем слева новую «иглу», сносим сверху старший коэффициент (левая зелёная стрелка) , и понеслось:

Для проверки раскроем скобки и приведём подобные слагаемые:
, ОК.

Легко заметить, что остаток («шестёрка») – это в точности значение многочлена при . И в самом деле – что так:
, а ещё приятнее – вот так:

Из приведённых выкладок нетрудно понять, что схема Горнера позволяет не только разложить многочлен на множители, но и осуществить «цивилизованный» подбор корня. Предлагаю вам самостоятельно закрепить алгоритм вычислений небольшой задачей:

Задание 2

Используя схему Горнера, найти целый корень уравнения и разложить соответствующий многочлен на множители

Иными словами, здесь нужно последовательно проверять числа 1, –1, 2, –2, … – до тех пор, пока в последнем столбце не «нарисуется» нулевой остаток. Это будет означать, что «игла» данной строки – есть корень многочлена

Вычисления удобно оформить в единой таблице. Подробное решение и ответ в конце урока.

Способ подбора корней хорош для относительно простых случаев, но если коэффициенты и/или степень многочлена велики, то процесс может затянуться. А может быть какие-то значения из того же списка 1, –1, 2, –2 и рассматривать-то смысла нет? И, кроме того, корни ведь могут оказаться и дробными, что приведёт к уж совсем не научному тыку.

К счастью, существуют две мощные теоремы, которые позволяют значительно сократить перебор значений-«кандидатов» в рациональные корни:

Теорема 1 Рассмотрим несократимую дробь , где . Если число является корнем уравнения , то свободный член делится на , а старший коэффициент – на .

В частности , если старший коэффициент , то этот рациональный корень – целый:

И мы начинаем эксплуатировать теорему как раз с этой вкусной частности:

Вернёмся к уравнению . Так как его старший коэффициент , то гипотетические рациональные корни могут быть исключительно целыми, причём свободный член должен обязательно делиться на эти корни без остатка. А «тройку» можно разделить только на 1, –1, 3 и –3. То есть у нас всего лишь 4 «кандидата в корни». И, согласно Теореме 1 , другие рациональные числа не могут быть корнями данного уравнения В ПРИНЦИПЕ.

В уравнении «претендентов» чуть больше: свободный член делится на 1, –1, 2, – 2, 4 и –4.

Обратите внимание, что числа 1, –1 являются «завсегдатаями» списка возможных корней (очевидное следствие теоремы) и самым лучшим выбором для первоочередной проверки.

Переходим к более содержательным примерам:

Задача 3

Решение : поскольку старший коэффициент , то гипотетические рациональные корни могут быть только целыми, при этом они обязательно должны быть делителями свободного члена. «Минус сорок» делится на следующие пары чисел:
– итого 16 «кандидатов».

И здесь сразу появляется заманчивая мысль: а нельзя ли отсеять все отрицательные или все положительные корни? В ряде случаев можно! Сформулирую два признака:

1) Если все коэффициенты многочлена неотрицательны, то он не может иметь положительных корней. К сожалению, это не наш случай(Вот если бы нам было дано уравнение – тогда да, при подстановке любого значение многочлена строго положительно , а значит, все положительные числа (причём, и иррациональные тоже) не могут быть корнями уравнения .

2) Если коэффициенты при нечётных степенях неотрицательны, а при всех чётных степенях (включая свободный член) – отрицательны, то многочлен не может иметь отрицательных корней. Это наш случай! Немного присмотревшись, можно заметить, что при подстановке в уравнение любого отрицательного «икс» левая часть будет строго отрицательна, а значит, отрицательные корни отпадают

Таким образом, для исследования осталось 8 чисел:

Последовательно «заряжаем» их по схеме Горнера. Надеюсь, вы уже освоили устные вычисления:

Удача поджидала нас при тестировании «двойки». Таким образом – есть корень рассматриваемого уравнения, и

Осталось исследовать уравнение . Это легко сделать через дискриминант, но я проведу показательную проверку по той же схеме. Во-первых, обратим внимание, что свободный член равен 20-ти, а значит, по Теореме 1 из списка возможных корней выпадают числа 8 и 40, и для исследования остаются значения (единица отсеялась по схеме Горнера) .

Записываем коэффициенты трёхчлена в верхнюю строку новой таблицы и начинаем проверку с той же «двойки» . Почему? А потому что корни могут быть и кратны, пожалуйста: – это уравнение имеет 10 одинаковых корней. Но не отвлекаемся:

И здесь, конечно, я немного слукавил, заведомо зная, что корни рациональны. Ведь если бы они были иррациональными или комплексными, то мне светила бы безуспешная проверка всех оставшихся чисел. Поэтому на практике руководствуйтесь дискриминантом.

Ответ : рациональные корни: 2, 4, 5

В разобранной задаче нам сопутствовала удача, потому что: а) сразу отвалились отрицательные значения, и б) мы очень быстро нашли корень (а теоретически могли проверить и весь список ).

Но на самом деле ситуация бывает гораздо хуже. Приглашаю вас к просмотру увлекательной игры под названием «Последний герой»:

Задача 4

Найти рациональные корни уравнения

Решение : по Теореме 1 числители гипотетических рациональных корней должны удовлетворять условию (читаем «двенадцать делится на эль») , а знаменатели – условию . Исходя из этого, получаем два списка:

«список эль»:
и «список эм»: (благо, здесь числа натуральные) .

Теперь составим перечень всех возможных корней. Сначала «список эль» делим на . Совершенно понятно, что получатся те же самые числа. Для удобства занесём их в таблицу:

Многие дроби сократились, в результате чего получись значения, которые уже есть в «списке героев». Добавляем только «новичков»:

Аналогично – делим тот же «список эль» на :

и, наконец, на

Таким образом, команда участников нашей игры укомплектована:


К сожалению, многочлен данной задачи не удовлетворяет «положительному» или «отрицательному» признаку, и поэтому мы не можем отбросить верхнюю или нижнюю строку. Придётся работать со всеми числами.

Как ваше настроение? Да ладно, выше нос – есть ещё одна теорема, которую можно образно назвать «теоремой-убийцей»…. …«кандидатов», конечно же =)

Но сначала нужно прокрутить схему Горнера хотя бы для одного целого числа. Традиционно возьмём единицу. В верхнюю строку запишем коэффициенты многочлена и всё как обычно:

Поскольку четвёрка – это явно не ноль, то значение не является корнем рассматриваемого многочлена. Но она нам очень поможет.

Теорема 2 Если при некотором целом значении значение многочлена отлично от нуля: , то его рациональные корни (если они есть) удовлетворяют условию

В нашем случае и поэтому все возможные корни должны удовлетворять условию (назовём его Условием № 1) . Данная четвёрка и будет «киллером» многих «кандидатов». В качестве демонстрации я рассмотрю несколько проверок:

Проверим «кандидата» . Для этого искусственно представим его в виде дроби , откуда хорошо видно, что . Вычислим проверочную разность: . Четыре делится на «минус два»: , а значит, возможный корень прошёл испытание.

Проверим значение . Здесь и проверочная разность составляет: . Разумеется, , и поэтому второй «испытуемый» тоже остаётся в списке.