Соотношения неопределенностей гейзенберга 2 неравенства. Неопределённостей соотношение. Соотношения неопределённости Гейзенберга

Невозможно одновременно с точностью определить координаты и скорость квантовой частицы.

В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях. Появление и бурное развитие квантовой механики открыло перед нами целый мир, системное устройство которого попросту не укладывается в рамки здравого смысла и полностью противоречит нашим интуитивным представлениям. Но нужно помнить, что наша интуиция основана на опыте поведения обычных предметов соизмеримых с нами масштабов, а квантовая механика описывает вещи, которые происходят на микроскопическом и невидимом для нас уровне, — ни один человек никогда напрямую с ними не сталкивался. Если забыть об этом, мы неизбежно придем в состояние полного замешательства и недоумения. Для себя я сформулировал следующий подход к квантово-механическим эффектам: как только «внутренний голос» начинает твердить «такого не может быть!», нужно спросить себя: «А почему бы и нет? Откуда мне знать, как всё на самом деле устроено внутри атома? Разве я сам туда заглядывал?» Настроив себя подобным образом, вам будет проще воспринять статьи этой книги, посвященные квантовой механике.

Принцип Гейзенберга вообще играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира. Чтобы понять этот принцип, задумайтесь для начала о том, что значит «измерить» какую бы то ни было величину. Чтобы отыскать, например, эту книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат — зафиксировали ее пространственные координаты (определили местоположение книги в комнате). На самом деле процесс измерения происходит гораздо сложнее: источник света (Солнце или лампа, например) испускает лучи, которые, пройдя некий путь в пространстве, взаимодействуют с книгой, отражаются от ее поверхности, после чего часть из них доходит до ваших глаз, проходя через хрусталик, фокусируется, попадает на сетчатку — и вы видите образ книги и определяете ее положение в пространстве. Ключ к измерению здесь — взаимодействие между светом и книгой. Так и при любом измерении, представьте себе, инструмент измерения (в данном случае, это свет) вступает во взаимодействие с объектом измерения (в данном случае, это книга).

В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемые величины. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения не влияет на измеряемые свойства объекта измерения. А теперь задумайтесь о процессах, происходящих на субатомном уровне. Допустим, мне нужно зафиксировать пространственное местонахождение электрона. Мне по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у меня нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Начав со сложных математических формул, описывающих мир на субатомном уровне, он постепенно пришел к удивительной по простоте формуле, дающий общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, о котором мы только что говорили. В результате им был сформулирован принцип неопределенности , названный теперь его именем:

неопределенность значения координаты x неопределенность скорости > h /m ,

математическое выражение которого называется соотношением неопределенностей Гейзенберга :

Δx х Δv > h /m

где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка , названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10 -34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. (GPS, Global Positioning System — навигационная система, в которой задействованы 24 искусственных спутника Земли. Если у вас, например, на автомобиле установлен приемник GPS, то, принимая сигналы от этих спутников и сопоставляя время их задержки, система определяет ваши географические координаты на Земле с точностью до угловой секунды.) Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку — в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора, — и в самом лучшем случае нам удастся определить пространственное положение объекта с точностью до минимального деления шкалы. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.

И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).

В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, Δx ), тем более неопределенной становится другая переменная (Δv ), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.

На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость — на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, если мы проводим измерение состояния квантовой системы на предмет определения ее энергии, это измерение займет некоторый отрезок времени — назовем его Δt . За этот промежуток времени энергия системы случайным образом меняется — происходят ее флуктуация , — и выявить ее мы не можем. Обозначим погрешность измерения энергии ΔЕ. Путем рассуждений, аналогичных вышеприведенным, мы придем к аналогичному соотношению для ΔЕ и неопределенности времени, которым квантовая частица этой энергией обладала:

ΔЕ Δt > h

Относительно принципа неопределенности нужно сделать еще два важных замечания:

он не подразумевает, что какую-либо одну из двух характеристик частицы — пространственное местоположение или скорость — нельзя измерить сколь угодно точно;

принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.

Иногда вам могут встретиться утверждения, будто принцип неопределенности подразумевает, что у квантовых частиц отсутствуют определенные пространственные координаты и скорости, или что эти величины абсолютно непознаваемы. Не верьте: как мы только что видели, принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно. И, как и во многом другом, мы вынуждены идти на компромисс. Опять же, писатели-антропософы из числа сторонников концепции «Новой эры» иногда утверждают, что, якобы, поскольку измерения подразумевают присутствие разумного наблюдателя, то, значит, на некоем фундаментальном уровне человеческое сознание связано с Вселенским разумом, и именно эта связь обусловливает принцип неопределенности. Повторим по этому поводу еще раз: ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты. А тот факт, что при этом присутствует разумный наблюдатель в лице ученого, отношения к делу не имеет; инструмент измерения в любом случае влияет на его результаты, присутствует при этом разумное существо или нет.

См. также:

Werner Karl Heisenberg, 1901-76

Немецкий физик-теоретик. Родился в Вюрцбурге. Его отец был профессором византологии Мюнхенского университета. Помимо блестящих математических способностей с детства проявлял склонность к музыке и вполне состоялся как пианист. Еще школьником был членом народной милиции, поддерживавшей порядок в Мюнхене в смутное время, наступившее после поражения Германии в I мировой войне. В 1920 году стал студентом кафедры математики Мюнхенского университета, однако, столкнувшись с отказом в посещении интересующего его семинара по актуальным в те годы вопросам высшей математики, добился перевода на кафедру теоретической физики. В те годы весь мир физиков жил под впечатлением нового взгляда на строение атома (см. Атом Бора), и все теоретики из их числа понимали, что внутри атома происходит нечто странное.

Защитив диплом в 1923 году, Гейзенберг приступил к работе в Гёттингене над проблемами строения атома. В мае 1925 года у него случился острый приступ сенной лихорадки, вынудивший молодого ученого провести несколько месяцев в полном уединении на маленьком, отрезанном от внешнего мира острове Гельголанд, и этой вынужденной изоляцией от внешнего мира он воспользовался столь же продуктивно, как Исаак Ньютон многомесячным заключением в карантинном чумном бараке в далеком 1665 году. В частности, за эти месяцы ученым была разработана теория матричной механики — новый математический аппарат зарождающейся квантовой механики . Матричная механика, как показало время, в математическом понимании эквивалентна появившейся год спустя квантово-волновой механике, заложенной в уравнении Шрёдингера , с точки зрения описания процессов квантового мира. Однако на практике использовать аппарат матричной механики оказалось труднее, и сегодня физики-теоретики, в основном, пользуются представлениями волновой механики.

В 1926 году Гейзенберг стал ассистентом Нильса Бора в Копенгагене. Именно там в 1927 году он и сформулировал свой принцип неопределенности — и можно с основанием утверждать, что это стало его самым большим вкладом в развитие науки. В том же году Гейзенберг стал профессором Лейпцигского университета — самым молодым профессором в истории Германии. Начиная с этого момента, он вплотную занялся созданием единой теории поля (см. Универсальные теории) — по большому счету, безуспешно. За ведущую роль в разработке квантово-механической теории в 1932 году Гейзенберг был удостоен Нобелевской премии по физике за создание квантовой механики.

С исторической же точки зрения личность Вернера Гейзенберга, вероятно, навсегда останется синонимом неопределенности несколько иного рода. С приходом к власти партии национал-социалистов в его биографии открылась самая труднопонимаемая страница. Во-первых, будучи физиком-теоретиком, он оказался вовлеченным в идеологическую борьбу, в которой теоретическая физика, как таковая, получила ярлык «жидовской физики», а сам Гейзенберг был публично назван новыми властями «белым евреем». Лишь после ряда личных обращений к самым высокопоставленным лицам в рядах нацистского руководства ученому удалось остановить кампанию публичной травли в свой адрес. Гораздо проблематичнее выглядит роль Гейзенберга в германской программе разработки ядерного оружия в годы второй мировой войны. В то время, когда большинство его коллег эмигрировали или вынуждены были бежать из Германии под давлением гитлеровского режима, Гейзенберг возглавил германскую национальную ядерную программу.

Под его руководством программа всецело сконцентрировалась на постройке ядерного реактора, однако у Нильса Бора при его знаменитой встрече с Гейзенбергом в 1941 году сложилось впечатление, что это лишь прикрытие, а на самом деле в рамках этой программы разрабатывается ядерное оружие. Так что же произошло на самом деле? Действительно ли Гейзенберг умышленно и по велению совести завел германскую программу разработки атомной бомбы в тупик и направил ее на мирные рельсы, как он впоследствии утверждал? Или просто он допустил какие-то просчеты в своем понимании процессов ядерного распада? Как бы то ни было, Германия атомного оружия создать не успела. Как показывает блестящая пьеса Майкла Фрэйна (Michael Frayn) «Копенгаген», эта историческая загадка, вероятно, даст достаточно материалов еще не для одного поколения беллетристов.

После войны Гейзенберг выступил активным сторонником дальнейшего развития западногерманской науки и ее воссоединения с международным научным сообществом. Его влияние послужило важным инструментом, позволившим добиться безъядерного статуса вооруженных сил Западной Германии в послевоенный период.

Корпускулярно-волновой дуализм влечет за собой важные следствия. Речь идет о возможности одновременного определения координаты микрообъекта и его импульса. Действительно, существует логическое противоречие между свойствами движущегося материального объекта (например, материальной точки), обладающего импульсом р, локализовать в пространстве который можно с любой, сколь угодно высокой точностью, и монохроматической волной де-Бройля (с длиной волны А,), которая по существу простирается от -ос до +оо и, таким образом, полностью делокализована в пространстве. По гипотезе де- Бройля этой же волне сопоставляется импульс, подобный импульсу материального объекта, допускающего абсолютную локализацию в пространстве. Количественное рассмотрение этого противоречия позволило В. Гейзенбергу в 1927 г. сформулировать принцип, который в современном виде звучит так: не существует таких состояний микрообъекта, когда его координата и импульс одновременно принимают определенные, абсолютно точные значения. Если при движении вдоль оси х характеризовать неопределенность координаты и импульса микрообъекта величинами Ах и Ар х, то соотношение Гейзенберга (для координаты и импульса) имеет вид

т.е. неопределенность в координате, умноженная на неопределенность в импульсе (его проекции для одномерного случая), не может быть меньше постоянной Планка И".

Можно привести еще одну интерпретацию соотношения неопределенностей. Известно, что волна только тогда может быть охарактеризована точным значением длины волны X, когда она простирается в пространстве от -оо до +оо. Известно также, что такая волна (как и материальная точка, впрочем) является математической абстракцией. Вместе с тем соответственно этой модели точное значение длины волны X определяет точное значение волнового вектора к и, следовательно, импульса р. Значит, в этом случае неопределенность в импульсе Ар должна быть равна нулю (рис. 8.3, а). При этом мы ничего не сможем сказать о положении частицы, т.е. неопределенность в координате Ах равна бесконечности. Если же мы захотим уменьшить неопределенность в положении частицы и наложим на нее условие, чтобы Лх стала равной конечной величине (рис. 8.3, б), это приведет к тому, что возникнет неопределенность в импульсе, которая станет больше, если мы еще более локализуем (т.е. уменьшим Ах) частицу (рис. 8.3, в).


Рис. 8.3. Иллюстрация соотношения неопределенностей для х и р х: чем точнее локализована частица, тем более неопределен ее импульс

Принцип неопределенности Гейзенберга делает принципиально неприменимыми некоторые положения классической механики. В частности, это касается такого важного понятия как траектория. В качестве примера рассмотрим атом водорода в рамках боровской модели.

Электрон в атоме обращается вокруг протона по круговой орбите. При известных массе и заряде электрона в рамках классической электродинамики можно определить по порядку величины, скорость его движения, она оказывается примерно 10 6 м/с. Тогда по Гейзенбергу (с использованием (8.4)) неопределенность в координате Ах определяется как м, т.е.

Ах по порядку величины совпадает с размером атома. Отсюда следует, что понятие траектории в данном случае (и в квантовой механике вообще) теряет смысл: неопределенность в координате электрона становится больше, чем размер области, в пределах которой он находится! Ясно, что нужны иные, чем в классической механике, подходы к описанию состояния микрообъектов.

Еще одно важное обстоятельство: само соотношение неопределенностей позволяет в некоторых случаях, не решая задачу точно, оценить характер будущего решения. В качестве такого примера рассмотрим состояние частицы, ограниченной в движении в пространстве (т.е. находящейся в потенциальной яме - в силовом поле, потенциальная энергия которого - см. подраздел 1.4.4, в зависимости от координаты напоминает по форме яму) величиной пространственной координаты L.

Зададимся вопросом, может ли в рассматриваемом случае энергия частицы принимать любые значения, в частности, «лечь на дно» (т.е. обладать точным нулевым значением энергии и, соответственно, точно определенным импульсом)? Для решения этой задачи зададимся неопределенностью в импульсе: примем эту неопределенность равной 100%, т.е. положим Ар ~р. Имея в виду связь энергии Е с импульсом, можно записать: р » Ар = 12тЕ. Неопределенность в координате Дх в условиях данной задачи равна ширине ямы L (т.е. Дх-L): мы знаем, что частица находится в потенциальной яме, но не знаем конкретно, в какой ее точке. В результате соотношение неопределенностей выглядит так: ДхДр х > ~]2тЕ L > И, отсюда

Это значит, что получен ответ на поставленные выше вопросы: частица на дно потенциальной ямы «лечь» не может (не может обладать нулевой энергией), а выражение представляет собой наименьшее значение энергии,

которой частица может обладать.

Еще раз подчеркнем, что эти выводы получены исходя только из соотношения неопределенностей, без использования основных атрибутов квантовой механики.

Соотношение неопределенностей распространяется также на энергию Е микрообъекта и время т жизни системы в этом энергетическом состоянии: произведение неопределенности в энергии ДЕ на время жизни системы в этом состоянии т не может быть меньше h

Для основного состояния микрообъекта, который может существовать в этом состоянии бесконечно долго (т -» оо), неопределенность в энергии АЕ стремится к нулю, т.е. энергия основного состояния может быть определена абсолютно точно. Вместе с тем для возбужденных состояний со временем жизни, скажем 10 -8 с (характерные времена жизни в возбужденном состоянии атомных систем), неопределенность в энергии АЕ ~ 10 -34 /10 -8 = 10 -26 Дж а 10 -7 эВ. Это очень малая величина, но в некоторых случаях она играет важную роль в физических процессах. На рисунке 8.4 приведена иллюстрация расширения спектральной линии за счет учета соотношения неопределенностей (для энергии и времени). Ширина линии, задаваемая исключительно уширением энергетического уровня за счет эффекта неопределенностей Гейзенберга (т.е. не подверженная влиянию внешних условий или измерительного прибора), называется естественной шириной спектральной линии.

Рис. 8.4. Иллюстрация принципа неопределенностей для энергии и времени (ДEx > А). Слева изображены два уровня энергии без учета соотношения неопределенностей: оба уровня «бесконечно тонкие» (т -> оо), спектральная линия (внизу) также бесконечно тонка. Учет соотношения неопределенностей для т = const (верхний уровень) приводит к уширению возбужденного уровня, и спектральная линия за этот счет становится уширенной (Г = АЕ = Л/т - естественная ширина спектральной линии)

Соотношение неопределенностей не накладывает никаких ограничений на возможность одновременного существования совершенно точных значений координат и импульсов, относящихся к разным координатным осям. Иными словами, произведения ДуАр х и ДхДр, могут быть равными нулю, т.е. соответствующие значения пар координат и проекций импульсов могут быть определены со сколь угодно малой погрешностью.

Соотношение неопределенностей в форме (8.4) и (8.6) можно рассматривать как аналитическое выражение философского представления о существовании материи в пространстве и во времени. Действительно, если допустить отсутствие пространства (длина Дх равна нулю) и времени (время т равно нулю), то мы получаем абсурдные результаты: импульс и энергия частицы (материального тела) оказываются бесконечными.

  • Соотношения (8.4) и далее (8.6) носят оценочный характер и поэтому в правой части неравенства вместо А может стоять или А/2 (что иногда встречается в учебной и научной литературе).

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Двойственная природа микрочастиц поставила науку перед вопросом о границах применимости понятий классической физики в микромире. В классической механике всякая частица движется по определенной траектории и всегда имеет вполне определенные (точные) значения координаты, импульса, энергии. По-другому обстоит дело с микрочастицей. Микрочастица, обладая волновыми свойствами, не имеет траектории, а значит, не может иметь одновременно определенных (точных) значений координаты и импульса. Другими словами, мы можем говорить о значениях координаты и импульса микрочастицы только с некоторой степенью приближения. Меру этой неопределенности (неточности) в значениях координаты и импульса, энергии и времени нашел в 1927 г. В Гейзенберг. Он показал, что эти неопределенности (неточности) удовлетворяют следующим соотношениям:

DX×DPX³h; DY×DPY³h; DZ×DPZ³h; DW×Dt³h.

Эти неравенства называются соотношениями неопределенностей Гейзенберга.

Таким образом, если мы знаем положение X импульс Р микрочастицы (например, электрона в атоме) с погрешностями DX и DPX , то эта погрешность не может быть меньше , чем h. Этот предел мал, поскольку мала сама h – постоянная Планка, но он существует, и это фундаментальный закон природы. Важно заметить, что эта неопределенность не связана с несовершенством наших приборов. Речь о том, что принципиально нельзя определить одновременно координату и импульс частицы точнее, чем это допускает соотношение неопределенностей. Этого нельзя сделать точно, так же как нельзя превысить скорость света, достичь абсолютного нуля температур, поднять себя за волосы, вернуть вчерашний день.

Из соотношения неопределенностей видно, что с увеличением массы частицы ограничения, накладываемые им уменьшаются. Например, для пылинки m=10-13кг, координата которой получена с точностью до ее размеров, т.е. DX=10-6м, получаем DVX=1,0×10-15 м/с. Эта неопределенность практически не будет сказываться ни при каких скоростях, с которыми может двигаться частица. Для макроскопических тел соотношение неопределенностей не будет вносить никаких ограничений в возможность применить для них понятия координаты и скорости одновременно. Дело в том, что постоянная Планка в этих случаях может рассматриваться пренебрежимо малой. Это приводит к тому, что квантовые свойства изучаемых объектов оказываются несущественными, а представления классической физики – полностью справедливыми. Аналогично при скоростях, намного меньших скорости света, выводы теории относительности совпадают с выводами классической механики.

Таким образом, классическая механика является предельным случаем квантовой механики и релятивистской механики.

Это положение связано с так называемым принципом соответствия, имеющим важное философское и методологическое значение. Принцип соответствия может быть сформулирован следующим образом:

Теории, справедливость которых была экспериментально установлена для определенной группы, с появлением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений, как предельная форма и частный случай новых теорий.

Гипотеза Де Бройля. Электронная микроскопия. Волновая функция.

Волны де Бройля

В начале XX века картина мира выглядела очень чётко и не представляла вариантов для толкования:

Каких частиц - это отдельный вопрос. Но именно так: или частицы иливолна - и никак иначе! Всё ясно и понятно.

Такая идиллия продолжалась до 1924 года, пока французский физик Луи де Бройль не пришёл к выводу, что волновые свойства присущи абсолютно всем материальным объектам .

(1)

На эту гипотезу де Бройля натолкнуло сходство уравнений, описывающих поведение лучей света методами геометрической оптики, и движение частиц в механике методом уравнений Гамильтона .

Предположение было неожиданным, красивым и многое объясняло, но нужно было его экспериментальное подтверждение, иначе всё так и осталось бы на уровне гипотезы.

Первое экспериментальное подтверждение гипотезы де Бройля в 1927 году получили американские исследователи Дэвидсон и Джермер . Они изучали угловое распределение электронов, рассеивающихся на монокристалле никеля.

Ионизационной камерой 4 , с присоединённым с ней гальванометром 5 , по силе возникающего тока I измерялось число электронов, отражённых от кристалла под углом , равным углу падения, то есть - интенсивность отражённого электронного пучка .

2. Если же угол падения электронного пучка на кристалл менялся , а ускоряющее напряжение Uоставалось неизменным , то интенсивность отражённого пучка имела ярко выраженные максимумы при углах падения, удовлетворяющих условию Вульфа-Брэгга.

Способ нахождения импульса зависит от скорости, которую имеет частица. Если скорость движения частицы во много раз меньше скорости света в вакууме, то импульс (количество движения) определяется привычной формулой.


Выясним, какое выражение (2 или 3) надо использовать для нахождения импульса в данном случае. Для этого сравним энергию электронов в условиях опыта Дэвидсона и Джермера с их энергией покоя.

В проведённых экспериментах ускоряющее напряжение было на уровне 400В . В этом случае энергия электронов не превышала E e = eU = 400 эВ . Энергия же покоя электрона E o = m o c 2 = 0,511 МэВ = 511000 эВ . Следовательно, E e <, электроны являются нерелятивистскими и для нахождения их импульса можно использовать выражение (2).

При разгоне (ускорении) электрона работа сил электрического поля идёт на увеличение его кинетической энергии. Для условий эксперимента получаем

Подстановка числовых значений даёт

Следовательно, при U = 400 В в описываемых экспериментах имеем для электрона значение длины волны де Бройля равное = 6,2 10 -11 м .

Такое же значение для длины волны дал и расчёт по формуле Вульфа-Брэгга, основанной на волновой теории.

Гипотеза Луи де Бройля о наличии у частиц волновых свойств получила своё экспериментальное подтверждение.

Вроде бы можно успокоиться и заняться чем-либо другим. Однако вопрос, поднятый де Бройлем , был слишком фундаментальным и нужны были более наглядные подтверждения. Поэтому экспериментаторы продолжили свою работу.

Следует отметить, что одновременно и независимо от Дэвидсона этими вопросами занимался профессор Абердинского университета Джордж П.Томсон (сын знаменитого Джозефа Джона Томсона , открывшего электрон), который и добился успеха первым.

На рис. 3 приведены первые фотографии с двумя дифракционными картинами при разных напряжениях на катодной трубке. Видно, что увеличение напряжения (левый снимок), приводящее к увеличению энергии электронов, приводит и к более чёткой картине с большим числом колец.

Многократно повторив свои эксперименты с различными образцами фольги, Джордж П.Томсон пришёл к выводу:

Несколько послеДж.П.Томсона аналогичные результаты были получены П.С.Тартаковским , а затем и другими физиками, которые также смогли зафиксировать дифракционные кольца, возникающие при прохождении пучка электронов через тонкие слои металла.

Советский физик Иосив Мандельштам с сотрудниками пошёл ещё дальше, он сумел экспериментально показать, что де Бройлевские волны могут интерферировать между собой.

Затем был показано, что волновые свойства обнаруживают нейтроны, протоны и даже молекулы водорода.

Дифракция электронов (электронография ) применяется сейчас при исследовании структуры поверхности, например, при изучении коррозии, при адсорбции газов на поверхностях.

Дифракция нейтронов (нейтронография ) является мощным средством изучения структур, в особенности органических кристаллов, содержащих водород, что невозможно сделать с использованием рентгеновского излучения.

Появились и новая отрасль науки - электронная оптика , давшая миру новый прибор - электронный микроскоп , без которого в настоящее время немыслимы многие исследования. При ускоряющих напряжениях от 50 до 100кВ разрешающая способность электронных микроскопов приближается к 20 .

Но всё это было позже, а первопроходцы

Соотношение неопределённости Гейзенберга

Доказанное одновременное наличие у микрочастиц и корпускулярных и волновых свойств приводило к невозможности применения к ним законов классической механики.

В макромире можно однозначно определить в любой момент времени импульс и координату движущего тела или материальной точки; можно рассчитать и траекторию их движения.

В микромире из-за наличия волновых свойств одновременные значения координат и скорости (импульса) не существуют: если известна скорость (импульс), то местоположение частицы (её координаты) не имеют определённого значения - понятие длина волны в конкретной точке не имеет смысла . То же самое и наоборот.

Налицо парадокс, который впервые был сформулирован немецким физиком Вернером Гейзенбергом в виде так называемого
принципа неопределённости
:

Разделив выражение (4) на массу m частицы, получим другую форму записи принципа неопределённости:

Сказанное выше хорошо иллюстрируется несколькими примерами, с которыми можно познакомиться здесь.

Если выразить p х через энергию ( p х = Е/ v x), то учитывая, что х/ v х = t, получаем соотношение неопределённостей для энергииE и времениt :

(6)

Здесь tпредставляет собой время, в течение которого микрочастица обладает энергией .

Например, атом на самом низком энергетическом уровне может пребывать сколь угодно долго (), поэтому энергия этого состояния вполне определена: Е = 0.

В более высоком энергетическом состояни и атом пребывает очень недолго. Если это время равно t, то энергия атома в этом состоянии может быть определена с точностью до и будет равна . При переходе атома с более высокого уровня на более низкий энергетический уровень с энергией Е" он излучает фотон с энергией

(7)

Таким образом, энергия излучённого фотона может быть известна только с точностью до Е. Величина же Е определяется временем t жизни атома в возбуждённом состоянии.

На основании выражения (7) можно утверждать, что частота излучённого кванта (фотона) имеет неопределённость , равную = Е / h, то есть линии в спектре будут иметь частоту, равную Е / h.

Уравнение Шредингера

В классической механике движение любой материальной точки однозначно описывается уравнением Исаака Ньютона (второй закон Ньютона ), которое в движении вдоль оси ОХ (одномерный случай) имеет вид

(8)

В квантовой механике необходим учёт волновых свойств частиц. Поэтому вместо формулы (8) должно быть использовано другое уравнение. Такое уравнение в 1926 году было записано Эрнестом Шредингером и носит его имя.

Чтобы уравнение, описывающее движения микрочастицы, учитывало её волновые свойства , это уравнение должно быть волновым . Для плоской волны, распространяющейся вдоль оси ОХ, волновое уравнение представляет собой дифференциальное уравнение второго порядка в частных производных . Независимыми переменными в нём являются координата и время.

В случае электромагнитной волны имеем

Для описания движения микрочастицы введём функцию = (x, y, z, t) , связанную с длиной волны де Бройля (смысл этой функции рассмотрим ниже). В этих обозначениях получим

Возьмём вторую частную производную уравнения (11) по времени, то есть продифференцируем его два раза по t

Поскольку v/ = , то можем записать ( /v) 2 =1/() 2 . Теперь, зная, что длина волны де Бройля = h/(mv), получим

С учётом (14) и (15) из (13) получаем

(17)

Здесь - оператор Лапласа. Применение его к пси-функции даёт - лаплассиан .

В общем случае волновое уравнение является функцией двух видов переменных. Как уже говорилось, уравнение Шредингера в виде (16) и (17) не зависит от времени и записано для стационарного случая, при котором волновая функция не зависит от времени: в уравнении (16) = (x) , а в уравнении (17) = (x, y, z) .

При учёте времени как ещё одной переменной, = (x, y, z, t) и уравнение Шредингера принимает вид

Во-первых , оно справедливо лишь при малых (по сравнению со скоростью света в вакууме) скоростях движения частицы, когда
v<< c.

Во-вторых , уравнение Шредингера не описывает процессы, происходящие с изменением числа взаимодействующих частиц, их рождением или аннигиляцией, и не учитывает внутренних степеней свободы частиц, таких, например, как спин.

Релятивистский вариант этого уравнения (когда v c.) был получен Полем Дираком (здесь мы его не рассматриваем).

Записанные выше (16) и (17) стационарные варианты уравнения Шредингера получаются из временн го уравнения (18) при не учёте фактора времени.

Уравнение Шредингера записано для частицы, движущейся в поле, характеризуемом потенциальной энергией U . При решении этого уравнения надо задать вид потенциального поля и закон изменения U . Из решения этого уравнения следует закон квантования энергии для частиц, совпадающий с правилами, введёнными Бором при разработке теории атома водорода. Однако здесь он получается естественным путём , как результат решения, а не искусственно постулируетс я, как у Бора.

Приведённые в этом разделе рассуждения не претендуют на вывод уравнения Шредингера. По сути, уравнение (18) постулируется, а об его справедливости судят, сравнивая следствия из этого уравнения с результатами экспериментов.

Именно благодаря экспериментальным свидетельствам и можно с уверенностью утверждать, что уравнение Шредингера успешно описывает поведение микрообъектов в нерелятивистском приближении.

Допустим, что имеется столь слабый поток частиц, что сквозь щель проходит один электрон за другим через большой промежуток времени. Уравнение Шредингера не позволяет точно предсказать, в какое именно место экрана попадёт конкретный электрон. Это уравнение даёт только вероятность распределения частиц по экрану после прохождения щели. Однако, если эксперимент продолжать достаточно долго, так, чтобы на экран попало большое количество частиц, возникает обычная дифракционная картина.

Следовательно, теория предсказывает только статистический результат , то есть то, что произойдёт в среднем, за большой промежуток времени.

Волновая функция

Попробуем теперь разобраться, что представляет собой введённая в предыдущем параграфе волновая функция = (x, y, z, t) ,.

Для этого рассмотрим в общем виде плоскую волну, которая распространяется в направлении нормали On (см. рис.4). Колебания в плоскости волнового фронта волны АВ запишем в комплексном виде

= 0 exp(-2 i t), (19)

где 0 - амплитуда, - частота, t - время. Через некоторое время фронт волны переместится и займёт положение A"B" .

пучками. Из рис. 2 видно, что угол между падающим электронным пучком и системой отражающих атомных плоскостей

Поэтому если отражение от этой системы атомных плоскостей соответствует дифракционному максимуму n-го порядка, то выполняется условие (?? ) Вульфа-Брэгга 2d sin θ = nλБ , которое можно записать в виде

√ 2m0 eU

Отсюда находим искомое межплоскостное расстояние

2m0 eU

Выполняя расчёт по этой формуле, получаем d = 2,1 · 10−10 м.

2 Соотношения неопределенностей Гейзенберга

В 1927 г. В. ГЕЙЗЕНБЕРГ установил, что при наличии у частиц волновых свойств существует связь между неопределенностями координат и соот-

ветствующими неопределенностями компонент импульса частицы. Эта связь имеет вид неравенств1 :

px ≥ ~ ,

py ≥ ~ ,

pz ≥ ~ .

Эти соотношения играют важную роль, позволяя очертить границы применимости классической механики, в которой, в отличие от квантовой механики, пренебрегают волновыми свойствами частиц.

Из соотношений Гейзенберга (?? ) следует, что из-за наличия у частицы волновых свойств нельзя одновременно точно измерить координату

и px → 0. Но это противоречит неравенствам (?? ). Отсюда следует, в частности, что в квантовой механике для описания движения частицы нельзя использовать представление о движении частицы по определённой траектории, так как такое движение предполагает возможность одновременного точного определения и координат, и импульса (скорости) частицы.

Аналогичные соотношения неопределённостей в квантовой механике записываются и для других пар физических величин. Так, например,

Ограничения на информацию о движении частицы и её состоянии, вытекающие из соотношений неопределённостей, оказываются несущественными для лабораторных макроскопических масштабов. Однако эти ограничения становятся существенными для малых масштабов расстояний, импульсов, энергий и времён жизни частиц, с которыми мы сталкиваемся в атомной и ядерной физике и в физике элементарных частиц.

2.1 Примеры решения задач

Задача. 2.1. Определите с помощью соотношений неопределённо-

1 Иногда в правой части неравенств(2.20) записывают не ~, а1 2 ~ или 2π~. В силу того, что эти соотношения используются как оценочные, принципиального различия между такими формами записи нет.

стей минимальную кинетическую энергию электрона, движущегося в области, размер которой L = 10−10 м соответствует характерному размеру атомов.

Решение. Для оценочных расчётов будем считать движение частицы одномерным и величину неопределённости координаты положим равной размеру области движения частицы, т.е. x = L. При оценке неопределённости импульса примем, что физически разумная неопределённость импульса не должна превышать значения самого импульса, т.е. положим px = p. Тогда из соотношения неопределённостей x · px = ~ получим, что при движении электрона в рассматриваемой области пространства Lp > ~, т.е. импульс частицы не может быть меньше чем

p min=

Это означает, в частности, что в квантовой механике частица не может иметь нулевой импульс, т.е. не может находиться в состоянии покоя.

Используя связь между импульсом p и кинетической энергией E для

√ K

нерелятивистской частицы в виде p = 2m0 EK запишем теперь следующее оценочное соотношение значения кинетической энергии частицы:

2m0 L2

Подставляя в эту формулу массу электрона m0 = 9.1 · 10−31 кг и размер области движения L = 10−10 м, находим EK min = 6 · 10−19 Дж = 3.9 эВ. Чтобы электрон с такой кинетической энергией удержать в области движения, необходима энергия связи такого же порядка. Этот вывод согласуется с опытными данными для энергий связи электронов в атомах.

Задача. 2.2. Используя соотношения неопределённостей, покажите, что в ядре атома не могут находиться электроны. Считать, что линейный размер ядра составляет L = 5 · 10−15 м.

Решение. Как и в задаче 2.1, на основании соотношения неопределённостей можно оценить минимальное значение импульса электрона

релятивистскую формулу связи импульса p с кинетической энергией EK частицы

pc = EK 2 + 2EK E0 ,

получаем квадратное уравнение для расчёта минимальной кинетической энергии электрона в ядре

(EK )

2E0 EK

Положительный корень этого уравнения

E K min= v

E0 2

определяет искомое значение кинетической энергии электрона, движущегося в ядре. Учитывая, что энергия покоя электрона E0 = m0 c2 = 8,19 · 10−14 Дж =0,51 МэВ, находим окончательно значение EK min = 6,2 · 10−22 Дж = 38,7 МэВ.

Как показывают экспериментальные данные, энергия связи частиц в ядре не превышает 10 МэВ. Следовательно, силы, действующие в ядре, не смогут удержать в нём электрон с кинетической энергией, равной 38,7 МэВ. Поэтому электрон не может быть составной частицей ядра атома.

Задача. 2.3. Используя соотношения неопределённостей Гейзенберга, получите оценочное соотношение, определяющее границы применимости классической механики для описания движения частицы в некоторой области пространства с характерным линейным размером L.

Решение. Очевидно, что понятие траектории можно использовать для описания механического движения частицы только в том случае, если неопределённость её координаты мала по сравнению с характерным размером области движения, т.е. x L.

Из соотношений неопределённостей, полагая px = p, получаем для

где λБ - длина волны де Бройля для рассматриваемой частицы.

Следовательно, условие, при выполнении которого для описания движения частицы можно использовать законы классической механики, пренебрегая квантовыми эффектами, можно записать в виде

λБ L .

Отметим, что в это условие входит размер области движения частицы, который обычно задаётся условием решаемой задачи. Анализ показывает, что полученное условие нарушается для частиц с малой массой, т.е. микрочастиц, движущихся в областях пространства порядка атомных размеров.

Задача. 2.4. Среднее время жизни атома в возбужденном состоянии составляет τ = 10−8 с. Оцените минимальное значение неопределённости частоты излучения атома.

Решение. Частота излучения, соответствующая переходу атома из возбуждённого состояния с энергией E2 в основное состояние с энергией E1 , определяется из соотношения

~ω = E1 − E2 .

Из соотношения неопределённостей (?? ) следует, что неопределённости энергий E1 и E2 зависят от времени жизни атома в основном и возбуждённом состояниях, причём

Так как в основном состоянии атом может находиться неограниченно долго, то следует полагать, что t1 → ∞. Время жизни атома в возбуждённом состоянии t2 = τ по условию задачи. Поэтому E1 = 0, а

E2 = ~/τ.

Тогда для оценки неопределённости частоты излучения атома получаем соотношение

Именно это значение определяет минимальную ширину спектральных линий излучения атомов. Реальная ширина спектральных линий увеличивается за счёт теплового движения излучающих атомов и других факторов.