Кто и когда создал сканирующий туннельный микроскоп. Сканирующая туннельная микроскопия. Туннельный микроскоп маслом не испортишь

В связи с этим неоспоримым достижением стало открытие 1982 году (момент опубликования в Phys. Rev. Lett.) Генрихом Рорером и Гердом Биннигом метода сканирующей туннельной микроскопии, которая положила начало развитию сканирующей зондовой микроскопии. Работая над микроскопическими исследованиями роста и электрических свойств тонких диэлектрических слоев в лаборатории IBM в Рюмликоне в Швейцарии, авторы думали использовать туннельную спектроскопию. В то время были известны работы Янга о полевом излучающем микроскопе, Томпсона по туннелированию в вакууме с управляемым остриём, так что мысль о способности измерения с помощью эффекта туннелирования не только спектроскопических свойств поверхности, но и её рельефа, была основана на трудах немалого количества исследователей.

И вот когда авторы получили атомное изображение давно волновавшей всех поверхности кремния с периодом 7 на 7, -- в 1986 году мир отметил их Нобелевской премией. Множество трудностей, которые усложняли исследование образцов в СТМ, побудили к 1986 году разработать их первый атомно-силовой микроскоп, который мог использовать те самые силы взаимодействия между образцом и остриём, которые так мешали в случае СТМ. Атомно-силовой микроскоп позволял проводить измерения не только в вакууме, но и в атмосфере, заранее заданном газе и даже сквозь плёнку жидкости, что стало несомненным успехом для развития биологической микроскопии. Так было положено начало эры сканирующей зондовой микроскопии. Вскоре была представлена микроскопия ближнего поля, которая задействовала оптические волны для разрешения объектов до 10 ангстремм.

Преимущества и недостатки сканирующей зондовой микроскопии по отношению к другим методам диагностики поверхности

Перемещаясь в плоскости образца над поверхностью, «кантилевер» изгибается, отслеживая ее рельеф. Однако при сканировании образца в контактном режиме поверхность образца частично повреждается, а разрешение метода оказывается достаточно низким. Разработка методов полуконтактного и бесконтактного сканирования, когда, зонд входит в контакт с поверхностью только в нижней точке траектории собственных резонансных колебаний или не входит в контакт вообще, позволили увеличить разрешение АСМ, значительно снизив давление на образец со стороны зонда. Для регистрации отклонения «кантилевера» предложены различные системы, основанные на использовании емкостных датчиков, интерферометров, систем отклонения светового луча или пьезоэлектрических датчиков. В современных приборах угол изгиба «кантилевера» регистрируется с помощью лазера, луч которого отражается от внешней стороны консоли и падает на фотодиодный секторный датчик (Рис.2). Система обратной связи отслеживает изменение сигнала на фотодетекторе и управляет «системой нанопозицонирования». Использование «пьезодвигателей» и атомно-острых зондов позволяет добиться атомного разрешения АСМ в высоком вакууме (рис. 3).

Помимо непосредственного исследования структуры поверхности методом контактной АСМ, можно регистрировать силы трения и адгезионные силы. В настоящее время разработаны многопроходные методики, при которых регистрируется не только топография, но и электростатическое или магнитное взаимодействие зонда с образцом. С помощью этих методик удается определять магнитную и электронную структуру поверхности, строить распределения поверхностного потенциала и электрической емкости, и т.д. (рис. 3). Для этого используют специальные «кантилеверы» с магнитными или проводящими покрытиями. АСМ также применяются для модификации поверхности. Используя жесткие зонды, можно делать гравировку и проводить «наночеканку» - выдавливать на поверхности крошечные рисунки. Применение жидкостной атомно-силовой микроскопии позволяет локально проводить электрохимические реакции, прикладывая потенциал между зондом и проводящей поверхностью (рис. 2), а также открывает возможность применения АСМ для исследования биологических объектов (рис. 4).

Необходимо было решить множество технических проблем: как избежать механических вибраций, приводящих к столкновению острия с поверхностью (мягкая подвеска), какие силы действуют между образцом и остриём (к созданию АСМ), как перемещать остриё с такой высокой точностью (пьезоэлектрик), как приводить образец и остриё в контакт (специальный держатель), как избежать тепловых флуктуаций (использование не нитевидных кристаллов с большими упругими константами, низкие темепературы), форма острия и её получение (на поверхности основного острия существуют миниострия -- сначала использовались они, потом с помощью самого процесса туннелирования -- сильное вакуумное электрическое поле при напряжении всего лишь несколько вольт вызвало миграцию ионов (испарение).

Принципиальным свойством электронной, оптической, ядерной микроскопий является, то что каждая частица, провзаимодействовавшая с образцом, будь то атом или субатомные объекты, является зондом. Однако, у данного метода есть свои минусы и плюсы. Так квантовый принцип неопределённости, гласящий, что определение одновременно импульса и координаты объекта исследования, возможно только с определённой точностью, заставляет увеличивать импульс регистрирующих частиц (энергию), что связано с созданием специальных технологий. Увеличение импульса регистрирующих частиц (например, электроны в ПЭМ достигают энергий до 1000 КэВ) создаёт проблемы с устойчивостью объекта к разрушению. Однако плюсом является тот факт, что одновременно получается информация сразу с относительно большого участка поверхности, что позволяет использовать данный метод для in-situ исследований. Так же главным недостатком данного вида микроскопии можно назвать условие относительного вакуума, для получения более менее качественного изображения.

Атомно-силовая микроскопия позволяет обрабатывать образцы в атмосфере, однако, главным её недостатком является отсутствие одновременной информации о всей поверхности, -- в каждый момент времени мы имеем информацию только от участка непосредственно регистрируюемого зондом. Это не позволяет использовать in-situ методику. Атомно-силовая микроскопия позволяет получать информацию о поверхностном заряде, о поверхностной емкости, о поверхностной проводимости, о магнитных свойствах. Позволяет измерять эти параметры даже сквозь плёнку жидкости .

Режимы сканирования

Существуют контактный, безконтактный и полуконтактный или резонансный режимы сканирования поверхности.

Контактный метод заключается в том, что кантилевер непосредственно касается поверхности и повторяет её форму по мере прохождения поверхности.

Бесконтактный и полуконтактный режим характеризуются дополнительным условием сканирования, которое позволяет осуществить более щадящее и более тонкое сканирование поверхности. Кантилевер жестко связывается с отдельным пъезоэлементом и колеблется со своей резонансной частотой. При взаимодействии с поверхностью сбивается фаза, и специальный синхронный детектор старается выровнять частоту с помощью сигнала обратной связи. Таким образом, теперь детектируется кроме отклонения амплитудного также отклонение фазовое. В этом режиме кантилевер как бы постукивает по поверхности.

Основные моды работы:

1. Контактная мода.

Топография. F=const.

Измерение сил. Z=const.

Измерение сил трения.

Измерение локальной жесткости (модуляционная методика).

Измерение сопротивления растекания.

Резонансная мода.

Топография.

Фазовый контраст.

Магнито-силовая микроскопия.

Электристатическо-силовая микроскопия.

2. Бесконтактная мода.

Литография.

Механическая.

Электрическая.

Достижения в мире АСМ

Туннельный эффектявляется принципиально квантовомеханическим эффектом, не имеющим аналога в классической физике, и потому представляет огромный интерес. Он основан на корпускулярно - волновом дуализме - двойственной природе элементарных частиц (рис. 5).

С точки зрения классической механики, очевидно, что никакое материальное тело, имеющее энергию E, не может преодолеть потенциальный барьер высотой V0 , если V0>E. Например, если принять за материальное тело мяч, а за потенциальный барьер – очень высокий бетонный забор, то понятно, что если кинуть мяч в сторону забора недостаточно высоко – так, что его энергии не хватит на перелет стоящего перед ним барьера, то он, ударившись о преграду, отскочит назад. Однако если в качестве материального тела рассмотреть электрон, то оказывается, что даже если высота потенциально го барьера выше, чем собственная энергия электрона, то он с определенной вероятностью может оказаться с другой стороны барьера, лишь незначительно изменив свою энергию, как если бы в “заборе” оказалась некая “дырка” или туннель. Это является следствием того, что электрону присущи как корпускулярные, так и волновые свойства. Будь электрон классической частицей, обладающей энергией E, он, встретив на своем пути преграду, требующую для преодоления большей энергии, должен был бы отразиться от этой преграды. Однако, будучи одновременно и волной, он проходит сквозь эту преграду, подобно тому, как рентгеновские волны свободно проходят сквозь материальные объекты.

Классическая частица, обладающая полной энергией E и находящаяся в потенциальном поле, может пребывать лишь в тех областях пространства, в которых ее полная энергия не превышает потенциальную энергию U взаимодействия с полем. Поскольку волновая функция квантовой частицы отлична от нуля во всем пространстве и вероятность нахождения частицы в определенной области пространства задается квадратом модуля волновой функции, то и в запрещенных (с точки зрения классической механики) областях волновая функция отлична от нуля.

Таким образом, над поверхностью любого проводника или полупроводника всегда наблюдается некоторое количество свободных электронов, “вышедших” за его пределы не в результате термоэлектронной эмиссии, а благодаря туннельному эффекту. Если взять два проводящих вещества, расположить их на расстоянии 0,5 нм друг от друга и приложить к ним сравнительно малую разность потенциалов (0,1_1 В), то между ними возникнет электрический ток, обусловленный туннельным эффектом, который называется туннельным током.

Если повторить тот же опыт, но к поверхности интересующего тела поднести острый предмет, например, очень тонкую иглу с кончиком в атом толщиной, то, проводя ею над изучаемым объектом (сканируя его поверхность) можно получать ин формацию о строении объекта на атомном уровне.



В туннельном сканирующем микроскопе система пьезокристаллов, управляемая компьютером, обеспечивает трехкоординатное перемещение металлического зонда на расстоянии порядка 0,1 HM от исследуемой поверхности. Между ней и зондом прикладывают напряжение около 1 В и регистрируют возникающий туннельный ток. Компьютер управляет вертикальным перемещением зонда так, чтобы ток поддерживался на заданном постоянном уровне, и горизонтальными перемещениями по осям c и у (сканированием). Воспроизводимое на дисплее семейство кривых, отвечающих перемещениям зонда, является изображением эквипотенциальной поверхности, поэтому атомы изображаются полусферами различных радиусов.

Достоинства метода сканирующей микроскопии: сверхвысокое разрешение (атомного порядка, 10-2 нм); возможность размещать образец не в вакууме (как в электронных микроскопах), а в обычной воздушной среде при атмосферном давлении, в атмосфере инертного газа и даже в жидкости, что особенно важно для изучения гелеобразных и макромолекулярных структур (белков, ДНК, РНК, вирусов).

Сканирующий зондовый микроскоп

Наиболее молодое и вместе с тем перспективное направление в исследовании свойств поверхности - сканирующая зондовая микроскопия. Зондовые микроскопы имеют рекордное разрешение - менее 0,1 нм Они могут измерить взаимодействие между поверхностью и сканирующим ее микроскопическим острием - зондом - и выводят трехмерное изображение на экран компьютера.

Методы зондовой микроскопии позволяют не только видеть атомы и молекулы, но и воздействовать на них. При этом - что особенно важно - объекты могут изучаться не обязательно в вакууме (что обычно для электронных микроскопов), но и в различных газах и жидкостях.

Изобрели зондовый - сканирующий туннельный микроскоп в 1981 году сотрудники Исследовательского центра фирмы ИБМ Г. Биннинг и X. Рорер (США) Через пять лет за это изобретение они были удостоены Нобелевской премии.

Биннинг и Рорер попытались сконструировать прибор для исследования участков поверхности размером менее 10 нм. Итог превзошел самые смелые ожидания: ученым удалось увидеть отдельные атомы, размер которых в поперечнике составляет лишь около одного нм. Очень тонкое металлическое острие - отрицательно заряженный зонд - подводится на близкое расстояние к образцу, тоже металлическому, заряженному положительно. В тот момент, когда"расстояние между ними достигнет несколько межатомных расстояний, электроны начнут свободно проходить через него - "туннелировать": через зазор потечет ток

Важное значение для работы микроскопа имеет резкая зависимость силы туннельного тока от расстояния между острием и поверхностью образца. При уменьшении зазора всего на 0,1 нм ток возрастет примерно в 10 раз. Поэтому даже неровности размером с атом вызывают заметные колебания величины тока.

Чтобы получить изображение, зонд сканирует поверхность, а электронная система считывает величину тока. В зависимости от того, как эта величина меняется, острие либо опускается или поднимается. Таким образом, система поддерживает величину тока постоянной, а траектория движения острия повторяет рельеф поверхности, огибая возвышенности и углубления (рис. 6).

Острие перемещает пьезосканер, который представляет собой манипулятор из материала, способного изменяться под действием электрического напряжения. Пьезосканер чаще всего имеет форму трубки с несколькими электродами, которая удлиняется или изгибается, перемещая зонд по разным направлениям с точностью до тысячных долей нанометра

Схема работы сканирующего туннельного микроскопа

Рабочим органом СТМ - зондом - служит токопроводящая металлическая игла. Зонд подводится к изучаемой поверхности на очень близкое расстояние (~0,5 нм) и при подаче на зонд постоянного напряжения между ними возникает туннельный ток.

Острие перемещает пьезосканер, который представляет собой манипулятор из материала, способного изменяться под действием электрического напряжения. Пьезосканер чаще всего имеет форму трубки с несколькими электродами, которая удлиняется или изгибается, перемещая зонд по разным направлениям с точностью до тысячных долей нанометра.

При качественном рассмотрении барьер можно считать прямоугольным с эффективной высотой, равной средней работе выхода материалов:

Как известно из квантовой механики, вероятность туннелирования электрона (коэффициент прохождения) через одномерный барьер прямоугольной формы равна

где A 0 - амплитуда волновой функции электрона, движущегося к барьеру; At -амплитуда волновой функции электрона, прошедшего сквозь барьер; k – константа затухания волновой функции в области, соответствующей потенциальному барьеру; ΔZ - ширина барьера. Для туннельного контакта двух металлов константу затухания можно представить в виде

где m - масса электрона, ϕ * - средняя работа выхода электрона, h постоянная Планка. При приложении к туннельному контакту разности потенциалов V между зондом и образцом появляется туннельный ток.

Информация о движении острия преобразуется в изображение поверхности, которое строится по точкам на экране. Участки разной высоты для наглядности окрашиваются в различные цвета.

В идеале на конце острия зонда должен находиться один неподвижный атом. Если же на конце иглы случайно оказалось несколько выступов, изображение может двоиться, троиться. Для устранения дефекта иглу травят в кислоте, придавая ей нужную форму.

Более подробно формирование изображения с помощью сканирующего туннельного микроскопа приведено на рис. 7.


Рис.7 . Формирование СТМ изображений поверхности по методу постоянного туннельного тока (а) и постоянного среднего расстояния (б)

При исследовании атомарно гладких поверхностей часто более эффективным оказывается получение СТМ изображения поверхности по методу постоянной высоты Z = const . В этом случае зонд перемещается над поверхностью на расстоянии нескольких ангстрем, при этом изменения туннельного тока регистрируются в качестве СТМ изображения поверхности (рис. 7 (б)). Сканирование производится либо при отключенной обратной связью (ОС), либо со скоростями, превышающими скорость реакции ОС, так что ОС отрабатывает только плавные изменения рельефа поверхности. В данном способе реализуются очень высокие скорости сканирования и высокая частота получения СТМ изображений, что позволяет вести наблюдение за изменениями, происходящими на поверхности, практически в реальном времени. Высокое пространственное разрешение СТМ определяется экспоненциальной зависимостью туннельного тока от расстояния до поверхности. Разрешение в направлении по нормали к поверхности достигает долей ангстрема. Латеральное же разрешение зависит от качества зонда и определяется, в основном, не макроскопическим радиусом кривизны кончика острия, а его атомарной структурой. При правильной подготовке зонда на его кончике с большой вероятностью находится либо одиночный выступающий атом, либо небольшой кластер атомов, который локализует его на размерах, много меньших, чем характерный радиус кривизны острия. Действительно, туннельный ток протекает между поверхностными атомами образца и атомами зонда. Атом, выступающий над поверхностью зонда, находится ближе к поверхности на расстояние, равное величине периода кристаллической решетки. Поскольку зависимость туннельного тока от расстояния экспоненциальная, то ток в этом случае течет, в основном, между поверхностью образца и выступающим атомом на кончике зонда.

Рис. 8. Реализация атомарного разрешения в сканирующем туннельном микроскопе

С помощью таких зондов удается получать пространственное разрешение вплоть до атомарного, что продемонстрировано многими исследовательскими группами на образцах из различных материалов.

С помощью туннельного микроскопа удалось сделать ряд открытий. Например, обнаружили, что атомы на поверхности кристалла расположены не так, как внутри, и часто образуют сложные структуры.

С помощью туннельного микроскопа можно изучать лишь проводящие ток объекты. Однако он позволяет наблюдать и тонкие диэлектрики в виде пленки, когда их помещают на поверхность проводящего материала. И хотя этот эффект еще не нашел полного объяснения, тем не менее его с успехом применяют для изучения многих органических пленок и биологических объектов - белков, вирусов.

Возможности микроскопа велики. С помощью иглы микроскопа даже наносят рисунки на металлические пластины. Для этого используют в качестве "пишущего" материала отдельные атомы - их осаждают на поверхность или удаляют с нее. Таким образом, в 1991 году сотрудники фирмы ИБМ написали атомами ксенона на поверхности никелевой пластины название своей фирмы - IBM. Букву "I" составили всего 9 атомов, а буквы "В" и "М" - 13 атомов каждую.

Атомно-силовые микроскопы (ACM)

Сканирование в контакте с образцом довольно часто приводит к его деформации и разрушению. Воздействие зонда на поверхность может быть полезным, например, при изготовлении микросхем. Однако зонд способен легко порвать тонкую полимерную пленку или повредить бактерию, вызвав ее гибель. Чтобы избежать этого, кантилевер приводят в резонансные колебания вблизи поверхности и регистрируют изменение амплитуды, частоты или фазы колебаний, вызванных взаимодействием с поверхностью. Такой метод позволяет изучать живые микробы колеблющаяся игла действует на бактерию, как легкий массаж, не причиняя вреда и позволяя наблюдать за ее движением, ростом и делением

В 1987 году И. Мартин и К. Викрамасингх (США) предложили в качестве зондирующего острия использовать намагниченную микроиглу. В результате появился магнитно-силовой микроскоп.

Такой микроскоп позволяет разглядеть отдельные магнитные области в материале - домены - размером до 10 нм. Его также применяют и для сверхплотной записи информации, формируя на поверхности пленки домены с помощью полей иглы и постоянного магнита. Подобная запись в сотни раз плотнее, чем на современных магнитных и оптических дисках.

На самом деле, туннельный микроскоп, в отличие от привычного оптического, не дает в прямом смысле увеличенное изображение объекта. Удивительная трехмерная картинка с атомами – всего лишь интерпретация результатов взаимодействия иглы и поверхности образца, график, показывающий, как меняется ток при движении иглы параллельно поверхности.

На рис. 7 показано изображение, полученные в СТМ.



СТМ имеет одно существенное ограничение: объект исследования должен быть проводящим – металл или полупроводник, иначе не будет туннельного тока. Получается, что в туннельный микроскоп нельзя «рассмотреть» ни один изолятор, например алмаз. Пока осваивали туннельный метод, появилась новая идея: в 1986 году Биннинг предложил вариант микроскопа, названного атомно-силовым.

Лекция 7 (2 часа). Атомно-силовой микроскоп

Принципы действия атомно-силового и туннельного мик­роскопов практически одинаковы, только в отличие от тун­нельного работа атомно-силового микроскопа основана на ис­пользовании сил межатомных связей. На малых расстояниях (около 0,1 нм) между атомами двух тел действуют силы отталки­вания, а на больших - силы притяжения.

В сканирующем атомно-силовом микроскопе такими тела­ми служат исследуемая поверхность и скользящее над нею ост­рие. В качестве зонда в АСМ обычно используется алмазная иг­ла. При изменении силы F, действующей между поверхностью и острием, пружинка, на которой оно закреплено, отклоняется, и это регистрируется датчиком. Величина отклонения упругого элемента (пружинки) несет информацию о рельефе поверхности.

В общем, туннельный и атомно-силовой микроскопы очень похожи, но у них есть одно важное отличие - конструкция иглы. В туннельном игла принципиально закреплена очень жестко и никогда не должна касаться поверхности, а в атомно-силовом обязательно на упругом подвесе (кантилевере) и может работать даже в прямом контакте с образцом. Для СТМ чем острее игла, тем лучше, а в атомно-силовом микроскопе слишком острая игла будет давать слишком маленький сигнал, который трудно зарегистрировать. Первое время кантилеверы для АСМ делали из золотой фольги с алмазным наконечником или из бытовой алюминиевой фольги с вольфрамовой проволочкой, а потом перешли на кремниевые, которые широко используются до сих пор. Колебания кантилевера регистрируют с помощью напыленного на него маленького, зеркальца.

Атомно-силовой микроскоп (АСМ) был изобретён в 1986 году Гердом Биннигом, Кэлвином Куэйтом и Кристофером Гербером. В основе работы АСМ лежит силовое взаимодействие между зондом и поверхностью, для регистрации которого используются специальные зондовые датчики, представляющие собой упругую консоль с острым зондом на конце (рис. 7). Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Регистрируя величину изгиба, можно контролировать силу взаимодействия зонда с поверхностью.

По мере приближения иглы к поверхности ее атомы все сильней притягиваются к атомам образца. Сила притяжения будет возрастать, пока игла и поверхность не сблизятся нас­только, что их электронные облака начнут отталкиваться элект­ростатически. При дальнейшем сближении электростатическое отталкивание экспоненциально ослабляет силу притяжения. Эти силы уравновешиваются на расстоянии между атомами около 0,2 нм.


Рис.11. Схематическое изображение зондового датчика АСМ

Качественно работу АСМ можно пояснить на примере сил Ван-дер-Ваальса.

Наиболее часто энергию ван-дер-ваальсова взаимодействия двух атомов, находящихся на расстоянии r друг от друга, аппроксимируют степенной функцией – потенциалом Леннарда-Джонса:

Первое слагаемое в данном выражении описывает дальнодействующее

притяжение, обусловленное, в основном, диполь - дипольным взаимодействием атомов. Второе слагаемое учитывает отталкивание атомов на малых расстояниях. Параметр ro – равновесное расстояние между атомами, 0 U - значение энергии в минимуме, (рис.12).


Рис. 12. Качественный вид потенциала Леннарда – Джонса

Потенциал Леннарда-Джонса позволяет оценить силу взаимодействия зонда с образцом. Общую энергию системы можно получить, суммируя элементарные взаимодействия для каждого из атомов зонда и образца, (рис.12).


Рис. 13. К расчету энергии взаимодействия зонда и образца

Тогда для энергии взаимодействия получаем:

где n (r) S и n (r") P - плотности атомов в материале образца и зонда.

Соответственно сила, действующая на зонд со стороны поверхности, может быть вычислена следующим образом:

В общем случае данная сила имеет как нормальную к поверхности, так и латеральную (лежащую в плоскости поверхности образца) составляющие. Реальное взаимодействие зонда с образцом имеет более сложный характер, однако основные черты данного взаимодействия сохраняются - зонд АСМ испытывает притяжение со стороны образца на больших расстояниях и отталкивание на малых.

Лекция 8 (2ч.). Средства сканирования поверхности. Разновидности АСМ .

Получение АСМ изображений рельефа поверхности связано с регистрацией малых изгибов упругой консоли зондового датчика. В атомно-силовой микроскопии для этой цели широко используются оптические методы (рис. 14).


Рис. 14. Схема оптической регистрации изгиба консоли зондового датчика АСМ

Оптическая система АСМ юстируется таким образом, чтобы излучение

полупроводникового лазера фокусировалось на консоли зондового датчика, а

отраженный пучок попадал в центр фоточувствительной области фотоприемника. В качестве позиционно - чувствительных фотоприемников применяются четырехсекционные полупроводниковые фотодиоды.


Рис. 15. Соответствие между типом изгибных деформаций консоли зондового датчика и изменением положения пятна засветки на фотодиоде

Основные регистрируемые оптической системой параметры - это деформации изгиба консоли под действием Z-компонент сил притяжения или отталкивания (FZ ) и деформации кручения консоли под действием латеральных компонент сил (FL ) взаимодействия зонда с поверхностью. Если обозначить исходные значения фототока в секциях фотодиода через I01, I02, I03, I04 , а через I1, I2, I3, I4 - значения токов после изменения положения консоли, то разностные токи с различных секций фотодиода ΔIi = Ii - I0i будут однозначно характеризовать величину и направление изгиба консоли зондового датчика АСМ. Действительно, разность токов вида

пропорциональна изгибу консоли под действием силы, действующей по нормали к поверхности образца (рис. 15 (а)).

А комбинация разностных токов вида

характеризует изгиб консоли под действием латеральных сил (рис. 15 (б)). Величина ΔI Z используется в качестве входного параметра в петле обратной

связи атомно-силового микроскопа. Система обратной связи (ОС) обеспечивает Δ I Z = const с помощью пьезоэлектрического исполнительного

элемента, который поддерживает изгиб консоли ΔZ равным величине ΔZ 0, задаваемой оператором

Рис. 16. Упрощенная схема организации обратной связи в атомно-силовом микроскопе

При сканировании образца в режиме ΔZ = const зонд перемещается вдоль поверхности, при этом напряжение на Z-электроде сканера записывается в память компьютера в качестве рельефа поверхности Z = f (x,y ). Пространственное разрешение АСМ определяется радиусом закругления зонда и чувствительностью системы, регистрирующей отклонения консоли. В настоящее время реализованы конструкции АСМ, позволяющие получать атомарное разрешение при исследовании поверхности образцов.

Поскольку АСМ не требует, чтобы образцы были проводящими, он позволяет исследовать свойства проводников и изоляторов, молекул ДНК и других мягких материалов.

Сегодня СТМ и АСМ уже стали широко распространенными исследовательскими инструментами. Появилась целая индустрия, где можно найти всё: от игл и кантилеверов до сложных исследовательских комплексов. И тем не менее работа с туннельным микроскопом, как и 20 лет назад, остается уделом профессиональных физиков. Чтобы получить даже на фирменном СТМ за полмиллиона долларов изображение какого-нибудь необычного материала с разрешением в сотые доли ангстрема, потребуется немалое мастерство.

И все же туннельный микроскоп при достаточном умении и средствах не только наблюдать, но и создавать уникальные картины. Когда напряжение между иглой образцом и иглой несколько больше, чем в рабочем режиме туннелирования, атом образца (на самом деле ион) может «перескочить» на иглу. Сменив напряжение, можно заставить его «спрыгнуть» обратно. Если в промежутке между этими событиями игла сдвинулась, атом вернется уже на другое место. Подучается, что можно как угодно манипулировать атомами! Всё, что для этого нужно, - хороший туннельный микроскоп, охлажденный до нескольких градусов выше абсолютного нуля (чтобы атомы не разбегались под действием теплового движения), подходящая игла и масса терпения. Первыми продемонстрировали ловкость рук сотрудники IBM. Они выложили логотип своей фирмы атомами ксенона на поверхности никеля (рис. 17).

Рис. 17. Логотип IBM из атомов ксенона

С тех пор прошло уже больше 15 лет, но до сих пор такое развлечение могут себе позволить всего лишь несколько исследовательских групп в мире.

Атомно-силовая микроскопия оказалась настолько эффективной, что на ее основе были созданы другие специфические методики, позволяющие получать картины не только рельефа поверхности, но и многих других показателей. В частности, на сегодняшний день наиболее распространены следующие разновидности АСМ:

1. Магнитно-силовой микроскоп (МСМ) в качестве зонда использует намагниченное острие. Его взаимодействие с поверхностью образца позволяет регистрировать магнитные микрополя и представлять их в качестве карты намагниченности.

2. Электро-силовой микроскоп (ЭСМ) - в нем острие и образец рассматриваются как конденсатор, и измеряется изменение ёмкости вдоль поверхности образца.

3. Сканирующий тепловой микроскоп регистрирует распределение температуры по поверхности образца. Его разрешение достигает порядка 50 нм, так как в меньших масштабах такая макроскопическая характеристика вещества как температура не применима.

4. Сканирующий фрикционный микроскоп "скребется" по поверхности, составляя карту сил трения.

5. Магниторезонансный микроскоп позволяет получать изображение спинов отдельных электронов, отслеживая реакцию поверхности на быстро изменяющееся магнитное поле зонда.

6. Атомно-силовой акустический микроскоп позволяет очень точно измерять модуль Юнга в каждой точке как мягких, так и твердых образцов. Одним из недостатков АСМ является невозможность изучить глубинную структуру образца - ведь зонд скользит по поверхности и не может заглянуть внутрь. Однако и это ограничение удалось обойти - ученые уже построили настоящий дизассемблер, названный трехмерным атомно-зондовым томографом, который сканирует небольшой участок, потом «выщипывает» слой толщиной в один атом и сканирует участок снова, записывая параметры каждого нового атома. Современные томографы успевают «выщипать» 20.000 атомов в секунду - т.е. 72 миллиона атомов в час.

Нанотехнология - это технология общего назначения, то есть она применима во всех сферах производства, как то в:

1. Материаловедении;

2. Авиации и космонавтики;

3. Электроники, компьютерных технологиях, робототехнике;

4. Промышленности;

5. Вооружении;

6. Медицине;

Принцип действия СТМ основан на описанном выше туннельном эффекте, позволяющем наблюдать и даже контролировать положение отдельных атомов, т.с. работать с точностью до нескольких ангстрем, которая на сегодняшний день является максимальной для всех существующих научных и технических методик.

Устройство сканирующих туннельных микроскопов (рис. 5.6.1).

Рис. 5.6.1 Схема устройства и работы сканирующего туннельного микроскопа:!- х+у развертка: 2 - СТМ-изображение после компьютерной обработки;3 - образец: 4 - регулировка цепи обратной связи

Рабочим органом СТМ - зондом - служит токопроводящая металлическая игла. Зонд подводится к изучаемой поверхности на очень близкое расстояние (~ 0,5 нм) и, при подаче на зонд постоянного напряжения, между ними возникает туннельный ток, который экспоненциально зависит от расстояния между зондом и образцом. Это значит, что при увеличении расстояния лишь на 0,1 нм туннельный ток уменьшается почти в 10 раз. Именно это и обеспечивает высокую разрешающую способность микроскопа, поскольку незначительные изменения по высоте рельефа поверхности вызывают существенное изменение туннельного тока.

Поддерживая ток и расстояние постоянным при помощи следящей системы, зонд сканирует поверхность, перемещаясь над нею по осям X и Y, то опускаясь, то поднимаясь в зависимости от ее рельефа.

Информация об этом перемещении отслеживается компьютером, и программно визуализируется чтобы исследователь мог увидеть на экране объект с нужным разрешением.

Существуют два варианта конструкции СТМ в зависимости от режима сканирования образцов.

В режиме постоянной высоты острие иглы перемещается в горизонтальной плоскости над образцом, а ток туннелирования изменяется (рис.

5.6.2- а). Исходя из данных о величине тока туннелирования, измеренной в каждой точке поверхности, строится образ ее рельефа.

В режиме постоянного тока СТМ задействуется система обратной связи для поддержания постоянного тока туннелирования путем подстройки высоты сканирующего устройства над поверхностью в каждой ее точке (рис.


Рис. 5.6.2- а; б Режимы работы СТМ.

У каждого режима есть преимущества и недостатки. Режим постоянной высоты быстрее, так как системе нс приходится передвигать сканирующее устройство вверх-вниз, но при этом можно получить полезную информацию только с относительно гладких образцов. В режиме постоянного тока можно с высокой точностью изучать сложные поверхности, но он занимает и больше времени.

Важной деталью сканирующего туннельного микроскопа является механический манипулятор, который должен обеспечивать перемещение зонда над поверхностью с точностью до тысячных долей нанометра. Обычно механический манипулятор изготавливают из пьсзоксрамичсского материала.

Удивительным свойством такого материала является пьсзоэффскт. Суть его заключается в следующем: если из пьсзоматсриала вырезать прямоугольную балку, нанести на противоположные стороны металлические электроды и приложить к ним разность потенциалов, то под действием тока произойдет изменение геометрических размеров балки. И наоборот: при малейшей деформации (сжатии) балки, на ее противоположных концах возникнет разность потенциалов. Таким образом, управляя малыми изменениями тока, можно добиться перемещения зонда на очень малые расстояния, необходимые для работы сканирующею микроскопа.

В практических конструкциях обычно используют пьезокерамические манипуляторы (рис. 5.6.3), выполненные в виде тонкостенной трубки с несколькими раздельными электродами. Управляющее напряжение вызывает удлинение или изгиб таких манипуляторов и, соответственно, перемещение зонда по всем трем пространственным координатам X, Y и Z.

Рис. 5.6.3

Конструкции современных манипуляторов обеспечивают диапазон перемещения зонда до 100-200 мкм в плоскости и до 5-12 мкм - по высоте.

Туннельный микроскоп позволил ученым исследовать поверхности на атомном уровне. Однако этот прибор имеет и ряд ограничений. Основанный на туннельном эффекте, он может применяться только для изучения материалов, хорошо проводящих электрический ток.

Изображения, полученные с помощью СТМ представлены на рис. 5.6.4


Рис. 5.6.4 Изображения, полученные на СТМ: а - поверхность графита, б- исследования связей в атоме углеродсодержащего соединения:

I - диаметр: 2 - угловая ямка: 3 - адатом: 4 - Rast-ятом .

В настоящее время существуют приборы, позволяющие отображать отдельные атомы: полевой ионный микроскоп и просвечивающий электронный микроскоп высокого разрешения. Однако оба они имеют существенные ограничения по применимости, связанные со специфическими требованиями к форме образцов. В первом случае образцы должны иметь форму острых игл из проводящего материала с радиусом закругления не более 1000 Е, а во втором – тонких полосок толщиной менее 1000 Е. Поэтому изобретение в 1982 году Г. Биннигом и Г. Рорером, работающим в филиале компании ИБМ в Цюрихе, сканирующего туннельного микроскопа, не накладывающего ограничений на размеры образцов, реально открыло двери в новый микроскопический мир.

СТМ – первый из семейства зондовых микроскопов. Он стал первым устройством, давшим реальные изображения поверхностей с разрешением до размера атома.

Основное приложение СТМ – это измерение топографии. Именно благодаря своей чрезвычайно высокой чувствительности СТМ способен формировать изображения поверхностей с субангстремной точностью по вертикали и атомным латеральным (т.е. в горизонтальном направлении) разрешением.

Принцип работы СТМ . По своей природе электрон обладает как волновыми, так и корпускулярными свойствами. Расчеты показывают, что волновые функции электронов в атоме отличны от нуля и за пределами размера самого атома. Поэтому при сближении атомов волновые функции электронов перекрываются раньше, чем начинает существенно сказываться действие межатомных сил. Появляется возможность перехода электронов от одного атома к другому. Таким образом, возможен обмен электронами и между двумя телами, сближенными без соприкосновения, то есть без механического контакта.

Для обеспечения направленного движения электронов (электрического тока) между такими телами необходимо выполнение двух условий:

У одного тела должны быть свободные электроны (электроны проводимости), а у другого – незаполненные электронные уровни, куда могли бы перейти электроны;



Между телами требуется приложить разность потенциалов, и ее величина несоизмеримо мала в сравнении с той, что требуется для получения электрического разряда при пробое воздушного диэлектрического зазора между двумя телами.

Электрический ток, возникающий при заданных условиях, объясняется туннельным эффектом и называется туннельным током.

В процессе сканирования игла движется вдоль образца, туннельный ток поддерживается стабильным за счет действия обратной связи, и удлинение следящей системы меняется в зависимости от топографии поверхности. Такие изменения фиксируются, и на их основе строится карта высот.

Практически, однако, удобнее измерять вариации электрического напряжения, которое подается на пьезоэлемент, удерживающий иглу на фиксированном расстоянии от исследуемой поверхности. Любое изменение этого расстояния вызывает либо уменьшение, либо увеличение управляющего напряжения. Это и дает информацию о рельефе поверхности, которую легко можно ввести в ЭВМ, передать по каналам связи, вывести на экран дисплея и на другие периферийные устройства. Изображение атомного рельефа поверхности получается весьма наглядным.

При работе СТМ расстояние между объектом и зондом L ≈ 0,3...1нм, поэтому вероятность нахождения между ними молекул воздуха при нормальных атмосферных условиях очень мала, т.е. протекание туннельного тока происходит в «вакууме».

Экспоненциальная зависимость туннельного тока I от величины расстояния Z определяет высокую чувствительность измерений. Считается, что с помощью туннелирования можно измерить объекты размером до 0,001 нм.

Для получения СЗМ изображения осуществляют специальным образом организованный процесс сканирования образца. При сканировании зонд вначале движется над образцом вдоль определенной линии (строчная развертка), при этом величина сигнала на исполнительном элементе, пропорциональная рельефу поверхности, записывается в память компьютера.

Затем зонд возвращается в исходную точку и переходит на следующую строку сканирования, и процесс повторяется вновь. Записанный таким образом при сканировании сигнал обратной связи обрабатывается компьютером, и затем СЗМ изображения рельефа поверхности Z = f (x , y ) строится с помощью средств компьютерной графики. Наряду с исследованием рельефа поверхности, зондовые микроскопы позволяют изучать различные свойства поверхности: механические, электрические, магнитные, оптические и многие другие.

Любой механический привод весьма груб, поэтому перемещениями иглы на субатомные расстояния управляют с помощью пьезоэффекта. Керамическая пьезотрубка при подаче на ее электроды управляющего напряжения меняет свою форму и размеры, что позволяет в зависимости от сигнала перемещать иглу по трем координатам. Насколько велика чувствительность микроманипулятора, можно судить по таким цифрам: при изменении напряжения на 1 В игла смещается на величину порядка двух-трех нанометров. Ведя таким образом иглу над поверхностью рельефа, довольно просто получить серию электрических кривых, которые с высокой степенью точности будут описывать характер поверхности.

В зависимости от измеряемого параметра – туннельного тока или расстояния между иглой и поверхностью – возможны два режима работы сканирующего туннельного микроскопа.

В режиме постоянной высоты острие иглы перемещается в горизонтальной плоскости над образцом, а ток туннелирования изменяется в зависимости от расстояния до него. Информационным сигналом в этом случае является величина тока туннелирования, измеренная в каждой точке сканирования поверхности образца. На основе полученных значений туннельного тока строится образ топографии.

В режиме постоянного тока система обратной связи микроскопа обеспечивает постоянство тока туннелирования путем подстройки расстояния «игла-образец» в каждой точке сканирования. Она отслеживает изменения туннельного тока и управляет напряжением, приложенным к сканирующему устройству, таким образом, чтобы компенсировать эти изменения. Другими словами, при увеличении тока система обратной связи отдаляет зонд от образца, а при уменьшении – приближает его. В этом режиме изображение строится на основе данных о величине вертикальных перемещений сканирующего устройства.

Оба режима имеют свои достоинства и недостатки. В режиме постоянной высоты можно быстро получить результаты, но только для относительно гладких поверхностей. В режиме постоянного тока можно с высокой точностью измерять нерегулярные поверхности, но измерения занимают больше времени.

Интерес к СТМ объясняется его уникальным разрешением, позволяющим проводить исследования на атомном уровне. При этом для работы микроскопа не обязательно требуется высокий вакуум, в отличие от электронных микроскопов других типов. Все СТМ можно разделить на две основные группы: работающие на воздухе (или в другой среде) и в условиях сверхвысокого вакуума. Выделяют также низкотемпературные СТМ, работающие в условиях криогенных температур.

Сканирующие зондовые микроскопы позволяют осуществлять три способа исследования поверхностей, такие как:

Сканирующая туннельная микроскопия (СТМ);

Сканирующая силовая микроскопия (ССМ);

Близкопольная сканирующая микроскопия (БСМ).

Схема работы сканирующего туннельного микроскопа

Сканирующий туннельный микроскоп (СТМ, англ. STM - scanning tunneling microscope ) - вариант сканирующего зондового микроскопа , предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем . При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток . Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения 1-1000 пА при расстояниях около 1 . Сканирующий туннельный микроскоп первый из класса сканирующих зондовых микроскопов; атомно-силовой и сканирующий ближнепольный оптический микроскопы были разработаны позднее.

В процессе сканирования игла движется вдоль поверхности образца, туннельный ток поддерживается стабильным за счёт действия обратной связи, и показания следящей системы меняются в зависимости от топографии поверхности. Такие изменения фиксируются, и на их основе строится карта высот. Другая методика предполагает движение иглы на фиксированной высоте над поверхностью образца. В этом случае фиксируется изменение величины туннельного тока и на основе данной информации идет построение топографии поверхности.

Таким образом сканирующий туннельный микроскоп (СТМ) включает следующие элементы:

  • зонд (иглу),
  • систему перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам,
  • регистрирующую систему.

Регистрирующая система фиксирует значение функции, зависящей от величины тока между иглой и образцом, либо перемещения иглы по оси Z. Обычно регистрируемое значение обрабатывается системой отрицательной обратной связи, которая управляет положением образца или зонда по одной из координат (Z). В качестве системы обратной связи чаще всего используется ПИД-регулятор . Ограничения на использование метода накладываются, во-первых, условием проводимости образца (поверхностное сопротивление должно быть не больше 20 МОм/см²), во-вторых, условием «глубина канавки должна быть меньше её ширины», потому что в противном случае может наблюдаться туннелирование с боковых поверхностей. Но это только основные ограничения. На самом деле их намного больше. Например, технология заточки иглы не может гарантировать одного острия на конце иглы, а это может приводить к параллельному сканированию двух разновысотных участков. Кроме ситуации глубокого вакуума , во всех остальных случаях мы имеем на поверхности осаждённые из воздуха частицы, газы и т. д. Технология грубого сближения также оказывает колоссальное влияние на действительность полученных результатов. Если при подводе иглы к образцу мы не смогли избежать удара иглы о поверхность, то считать иглу состоящей из одного атома на кончике пирамиды будет большим преувеличением.

История создания

Сканирующий туннельный микроскоп (СТМ) в современном виде изобретен (принципы этого класса приборов были заложены ранее другими исследователями) Гердом Карлом Биннигом и Генрихом Рорером из лаборатории IBM в Цюрихе в 1981 году. За это изобретение были удостоены Нобелевской премии по физике за 1986 год , которая была разделена между ними и изобретателем просвечивающего электронного микроскопа Э. Руска .

В СССР первые работы по этой тематике были сделаны в 1985 году в АН СССР.

Литература

  • Arie van Houselt and Harold J. W. Zandvliet Colloquium: Time-resolved scanning tunneling microscopy (англ.) // Rev. Mod. Phys. . - 2010. - Т. 82. - С. 1593-1605.

Ссылки


Wikimedia Foundation . 2010 .

  • Саммит
  • Freedom House

Смотреть что такое "Сканирующий туннельный микроскоп" в других словарях:

    СКАНИРУЮЩИЙ ТУННЕЛЬНЫЙ МИКРОСКОП - прибор для изучения поверхноститвёрдых электропроводящих тел, основанный на сканировании металлич. остриянад поверхностью образца на расстоянии. Такое расстояние достаточно мало для туннелирования электронов черезконтакт, т … Физическая энциклопедия

    сканирующий туннельный микроскоп - STM (Scanning Tunneling Microscope) Сканирующий туннельный микроскоп Прибор для изучения поверхности твердых тел, основанный на сканировании острием (иглой), находящимся под потенциалом, поверхности образца, и одновременном измерении… … Толковый англо-русский словарь по нанотехнологии. - М.

    Сканирующий зондовый микроскоп - Сканирующие зондовые микроскопы (СЗМ, англ. SPM Scanning Probe Microscope) класс микроскопов для получения изображения поверхности и её локальных характеристик. Процесс построения изображения основан на сканировании поверхности зондом … Википедия

    ТУННЕЛЬНЫЙ МИКРОСКОП, - ТУННЕЛЬНЫЙ МИКРОСКОП, см. Сканирующий туннельный микроскоп. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 … Физическая энциклопедия

    Растровый туннельный микроскоп - Сканирующий туннельный микроскоп (СТМ) система образец + игла, к которым приложена разность потенциалов. Электроны из образца туннелируют на иглу, создавая таким образом туннельный ток. Величина этого тока экспоненциально зависит от расстояния… … Википедия - Современный оптический микроскоп Микроскоп (от греч. μικρός малый и σκοπεῖν смотрю) оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Содержание … Википедия

    Сканирующий микроскоп - Сканирующий (растровый) микроскоп: Сканирующий зондовый микроскоп (SPM) Сканирующий атомно силовой микроскоп (AFM, SPM) Сканирующий туннельный микроскоп (STM) Сканирующий электронный микроскоп (SEM) Сканирующий емкостной микроскоп (SCM) Микроскоп … Википедия