Медицинская гибернация значения для организма. Что такое гибернация и для чего она применяется в медицине. Пропадает диск при гибернации

На грани жизни Денков Веселин А.

Возможны ли «химические» анабиоз и гибернация?

В последние десятилетия современная медицинская наука все чаще использует патент природы - анабиоз - при консервировании различных тканей и органов, т. е. «запасных частей», для хирургического «ремонта» путем замены поврежденных или изношенных тканей и органов человека. Однако до недавнего времени среди ученых было распространено убеждение, что только холод в состоянии обеспечить консервирование тканей и органов путем перевода в анабиотическое состояние.

В 1962 г. французский ученый Луи Рей высказал мнение, что «некоторые химические вещества способны эффективно сохранять различные ткани теплокровных животных (как взрослых особей, так и их зародышей), и можно надеяться на то, что будут найдены подходящие условия, при которых консервация жизни станет реальностью».

Несколько позже ученые из лаборатории по пересадке органов Академии медицинских наук СССР под руководством академика В. В. Кованова решили изучить возможность добиться анабиотического эффекта с помощью химических средств. Для этой цели исследователи избрали совсем необычное для консервации живых тканей вещество, являющееся ядом для клеток, - формалин. Этот метод предложили советские ученые В. Парфентов, В. Розвадовский и В. Дмитриенко. Опыты по достижению химического анабиоза с помощью формалина были встречены весьма скептически многими исследователями-медиками. Ученым, однако, удалось доказать, что формалин в слабой концентрации способен обратимо приостановить процессы жизнедеятельности в некоторых органах и тканях. Этот метод оказался сравнительно дешевым, не требующим сложной аппаратуры и вместе с тем достаточно универсальным. Многочисленные опыты с костной тканью показали, что кости, обработанные формалином, долго не теряют жизнеспособности. Эксперименты, проведенные ботаниками и микробиологами, подтвердили эти данные. Они показали, что незрелые клубни картофеля, сохранявшиеся в формалине в течение 3 лет, после их посадки в землю начинали расти, развиваться и плодоносить.

Подтверждением этого открытия могут служить осуществленные в Советской стране тысячи успешных костно-пластических операций и сотни пересадок тканей подопытным животным. А советский химик В. Войно-Ясенецкий успешно трансплантировал и роговицу глаза, обработанную формалином. Она хорошо прижилась и сохранила свою прозрачность.

Но каким образом советским ученым удалось сохранить жизнеспособность тканей и органов, применяя такой сильный клеточный яд? Не противоречит ли это общеизвестным фактам? Почему «оживала» обработанная формалином ткань?

Применение формалина было возможным в связи с обратимостью его химического действия. Другими словами, при определенных условиях формалин вступает в связь с белками, но эта связь в нужный момент легко разрушается. Вот почему после удаления формалина восстанавливаются практически все свойства, живой ткани. Оказалось, что растворы формалина не изменяют структуры клеток и физико-химические свойства кости. Кроме того, обработанная формалином кость стимулирует образование новой костной ткани из окружающих ее тканей, создает молодую костную ткань, и та надежно срастается с костями. Этот метод уже внедрен в клиническую практику в СССР. Так, например, в марте 1968 г. в Институт нейрохирургии им. Бурденко поступила больная, у которой в теменной области черепа обнаружили дефект площадью 40 мм2. Больной была пересажена кость, сохранявшаяся в формалине, и через месяц ее выписали. Периодические осмотры показали, что пересаженная кость нормально приросла. В этом институте успешно проведено уже более 400 подобных операций. На кафедре травматологии и ортопедии при 1-м Московском медицинском институте для пластических операций на позвоночнике используют кости, сохранявшиеся в формалине. Первую такую операцию сделали в мае 1968 г., после чего здоровье больного полностью восстановилось. В Московском институте туберкулеза уже лечат туберкулез позвоночника, пересаживая сохраняющиеся в формалине костные ткани. Так, например, у больной женщины, у которой оказались поражены 5 грудных позвонков и уже появились первые признаки искривления позвоночника, врачи удалили все пораженные позвонки и заменили их костями, предварительно обработанными в формалине. Через 6 месяцев больная встала на ноги, а через полтора года исчезли все признаки болезни. Пересаженные кости нормально выполняли функции удаленных позвонков, а от искривления позвоночника у женщины не осталось и следа.

Осталось проверить: не служит ли кость донора только мертвым механическим каркасом, вокруг которого организм восстанавливает свою собственную ткань? Решить этот вопрос можно было только при полном оживлении активного, жизненно важного органа. Начались эксперименты с сердцем. Результаты показали, что обработанное формалином сердце не реагирует на сильные удары электрического тока (напряжение до 500 В), но при удалении консервирующего раствора (формалина) сердце начинало пульсировать даже в результате слабых электрических импульсов (2,5–3 В), как будто его только что извлекли из организма. Сердце, пересаженное подопытному животному после 6 ч пребывания в формалине, через несколько минут начало пульсировать. Советские ученые многократно повторяли свои опыты, и сердце неизменно оживало. В обычных условиях уже через 2 ч после остановки кровообращения в мышце сердца наступают необратимые изменения, при которых заставить такое сердце снова пульсировать невозможно.

В чем сущность защитного воздействия формальдегида на живые клетки тканей?

Обмен веществ, как известно, является основой жизнедеятельности любой ткани. С другой стороны, никакой обмен веществ не мог бы осуществляться без ферментов - своеобразных белковых катализаторов, ускорителей, находящихся в клетках. И как раз формальдегид оказался универсальным блокирующим средством для ферментативных процессов, не вызывающим разрушение ферментов. Свойства формальдегида открыты еще в 1859 г., но его применение в медицине началось только в 80-е годы прошлого века, когда его 40 %-ный водный раствор стали использовать для дезинфекции, консервирования анатомических препаратов, приготовления сывороток и вакцин. В 1932 г. английский исследователь Э. Пирс изучал взаимодействие формалина с белковыми веществами и выявил «многообразие и сложность этих реакций». В I960 г. тот же исследователь снова вернулся к этой проблеме и установил, что активность ферментов под влиянием формалина исчезает не сразу, а постепенно. В 1938 г. советский профессор Б. Н. Тарусов установил, что нервная и мышечная ткани после обработки их формалином в течение определенного времени сохраняют электрический потенциал. В 1949 г. советский микробиолог Н. И. Леонов высказал мнение, что формалиновые вакцины (приготовленные с помощью формалина) в ряде случаев оказываются не «убитыми», а «живыми». Вирусы и микробы в них не могли размножаться. Был поставлен вопрос о способности микроорганизмов при некоторых условиях жить в растворе формалина.

В результате продолжительных опытов исследователям из лаборатории по пересадке органов и тканей Академии медицинских наук СССР удалось доказать, что формальдегид присутствует во всех жизненно важных органах как промежуточный продукт при реакциях обмена веществ. Превышение его содержания в 4–5 раз по сравнению с нормой приводит к затормаживанию процессов обмена в тканях. Следовательно, путем изменения концентрации формалина можно регулировать интенсивность обмена веществ, можно «выключить» на короткий промежуток времени жизнь органа, т. е. блокировать протекающие в нем процессы, а потом снова их восстановить. Под руководством академика В. В. Кованова проводились опыты по сохранению в формалине и последующей пересадке жизненно важных органов, таких, как почки, сердце, мозг. Сложность проблемы состояла в том, чтобы выбрать точный метод введения формальдегида, чье влияние на отдельные органы следовало изучить непосредственно на живом организме. Для этой цели подопытным животным через вену с определенной скоростью вводили формальдегид в разных концентрациях. Наступило постепенное торможение сократительной функции сердца и биоэлектрической активности сердца и мозга. Полученные биохимические данные свидетельствовали о том, что процессы обмена в органах отсутствовали. Казалось, что они умерли.

Следующая задача состояла в том, чтобы оживить органы. Оказалось, что это вполне реально: после подключения их к току крови почки начали выделять мочу, сердце стало пульсировать в обычном для него ритме, а в мозге появилась электрическая активность, что доказывало обратимость воздействия формальдегида на жизненно важные органы. Те же ученые обнаружили и другие химические вещества, например, ацетальдегид, проционовый и глутаревый альдегиды, которые оказывали подобное воздействие на жизнеспособность жизненно важных органов. Различие состояло только в концентрации раствора и продолжительности воздействия. Обратимость блокирования альдегидами жизнедеятельности биологических объектов доказана советскими учеными на уровне отдельных органов, клеток и молекул. Это явление названо химическим анабиозом.

Таким образом, анабиоз, вызванный глубоким охлаждением, - старое природное средство сохранения органов и тканей, известное уже в начале нашего века, - нашел достойного конкурента.

Значение химического анабиоза состоит в том, что он дает теоретическую основу для использования широкого спектра научных исследований и практических разработок в различных отраслях науки - биологии, медицине, генетике, ветеринарии, агрономии, космической биологии и медицине. Так, например, в Грузинской ССР хирурги Сухумского института патологии и терапии разработали метод консервирования позвонков в меде. В этих условиях физиологические свойства костной ткани сохранялись месяцами. При пересадке такого позвонка в крестцовую область поясницы обезьяны павиана он полностью прижился, и животное стало снова подвижным, как до операции.

Если вдуматься в перспективу этой проблемы, то использование химического анабиоза даст возможность сохранять в течение продолжительного времени (месяцы, годы) различные ткани и органы, необходимые для неотложной трансплантации. Таким образом, можно будет создать обширный «склад» тканей и органов, которые смогут обеспечить спасение жизни тысячам людей.

Выяснив, что искусственно вызвать химический анабиоз отдельных тканей и органов возможно, ученые начали задумываться над вопросом: нельзя ли добиться полной искусственной химической гибернации у животных и человека. Так, в экспериментальных условиях в Голландии был разработан новый химический метод консервирования живой морской рыбы, которую помещали в сосуд, наполненный раствором спирта. Рыба мгновенно впадала в состояние гибернации. Для ее оживления потребовалось лишь перенести ее в сосуд с морской водой. Этот метод особенно удобен при транспортировке живой рыбы на большие расстояния, так как было установлено, что рыба в этом состоянии расходует в 118 раз меньше кислорода, чем бодрствующая.

В различных лабораториях многих стран начали проводить эксперименты в поисках химических методов, которые приводили бы животное в состояние, аналогичное тому, в каком оно находится, впадая в зимнюю спячку. Оказалось, что это возможно, если сочетать блокаду нейроэндокринной системы с понижением температуры тела, которое наступает в результате физического охлаждения, осуществленного с помощью блокирования терморегуляции. Организм в состоянии искусственной гибернации становится значительно более устойчивым к различным видам травм и кислородной недостаточности, что быстро нашло применение в медицине для обезболивания при сложных хирургических операциях.

Метод искусственной гибернации человека был предложен французскими учеными А. Лабори и П. Югенером в 1950 г. и получил в настоящее время широкое распространение. Этот метод находит применение при операциях в тех случаях, когда больные не переносят обычных видов обезболивания.

При искусственной гибернации в организм вводят химические вещества в различных комбинациях. Блокирование нейроэндокринной системы, в частности терморегуляции, наступает благодаря введению в организм смеси химических веществ, оказывающих соответствующее действие. В состав таких смесей входят различные фармацевтические препараты.

Блокирование нейроэндокринной системы приводит к процессу торможения в коре головного мозга, который легко можно усилить с помощью небольших доз наркотических средств.

Искусственная гибернация применяется при сложных операциях, приводящих к резко выраженным нарушениям обмена веществ у истощенных больных. Используется она и в хирургии сердца, при операциях на «сухом», выключенном из кровообращения сердце, что значительно продлевает возможность оперативного вмешательства.

В теплокровном организме, находящемся в состоянии искусственной гибернации, температура достигает 33–30 °C. В результате блокирования нейроэндокринной системы и понижения температуры тела обмен веществ тоже ослабевает. Вследствие этого сокращается потребность организма в кислороде, уменьшается частота дыхания и амплитуда дыхательных движений, так как падает минутный объем вентиляции легких, пульс замедляется, понижается артериальное давление. Больные впадают в состояние глубокого сна, который не нарушается во время хирургического вмешательства.

В медицине химическая гибернация уже находит применение в хирургии, онкологии, оториноларингологии, нейрохирургии, стоматологии, фтизиатрии, травматологии, ортопедии, военно-полевой хирургии в целях блокирования процессов обмена веществ при различных сложных хирургических вмешательствах.

Медики мечтают о возможности при несчастных случаях, когда пострадавший находится в критическом состоянии, тотчас перевести его в состояние гибернации, доставив в специализированное медицинское учреждение. Именно в такой момент введение соответствующего препарата может дать желанную отсрочку. Всего лишь один укол шприца - и жизнь пострадавшего будет на некоторое время выключена. Врачи смогут приступить к лечению через несколько часов или дней, когда клиническая картина травмы останется такой же, что и в первые минуты после катастрофы.

Впрочем, если врачам удастся разработать упрощенные эффективные методы, чтобы вызывать искусственную химическую гибернацию организма с помощью химических средств, вероятно, можно будет лечить и многие другие болезни.

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Химические ожоги Химические ожоги глаз отмечаются в результате воздействия на ткань глаза различных химических веществ: кислот, щелочей, лекарственных препаратов, по ошибке введенных в конъюнктивальный мешок, и др.Доврачебная помощь при ожоге кислотами; открыть веки,

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

Приложение I. Морфологические и физико-химические свойства крови Л. Г. Уткин Таблица 1. Содержание гемоглобина в крови у собак (Примечание. В работе Ряжкина Г. А. дается суженная норма)Таблица 2. Количество эритроцитов в 1 мм3 крови (в млн. шт.) (Примечание. В работе Ряжкина Г. А.

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Сфинксы XX века автора Петров Рэм Викторович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Химические воздействия Не будет преувеличением исчислять историю химиотерапии тысячелетиями. С тех пор как люди осознали разницу между здоровьем и болезнью, они ищут вещества, обладающие целебными свойствами. Они ищут лекарства. Эта история прошла через большие

Из книги Распространненость жизни и уникальность разума? автора Мосевицкий Марк Исаакович

Как образовались химические элементы? Большой взрыв создал только два химических элемента – водород и гелий (и небольшие количества дейтерия и лития). Все остальные элементы, заполняющие таблицу Менделеева, появились только после возникновения звезд. В их недрах в ходе

Из книги По следам минувшего автора Яковлева Ирина Николаевна

Что такое анабиоз? Анабиозом называют состояние организма, при котором жизненные процессы (обмен веществ и др.) временно прекращены или настолько замедлены, что отсутствуют все видимые проявления жизни. Анабиоз наблюдается при резком ухудшении некоторых условий

Из книги На грани жизни автора Денков Веселин А.

4.1. Палеонтологические и физико-химические данные о времени появления на Земле клеточных форм жизни Возраст самых древних минералов на Земле 3800–3900 миллионов лет. К ним относятся уже образовавшиеся к тому времени в морях и океанах осадочные породы, а также более древние

Из книги Энергия жизни [От искры до фотосинтеза] автора Азимов Айзек

Глава XIV ВОЗМОЖНЫ ВАРИАНТЫ С концом предыдущей главы кончилось и наше путешествие в глубины прошлого. Но жизнь не стоит на месте. Наше сегодня станет завтра нашим прошлым, через 10–20 лет - историческим прошлым, а через 10–20 тысяч лет и палеонтологическим.В известном

Из книги автора

Что означают термины анабиоз, гипобиоз, диапауза, покой, гипотермия, гибернация, эстивация, летаргия, криобиология и криомедицина? В своем эволюционном развитии многие растительные и животные организмы приобрели своеобразные механизмы приспособления, чтобы иметь

Из книги автора

Анабиоз и зимний покой в мире микроорганизмов и в мире растений В природе анабиоз не является патентом только животных организмов. Он широко представлен и среди микроорганизмов из царства Prokaryotae, к которым относятся все виды бактерий и синезеленых водорослей. Анабиоз

Из книги автора

Где находят применение анабиоз и зимняя спячка - эти патенты природы? Можно ли сохранять «запасные части» для нормальной жизнедеятельности? В последние десятилетия в хирургической практике все чаще стали применять (различные виды трансплантации (пересадок) для замены

Из книги автора

Анабиоз в прикладной микробиологии, вирусологии и энтомологии Изучение анабиоза у бактерий и вирусов, как выяснилось, имеет огромное значение для теоретических и практических основ решения вопроса продолжительного сохранения свойств микроорганизмов и живых микробных

Из книги автора

Могут ли йоги впадать в анабиоз? Известно, что йогизм - одно из самых древних культурных наследий Индии - возник в IV–II вв. до н. э. Упоминания о нем встречаются в древних веддах (молитвенниках и книгах песнопений ранних индоарийцев). Все формы йоги и его учения ставят себе

Из книги автора

Глава 8. ТЕПЛО И ХИМИЧЕСКИЕ РЕАКЦИИ Способа напрямую измерить химическую энергию не существует, но тепловую энергию измерить несложно. Предположим, что некоторую реакцию проводят в замкнутой камере, запуская ее, скажем, через электрический провод. Со всех сторон камера

Испытание гибернацией January 31st, 2017

Вот оно! Кто же не читал или не наблюдал в фильмах, как людей кладут в специальную капсулу и потом они выходят оттуда через 100 лет полета к далекой планете бодренькие как огурчики. Надоело бегать по космическому кораблю, раз, и опять поспать в капсуле лет 50.

Может быть все не настолько подобно конечно, но уже сейчас американская компания разрабатывает технологию погружения человека в состояние гибернации (аналогичное зимней спячке у животных), которая поможет сократить расходы во время космических путешествий.

Вот подробности...

В 2006 году житель Японии Мицутака Учикоши вместе с друзьями отправился на пикник в горы. Когда пикник закончился, он решил прогуляться вниз по горе вместо того, чтобы спуститься на фуникулере вместе с остальными, но по дороге заблудился, поскользнулся, сломал тазобедренную кость и в конечном счете потерял сознание. Спустя 24 дня его случайно обнаружили альпинисты: температура тела Учикоши опустилась до 22°C, пульс был едва различим, а метаболизм практически остановился.

Тем не менее, несмотря на многочисленные повреждения внутренних органов и большую кровопотерю, Учикоши удалось полностью восстановиться после этого происшествия. Это первый в мире задокументированный случай гибернации у человека, и именно он натолкнул президента компании Spaceworks Джона Брэдфорда на мысль об использовании этого состояния во время космических полетов, пишетQuartz.

«Я большой фанат научно-фантастической литературы, поэтому всегда немного мечтал о том, чтобы сделать ее реальностью, - говорит Брэдфорд. - Но прежде всего, я космический инженер, работающий над реализацией космических миссий на Марс и другие места в пределах Солнечной системы. С этой точки зрения человеческая гибернация может иметь большое значение».

В настоящее время сотрудники компании фокусируют свое внимание на терапевтической гипотермии, которая уже применяется в клиниках по всему миру и помогает пациентам восстановиться после остановки сердца или травматического повреждения головного мозга. В основе этой технологии лежит снижение температуры тела до 32-34°C, и пациент, как правило, проводит в этом состоянии несколько дней.

По словам Брэдфорда, цель Spaceworks состоит в том, чтобы увеличить этот срок до нескольких месяцев. Компания уже разработала проект общей гибернационной камеры, которая включает в себя системы охлаждения и нагревания, а также роботизированные руки и систему мониторинга для того, чтобы отслеживать состояние астронавтов и заботиться о них во время спячки. Первые тесты на животных компания планирует провести в 2018 году, после чего станут возможны и первые эксперименты с участием человека.

Однако есть и скептики: Есть одна фундаментальная причина, по которой "гибернация" сроком более чем на 1 месяц вообще неосуществима для человека... вне зависимости от успешности "заморозки" и последующего оживления. если пробыть в "заморозке" дольше месяца, то после "оживления" ты гарантированно быстро умрешь.

Проблемка в том, что у человека единственная защита от радиации - постоянно обновление организма и замена поврежденных клеток. пока ты "живой" - клетки успевают обновляться, если же остановить метаболизм, то облучение не прекратится и клеточные повреждения довольно быстро достигнут фатального уровня, а после пробуждения у тебя, как минимум, будут раковые опухоли по всему телу.

Вариант с экранированием тоже не катит, т.к. внутри каждого человека и так уже дофига радиоактивных изотопов, которые непрерывно излучают и при нормальных обстоятельствах их излучение вполне безвредно.

И еще новости. Американские ученые объявили о старте очередного изоляционного эксперимента HI-SEAS, в рамках которого шесть добровольцев проведут восемь месяцев в изоляции на склонах вулкана Мауна-Лоа для имитации жизни на поверхности Марса

«Это место - самое удобное и самое очевидное для проведения подобных исследований по двум причинам. Склоны горы Мауна-Лоа сами по себе напоминают Марс, и университет Гавайев, расположенный поблизости, имеет всех нужных экспертов для проведения «экспедиции» на красную планету», - заявил Ким Бинстед (Kim Binsted) из университета Гавайских островов в Маноа (США).

Эксперимент HI-SEAS отличается от многих изоляционных исследований, в том числе российского «Марса-500» и совместных проектов НАСА и Института медико-биологических проблем РАН, тем, что участники его «экипажа» имитируют не полет к Марсу или Луне, а жизнь на их поверхности в постоянной базе. Участники проекта могут покинуть пределы базы в любой момент, правда, для этого им придется надеть скафандр.

Жизнь на базе, как рассказывает пресс-служба университета, максимально приближена к марсианской - существует 20-минутная задержка в связи с «Землей», участники экспедиции получают воду и продукты лишь один раз в несколько месяцев, и соблюдают все меры безопасности, которые могут применяться при создании базы НАСА на Марсе.

Данный проект спонсируется НАСА уже пять лет, и в его рамках было проведено уже четыре «экспедиции» на Марс, которые продолжались от нескольких месяцев до года. Последний такой эксперимент завершился в августе 2016 года, а текущий эксперимент начался в конце февраля.

В нем участвует четыре мужчины и две девушки, согласившихся провести в полной изоляции от остального мира восемь месяцев. Среди них есть как профессиональные ученые - биолог, инженер-ракетчик и специалист в исследовании космоса, так и простые добровольцы - программистка из Google, инженер из компании Боинг и писатель.

В рамках текущей экспедиции ученые планируют сделать упор на автономной жизни на Марсе и проведении научных исследований поверхности «красной планеты». Результаты этих опытов, как надеются в НАСА, помогут подготовиться к созданию реальной базы на Марсе или Луны.

Все это конечно замечательно, только по моему технических прорывов по теме двигателей так и не слышно. А лететь до того же Марса несколько лет туда и несколько лет обратно навряд ли кому то представится целесообразным.

источники

Слово «гибернация» у наших современников ассоциируется в первую очередь с компьютером. Так называется один из режимов работы компьютерной операционной системы – нечто среднее между выключением и ждущим режимом. По-английски это так и называется – Hibernation, в русскоязычной же версии Windows до недавнего времени именовалось «спящим режимом», но начиная с версии Windows Vista, для обозначения его используется то же слово – гибернация.

Чем хороша гибернация? При переходе на такой режим содержимое оперативной памяти не теряется, а записывается на жёсткий диск, после этого электропитание можно отключить: содержимое никуда не денется! Когда вы включите компьютер, не придётся долго ждать инициализации драйверов (да и при уходе в гибернацию не приходится долго ждать их закрытия, как это бывает при выключении), приложения, которые были запущены на момент ухода в спящий режим, запустятся снова, и даже несохранённые документы будут целы.

Конечно, режиму гибернации присущи и некоторые недостатки – например, она требует немалого объёма дискового пространства, и если такового не хватает, этот режим может оказаться недоступным. Но в целом – весьма удобная функция, особенно для тех, кто не любит ждать или не имеет на это времени. Только надо иметь в виду, что держать компьютер на таком режиме месяцами нельзя, из-за этого могут возникать сбои в системе, так что хотя бы раз в неделю не ограничивайтесь гибернацией, а делайте выключение.

Техника техникой, а ведь это слово пришло в компьютерный лексикон из… биологии.

В биологии гибернация иначе называется зимней спячкой (собственно, латинское слово hibernatia как раз и означает «зимовка»). Это приостановка жизненных процессов у животных при наступлении неблагоприятных условий: мороз, отсутствие пищи. Тяжелее всего пережить именно бескормицу, вот организм и «переходит на режим», когда питание не нужно (совсем как компьютеру в «спящем режиме» не так ли?) – обмен веществ замедлен до предела. Такое состояние достижимо только при полной неподвижности и снижении температуры тела. Поскольку обменные процессы с участием кислорода идут намного медленнее и не так интенсивно, как обычно, поэтому потребление его снижается, замедляется и сердцебиение животного. Проявляя активность, животное в таком состоянии и двух недель бы не протянуло, но в оцепенении оно так может пребывать не один месяц.

Когда речь заходит о зимней спячке, прежде всего, вспоминают о бурых медведях – обитателях наших лесов. Как раз у бурого медведя все процессы, связанные со спячкой, не особенно ярко выражены. Например, температура тела у мишек во время спячки снижается всего-навсего до 31 градуса (при норме 37) и при выходе из этого состояния довольно быстро повышается до нормы, так что биологи даже не считают состояние, в которое впадают медведи зимой, гибернацией в настоящем смысле.

Иное дело – грызуны и насекомоядные. Например, у ежей во время гибернации температура тела снижается до 1,8 градуса. У сурков этот показатель несколько выше – 10 градусов, но сердцебиение замедляется до 5 ударов в минуту, а дыхание – до одного вдоха в 2-3 минуты.

Наряду с гибернацией существует и другая сезонная спячка – летняя, она называется эстивацией. Эстивация присуща тем животным, для которых наиболее неблагоприятные условия наступают в самое жаркое время года – т.е. обитателям пустыни, например, африканским земляным белкам. Более того, животное может впадать в спячку и при внезапном наступлении неблагоприятных условий. Например, люди, которым доводилось держать дома сурка, замечали, что зверёк на короткое время впадает в спячку после того, как его мыли, подстригали ему когти или просто помещали в незнакомую обстановку.

Гибернация может быть и искусственной. Основоположником такого метода лечения был французский физиолог А.Лабори. Он обратил внимание на то, что в шоковом состоянии организм пытается восстановить нарушенный гомеостаз (устойчивое внутреннее равновесие), истощает силы в этой борьбе, и тогда наступает фаза декомпенсированного шока – попытки восстановить гомеостаз прекращаются, и в самых тяжёлых случаях организм погибает. Значит, надо сделать гомеостаз таким, чтобы его поддержание не требовало больших усилий, тогда организм получит возможность основные силы бросить на устранение повреждений… но ведь именно таким бывает гомеостаз при зимней спячке у животных! И вот – с помощью специальных препаратов человека погружают в состояние, напоминающее зимнюю спячку животных – при этом организму легче перенести кислородное голодание, шок и другие тяжёлые состояния.

Вот так человек учится у природы – и в области медицины, и в области компьютерных технологий!

Фантасты давно освоили эту тему — «консервация» экипажа в длительных рейсах к другим звёздам или внешним планетам Солнечной системы. А теперь и специалисты космической отрасли понемногу «готовят почву» для претворения таких фантазий в реальность.

Вариантов «консервации» предлагалось множество — от заморозки тел до разных шуток с пространством-временем.

Первое оставим пока в стороне — до сих пор непонятно, как гарантированно сохранить человека живым после такой процедуры, ведь замёрзшая вода разрывает клетки.

Различные химические «антиобледенители» — это пока из области экспериментов.

«Непонятно что», происходящее с кораблём и экипажем в результате действия каких-нибудь «антиплюсбетаионостатов» — также оставим пока фантастам.

Но вот есть ещё один способ «консервации», который куда ближе к реальности. Гибернация — глубокий-глубокий сон с многократным замедлением обмена веществ.

По замыслу сторонников такой технологии, этот сон должен быть похож на зимнюю спячку медведей. Сон длительный, однако, вовсе не приводящий к необратимым изменениям организма.

Европейское космическое агентство (European Space Agency) работает в этом направлении.

Астронавт ESA Ваббо Окелс (Wubbo Ockels) демонстрирует специальный «космический» спальный мешок (фото с сайта space.com).

По его заказу ряд европейских учёных из разных университетов занимается изучением гибернации и способов введения в такое состояние людей.

Один из таких учёных — Марко Биджиоджера (Marco Biggiogera) из итальянского университета Павии (Universita di Pavia).

Недавно он и его коллеги подобрали вещество под названием DADLE (в чём-то сходное по структуре с опиумом), которое оказывает на субклеточные процессы удивительное действие.

Хорошо медведям — их сон запрограммирован генами, но что делать с людьми? Вводить им специальный препарат и заставлять их «спать» не просто как мы спим, с изменением ритмов мозга, но спать на клеточном уровне.

Оказалось, DADLE резко замедляет копирование генетического материала и процессы считывания кода — что является ключом к синтезу белков и жизни клетки.

В результате клетка переходит в состояние глубокого сна с замедлением собственного обмена веществ.

Процесс этот обратимый и не имеет, насколько сейчас видно, побочных эффектов.

Пока итальянские биологи «плотно» работали с клеточными культурами, но недавно перешли на крыс. Результаты этих опытов должны быть готовы к концу 2004 года.

Трудности перехода от клеток к животным и к человеку — очевидны. Чем более сложный организм, тем сложнее просчитать все эффекты столь необычной технологии «суперсна».


Human Outer Planets Exploration Callisto — американская концепция корабля для полёта людей в систему Юпитера (иллюстрация с сайта space.com).

Но начало обнадёживает. А когда же человечество сможет применить эти открытия на практике?

Ещё в 2002 году NASA прорабатывало концепцию гигантского корабля Human Outer Planets Exploration (HOPE) Callisto.

Это были лишь самые общие наброски, показавшие, что, теоретически, реально отправить шестерых людей в пятилетний полёт на Каллисто, одну из лун Юпитера, включая 30 дней пребывания на её поверхности.

Такой рейс мог бы стать реальностью где-нибудь после 2045 года.

Европейские эксперты подчеркнули, что именно для такого полёта и было бы разумно использовать гибернацию. В то время как сравнительно короткий рейс к Марсу такого усложнения миссии не оправдает.

Однако представители американского аэрокосмического агентства сказали, что в настоящее время их подразделение космической медицины не занимается изучением длительного бездействия организмов.

Так или иначе, ко второй половине века подобная техника может развиться в нечто материальное. ESA мечтает о специальных спальных капсулах на борту межпланетного корабля, где автоматика поддерживала бы необходимые параметры среды и контролировала состояние спящих людей.

Кстати, такой полёт ставит особые требования к надёжности корабля и его способности автоматически реагировать на нештатные ситуации, типа пожара.

Но разве с нынешним темпом развития электроники и робототехники это будет проблемой?

Учёные неплохо изучили, что происходит в мозге человека во время нормального сна. Но что случится с ним, если он будет спать два-три года? (фото с сайта lboro.ac.uk).

Зато сколько выгоды: для глубоко спящих людей нужно меньше кислорода, воды, на всю экспедицию (включая активную часть) меньше пищи, сами помещения корабля могут быть меньше.

К гипотермическим относятся состояния, характеризующиеся понижением температуры тела ниже нормы. В основе их развития лежит расстройство механизмов терморегуляции, обеспечивающих оптимальный тепловой режим организма. Различают охлаждение организма (собственно гипотермию) и управляемую (искусственную) гипотермию, или медицинскую гибернацию.

Гипотермия

Гипотермия - типовая форма расстройства теплового обмена - возникает в результате действия на организм низкой температуры внешней среды и/или значительного снижения теплопродукции в нём.

Гипотермия характеризуется нарушением (срывом) механизмов теплорегуляции и проявляется снижением температуры тела ниже нормы.

Этиология

Причины развития охлаждения организма многообразны.

Низкая температура внешней среды (воды, воздуха, окружающих предметов и др.) - наиболее частая причина гипотермии. Важно, что развитие гипотермии возможно не только при отрицательной (ниже 0 °C), но и при положительной внешней температуре. Показано, что снижение температуры тела (в прямой кишке) до 25 °C уже опасно для жизни; до 20 °C, - как правило, необратимо; до 17–18 °C - обычно смертельно.

Показательна статистика смертности от охлаждения. Гипотермия и смерть человека при охлаждении наблюдается при температуре воздуха от +10 °C до 0 °C примерно в 18%; от 0 °C до –4 °C в 31%; от –5 °C до –12 °C в 30%; от –13 °C до –25 °C в 17%; от –26 °C до –43 °C в 4%. Видно, что максимальный показатель смертности при переохлаждении находится в интервале температуры воздуха от +10 °C до –12 °C. Следовательно, человек в условиях существования на Земле, постоянно находится в потенциальной опасности охлаждения.

Обширные параличи мышц и/или уменьшение их массы (например, при их гипотрофии или дистрофии). Это может быть вызвано травмой либо деструкцией (например, постишемической, в результате сирингомиелии или других патологических процессов) спинного мозга, повреждением нервных стволов, иннервирующих поперечно‑полосатую мускулатуру, а также некоторыми другими факторами (например, дефицитом Ca 2+ в мышцах, миорелаксантами).

Нарушение обмена веществ и/или снижение эффективности экзотермических процессов метаболизма. Такие состояния могут развиваться при надпочечниковой недостаточности, ведущей (помимо прочих изменений) к дефициту в организме катехоламинов; при выраженных гипотиреоидных состояниях; при травмах и дистрофических процессах в области центров симпатической нервной системы гипоталамуса.

Крайняя степень истощения организма.

В трёх последних случаях гипотермия развивается при условии пониженной внешней температуры.

Факторы риска охлаждения организма.

Повышенная влажность воздуха. Это значительно снижает его теплоизоляционные свойства и увеличивает тепловые потери, в основном, путём проведения и конвекции.

Высокая скорость движения воздуха. Ветер способствует быстрому охлаждению организма в связи с уменьшением теплоизоляционных свойств воздуха

Повышенная влажность одежды или её намокание. Это уменьшает её теплоизоляционные свойства.

Попадание в холодную воду. Вода примерно в 4 раза более теплоёмка и в 25 раз более теплопроводна, чем воздух. В связи с этим замерзание в воде может наблюдаться при сравнительно высокой температуре: при температуре воды +15 °C человек сохраняет жизнеспособность не более 6 ч., при +1 °C - примерно 0,5 часа. Интенсивная потеря тепла происходит в основном путём конвекции и проведения.

Длительное голодание, физическое переутомление, алкогольное опьянение, а также при различные заболеванияе, травмы и экстремальные состояния. Эти и ряд других факторов снижают резистентность организма к охлаждению.

Виды острого охлаждения

В зависимости от времени наступления смерти человека при действии холода выделяют три вида острого охлаждения, вызывающего гипотермию:

Острое , при котором человек погибает в течение первых 60 мин (при пребывании в воде при температуре от 0 °C до +10 °C или под действием влажного холодного ветра).

Подострое , при котором смерть наблюдается до истечения четвёртого часа нахождения в условиях холодного влажного воздуха и ветра.

Медленное , когда смерть наступает после четвёртого часа воздействия холодного воздуха (ветра) даже при наличии одежды или защиты тела от ветра.

Патогенез гипотермии

Развитие гипотермии - процесс стадийный. В основе её формирования лежит более или менее длительное перенапряжение и, в конце концов, срыв механизмов терморегуляции организма. В связи с этим при гипотермии различают две стадии её развития: 1) компенсации (адаптации) и 2) декомпенсации (деадаптации). Некоторые авторы выделяют финальную стадию гипотермии - замерзание.

Стадия компенсации

Стадия компенсации характеризуется активацией экстренных адаптивных реакций, направленных на уменьшение теплоотдачи и увеличение теплопродукции.

Механизм развития стадии компенсации включает:

† изменение поведения индивида, направленное на уход из условий, в которых действует низкая температура окружающей среды (например, уход из холодного помещения, использование тёплой одежды, обогревателей и т.п.).

† снижение эффективности теплоотдачи достигается благодаря уменьшению и прекращению потоотделения, сужению артериальных сосудов кожи и мышц, в связи с чем в них значительно уменьшается кровообращение.

† активацию теплопродукции за счёт увеличения кровотока во внутренних органах и повышения мышечного сократительного термогенеза.

† включение стрессорной реакции (возбуждённое состояние пострадавшего, повышение электрической активности центров терморегуляции, увеличение секреции либеринов в нейронах гипоталамуса, в аденоцитах гипофиза - АКТГ и ТТГ, в мозговом веществе надпочечников - катехоламинов, а в их коре - кортикостероидов, в щитовидной железе - тиреоидных гормонов.

Благодаря комплексу указанных изменений температура тела хотя и понижается, но ещё не выходит за рамки нижней границы нормы. Температурный гомеостаз организма сохраняется.

Указанные выше изменения существенно модифицируют функцию органов и физиологических систем организма: развивается тахикардия, возрастают АД и сердечный выброс, увеличивается частота дыханий, нарастает число эритроцитов в крови.

Эти и некоторые другие изменения создают условия для активации метаболических реакций, о чём свидетельствует снижение содержания гликогена в печени и мышцах, увеличение ГПК и ВЖК, возрастание потребления тканями кислорода.

Интенсификация метаболических процессов сочетается с повышенным выделением энергии в виде тепла и препятствует охлаждению организма.

Если причинный фактор продолжает действовать, то компенсаторные реакции могут стать недостаточными. При этом снижается температура не только покровных тканей организма, но и его внутренних органов, в том числе и мозга. Последнее ведёт к расстройствам центральных механизмов терморегуляции, дискоординации и неэффективности процессов теплопродукции - развиваются их декомпенсация.

Стадия декомпенсации

Стадия декомпенсации (деадаптация) процессов терморегуляции является результатом срыва центральных механизмов регуляции теплового обмена (рис. 6–12).

Рис. 6–12. Основные патогенные факторы гипотермии на стадии декомпенсации системы терморегуляции организма.

На стадии декомпенсации температура тела падает ниже нормального уровня (в прямой кишке она снижается до 35 °C и ниже) и продолжает снижаться далее. Температурный гомеостаз организма нарушается: организм становится пойкилотермным.

Причина развития стадии декомпенсации: нарастающее угнетение деятельности корковых и подкорковых структур головного мозга, включая центры терморегуляции. Последнее обусловливает неэффективность реакций теплопродукции и продолжающуюся потерю тепла организмом.

Патогенез

† Нарушение механизмов нейроэндокринной регуляции обмена веществ и функционирования тканей, органов и их систем.

† Дезорганизация функций тканей и органов.

† Угнетение метаболических процессов в тканях. Степень расстройств функции и обмена веществ прямо зависит от степени и длительности снижения температуры тела.

Проявления

† Расстройства кровообращения:

‡ уменьшение сердечного выброса как за счёт уменьшения силы сокращения, так и за счёт ЧСС - до 40 в минуту;

‡ снижение АД,

‡ нарастание вязкости крови.

† Нарушения микроциркуляции (вплоть до развития стаза):

‡ замедление кровотока в сосудах микроциркуляторного русла,

‡ увеличение тока крови по артериоло-венулярным шунтам,

‡ значительное снижение кровенаполнения капилляров.

† Повышение проницаемости стенок микрососудов для неорганических и органических соединений. Это является результатом нарушения кровообращения в тканях, образования и высвобождения в них БАВ, развития гипоксии и ацидоза. Увеличение проницаемости стенок сосудов приводит к потере из крови белка, главным образом альбумина (гипоальбуминемия). Жидкость выходит из сосудистого русла в ткани.

† Развитие отёка. В связи с этим ещё более повышается вязкость крови, что усугубляет расстройства микроциркуляции и способствует развитию сладжа, тромбов.

† Локальные очаги ишемии в тканях и органах являются следствием указанных изменений.

† Дискоординация и декомпенсация функций и метаболизма в тканях и органах (брадикардия, сменяющаяся эпизодами тахикардии; аритмии сердца, артериальная гипотензия, снижение сердечного выброса, уменьшение частоты до 8–10 в минуту и глубины дыхательных движений; прекращение холодовой мышечной дрожи, снижение напряжения кислорода в тканях, падение его потребления в клетках, уменьшение в печени и мышцах содержания гликогена).

† Смешанная гипоксия:

‡ циркуляторная (в результате снижения сердечного выброса, нарушения тока крови в сосудах микроциркуляторного русла),

‡ дыхательная (в связи со снижением объёма лёгочной вентиляции),

‡ кровяная (в результате сгущения крови, адгезии, агрегации и лизиса эритроцитов, нарушения диссоциации HbO 2 в тканях;

‡ тканевая (вследствие холодового подавления активности и повреждения ферментов тканевого дыхания).

† Нарастающие ацидоз, дисбаланс ионов в клетках и в межклеточной жидкости.

† Подавление метаболизма, снижение потребления тканями кислорода, нарушение энергетического обеспечения клеток.

† Формирование порочных кругов, потенцирующих развитие гипотермии и расстройств жизнедеятельности организма (рис. 6–13).

Рис. 6–13. Основные порочные круги на стадии декомпенсации системы терморегуляции при гипотермии.

Метаболический порочный круг . Снижение температуры тканей в сочетании с гипоксией тормозит протекание метаболических реакций. Известно, что уменьшение температуры тела на 10 °C снижает скорость биохимических реакций в 2–3 раза (эта закономерность описывается как температурный коэффициент вант Хоффа - Q 10). Подавление интенсивности метаболизма сопровождается уменьшением выделения свободной энергии в виде тепла. В результате температура тела ещё более снижается, что дополнительно подавляет интенсивность метаболизма и т.д.

Сосудистый порочный круг . Нарастающее снижение температуры тела при охлаждении сопровождается расширением артериальных сосудов (по нейромиопаралитическому механизму) кожи, слизистых оболочек, подкожной клетчатки. Этот феномен наблюдается при температуре тела, равной 33–30 °C. Расширение сосудов кожи и приток к ним тёплой крови от органов и тканей ускоряет процесс потери организмом тепла. В результате температура тела ещё более снижается, ещё в большей мере расширяются сосуды, теряется тепло и т.д.

Нервно мышечный порочный круг . Прогрессирующая гипотермия обусловливает снижение возбудимости нервных центров, в том числе контролирующих тонус и сокращение мышц. В результате этого выключается такой мощный механизм теплопродукции как мышечный сократительный термогенез. В результате температура тела интенсивно снижается, что ещё более подавляет нервно‑мышечную возбудимость, миогенный термогенез и т.д.

‡ В патогенез гипотермии могут включаться и другие порочные круги, потенцирующие её развитие.

† Углубление гипотермии вызывает торможение функций вначале корковых, а в последующем и подкорковых нервных центров. В связи с этим у пациентов развивается гиподинамия, апатия и сонливость, которые могут завершиться комой. В связи с этим нередко в качестве отдельного этапа гипотермии выделяют стадии гипотермического «сна» или комы.

† При выходе организма из гипотермического состояния в последующем у пострадавших нередко развиваются воспалительные процессы - пневмония, плеврит, острое респираторные заболевания, цистит и др. Указанные и другие состояния являются результатом снижения эффективности системы ИБН. Нередко выявляются признаки трофических расстройств, психозов, невротических состояний, психастении.

При нарастании действия охлаждающего фактора наступает замерзание и смерть организма.

† Непосредственные причины смерти при глубокой гипотермии: прекращение сердечной деятельности и остановка дыхания. Как первое, так и второе в большей мере являются результатом холодовой депрессии сосудодвигательного и дыхательного бульбарных центров.

† Причиной прекращения сократительной функции сердца является развитие фибрилляции (чаще) или его асистолия (реже).

† При преимущественном охлаждении области позвоночника (в условиях длительного нахождения в холодной воде или на льду) смерти нередко предшествует коллапс. Его развитие является результатом холодового угнетения спинальных сосудистых центров.

† Гибель организма при гипотермии наступает, как правило, при снижении ректальной температуры ниже 25–20 °C.

† У погибших в условиях гипотермии обнаруживают признаки венозного полнокровия сосудов внутренних органов, головного и спинного мозга; мелко‑ и крупноочаговые кровоизлияния в них; отёк лёгких; истощение запасов гликогена в печени, скелетных мышцах, миокарде.

Принципы лечения и профилактики гипотермии

Лечение гипотермии строится с учётом степени снижения температуры тела и выраженности расстройств жизнедеятельности организма.

На стадии компенсации пострадавшие нуждаются главным образом в прекращении внешнего охлаждения и согревании тела (в тёплой ванне, грелками, сухой тёплой одеждой, тёплым питьём). Температура тела и жизнедеятельность организма при этом обычно нормализуется самостоятельно, поскольку механизмы теплорегуляции сохранены.

На стадии декомпенсации гипотермии необходимо проведение интенсивной комплексной врачебной помощи. Она базируется на трех принципах: этиотропном, патогенетическом и симптоматическом.

Этиотропный принцип включает:

Меры по прекращению действия охлаждающего фактора и согревание организма. Пострадавшего немедленно переводят в тёплое помещение, переодевают и согревают. Наиболее эффективно согревание в ванне (с погружением всего тела). При этом необходимо избегать согревания головы из‑за опасности усугубления гипоксии мозга (в связи с усилением обмена веществ в нём в условиях ограниченной доставки кислорода).

Активное согревание тела прекращают при температуре в прямой кишке 33–34 °C во избежание развития гипертермического состояния. Последнее вполне вероятно, поскольку у пострадавшего ещё не восстановлена адекватная функция системы теплорегуляции организма. Согревание целесообразно проводить в условиях поверхностного наркоза, миорелаксации и ИВЛ. Это позволяет устранить защитные реакции организма, в данном случае излишние, на холод (в частности ригидность мышц, их дрожь) и снизить тем самым потребление кислорода, а также уменьшить явления тканевой гипоксии. Согревание даёт больший эффект, если - наряду с наружным - применяют способы согревания внутренних органов и тканей (через прямую кишку, желудок, лёгкие).

Патогенетический принцип включает:

Восстановление эффективного кровообращения и дыхания. С этой целью необходимо освободить дыхательные пути (от слизи, запавшего языка) и провести вспомогательную или ИВЛ воздухом либо газовыми смесями с повышенным содержанием кислорода. Если при этом не восстанавливается деятельность сердца, то выполняют его непрямой массаж, а при возможности - дефибрилляцию. При этом необходимо помнить, что дефибрилляция сердца при температуре тела ниже 29 °C может быть неэффективной.

Коррекция КЩР, баланса ионов и жидкости. С этой целью применяют сбалансированные солевые и буферные растворы (например, гидрокарбоната натрия), растворы полиглюкина и реополиглюкина.

Устранение дефицита глюкозы в организме. Это достигается путём введения её растворов разной концентрации в сочетании с инсулином, а также витаминами.

При кровопотере переливают кровь, плазму и плазмозаменители.

Симптоматическое лечение направлено на устранение изменений в организме, усугубляющих состояние пострадавшего. В связи с этим:

Применяют средства, предотвращающие отёк мозга, лёгких и других органов;

Устраняют артериальную гипотензию,

Нормализуют диурез,

Устраняют сильную головную боль;

При наличии отморожений, осложнений и сопутствующих болезней проводят их лечение.

Профилактика охлаждения организма и гипотермии включает комплекс мероприятий.

Использование сухой тёплой одежды и обуви.

Правильная организация труда и отдыха в холодное время года.

Организация обогревательных пунктов, обеспечение горячим питанием.

Медицинский контроль за участниками зимних военных действий, учений, спортивных соревнований.

Запрещение приёма алкоголя перед длительным пребыванием на холоде.

Большое значение имеют закаливание организма и акклиматизация человека к условиям окружающей среды.

Медицинская гибернация

Управляемая (искусственная) гипотермия применяется в медицине в двух разновидностях: общей и местной.

Общая управляемая гипотермия

Область применения

Выполнение операций в условиях значительного снижения или даже временного прекращения кровообращения. Это получило название операций на так называемых «сухих» органах: сердце, мозге и некоторых других.

Наиболее широко общая искусственная гибернация используется при операциях на сердце для устранения дефектов его клапанов и стенок, а также на крупных сосудах, что требует остановки кровотока.

Преимущества

Существенное возрастание устойчивости и выживаемости клеток и тканей в условиях гипоксии при сниженной температуре. Это даёт возможность отключить орган от кровоснабжения на несколько минут с последующим восстановлением его жизнедеятельности и адекватного функционирования.

Диапазон температуры

† Обычно используют гипотермию со снижением ректальной температуры до 30–28 °C. При необходимости длительных манипуляций создают более глубокую гипотермию с использованием аппарата искусственного кровообращения, миорелаксантов, ингибиторов метаболизма и других воздействий. При проведении продолжительных операций (несколько десятков минут) на «сухих» органах выполняют «глубокую» гипотермию (ниже 28 °C), применяют аппараты искусственного кровообращения и дыхания, а также специальные схемы введения ЛС и средств для наркоза.

† Наиболее часто для общего охлаждения организма применяют жидкость с температурой +2–12 °C, циркулирующую в специальных «холодовых» костюмах, одеваемых на пациентов или в «холодовых» одеялах, которыми их укрывают. Дополнительно используют также ёмкости со льдом и воздушное охлаждение кожных покровов пациента.

Медикаментозная подготовка

С целью устранения или снижения выраженности адаптивных реакций организма в ответ на снижение его температуры, а также для выключения стресс‑реакции непосредственно перед началом охлаждения пациенту дают общий наркоз, вводят нейроплегические вещества, миорелаксанты в различных комбинациях и дозах. В совокупности указанные воздействия обеспечивают значительное снижение обмена веществ в клетках, потребления ими кислорода, образования углекислоты и метаболитов, предотвращают нарушения КЩР, дисбаланса ионов и воды в тканях.

Эффекты медицинской гибернации

При гипотермии 30–28 °C (в прямой кишке)

† не наблюдается жизненно опасных изменений функции коры головного мозга и рефлекторной деятельности нервной системы;

† снижается возбудимость, проводимость и автоматизм миокарда;

† развивается синусовая брадикардия,

† уменьшаются ударный и минутный выбросы сердца,

† понижается АД,

† снижается функциональная активность и уровень метаболизма в органах и тканях.

Локальная управляемая гипотермия

Локальная управляемая гипотермия отдельных органов или тканей (головного мозга, почек, желудка, печени, предстательной железы и др.) применяется при необходимости проведения оперативных вмешательств или других лечебных манипуляций на них: коррекции кровотока, пластических процессов, обмена веществ, эффективности ЛС и др