Критерий гурвица является. Принятие решения в ситуации неопределенности: Гурвица, Сэвиджа. Решение задачи по принципу Гурвица

Критерий Гурвица основан на следующих двух предположениях: «природа» может находиться в самом невыгодном состоянии с вероятностью (1 - y) и в самом выгодном состоянии с вероятностью y , где y - коэффициент доверия. Если результат h ji - прибыль, полезность, доход и т.п., то критерий Гурвица записывается так:

W = max[ y max+(1- y)min]

Когда целевая функция представляет затраты (потери), то:

W = min[ y min+(1- y)max]

Назначение сервиса . С помощью онлайн калькулятора выбирается оптимальная стратегия по критерию Гурвица. Результаты вычислений оформляются в отчете формата Word (см. Пример оформления).

Инструкция Для расчета и оформления решения в формате Word и Excel необходимо выбрать

размерность платежной матрицы 2 3 4 5 6 7 8 9 10 x 2 3 4 5 6 7 8 9 10

Критерий Гурвица устанавливает баланс между случаями крайнего пессимизма и крайнего оптимизма путем взвешивания обоих способов поведения соответствующими весами (1 - y) и y , где 0Пример . Исходные данные:

8 4 6 20
7 7 7 7
6 12 8 10
Критерий Вальда .
По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.
a = max(min a ij)
Критерий Вальда ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
A i П 1 П 2 П 3 П 4 min(a ij)
A 1 8 4 6 20 4
A 2 7 7 7 7 7
A 3 6 12 8 10 6
Выбираем из (4; 7; 6) максимальный элемент max=7
Вывод: выбираем стратегию N=2.
Критерий Севиджа .
Критерий минимального риска Севиджа рекомендует выбирать в качестве оптимальной стратегии ту, при которой величина максимального риска минимизируется в наихудших условиях, т.е. обеспечивается:
a = min(max r ij)
Критерий Сэвиджа ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
Находим матрицу рисков.
Риск – мера несоответствия между разными возможными результатами принятия определенных стратегий. Максимальный выигрыш в j-м столбце b j = max(a ij) характеризует благоприятность состояния природы.
1. Рассчитываем 1-й столбец матрицы рисков.
r 11 = 8 - 8 = 0; r 21 = 8 - 7 = 1; r 31 = 8 - 6 = 2;
2. Рассчитываем 2-й столбец матрицы рисков.
r 12 = 12 - 4 = 8; r 22 = 12 - 7 = 5; r 32 = 12 - 12 = 0;
3. Рассчитываем 3-й столбец матрицы рисков.
r 13 = 8 - 6 = 2; r 23 = 8 - 7 = 1; r 33 = 8 - 8 = 0;
4. Рассчитываем 4-й столбец матрицы рисков.
r 14 = 20 - 20 = 0; r 24 = 20 - 7 = 13; r 34 = 20 - 10 = 10
A i П 1 П 2 П 3 П 4
A 1 0 8 2 0
A 2 1 5 1 13
A 3 2 0 0 10
Результаты вычислений оформим в виде таблицы.
A i П 1 П 2 П 3 П 4 max(a ij)
A 1 0 8 2 0 8
A 2 1 5 1 13 13
A 3 2 0 0 10 10
Выбираем из (8; 13; 10) минимальный элемент min=8

Критерий Гурвица .
Критерий Гурвица является критерием пессимизма - оптимизма. За оптимальную принимается та стратегия, для которой выполняется соотношение:
max(s i)
где s i = y min(a ij) + (1-y)max(a ij)
При y = 1 получим критерий Вальде, при y = 0 получим – оптимистический критерий (максимакс).
Критерий Гурвица учитывает возможность как наихудшего, так и наилучшего для человека поведения природы. Как выбирается y? Чем хуже последствия ошибочных решений, тем больше желание застраховаться от ошибок, тем y ближе к 1.
Рассчитываем s i .
s 1 = 0.5 4+(1-0.5) 20 = 12
s 2 = 0.5 7+(1-0.5) 7 = 7
s 3 = 0.5 6+(1-0.5) 12 = 9
A i П 1 П 2 П 3 П 4 min(a ij) max(a ij) y min(a ij) + (1-y)max(a ij)
A 1 8 4 6 20 4 20 12
A 2 7 7 7 7 7 7 7
A 3 6 12 8 10 6 12 9
Выбираем из (12; 7; 9) максимальный элемент max=12
Вывод: выбираем стратегию N=1.
Обобщенный критерий Гурвица .
Данный критерий является некоторым обобщением критериев крайнего пессимизма и крайнего оптимизма и также представляет собой частный случай обобщенного критерия Гурвица относительно выигрышей при следующем допущении:
λ 1 =1-λ, λ2=λ3=…=λ n-1 =0, λ n =λ, где 0 ≤ λ ≤ 1
Тогда показатель эффективности стратегии A i по Гурвицу есть:
G i =(1-λ)min a ij + λmax a ij
Оптимальной стратегией A i0 считается стратегия с максимальным значением показателя эффективности.
Строим вспомогательную матрицу B, полученную путем упорядочивания показателей доходностей в каждой строке.
Подход пессимиста . λ выбирается из ус

Задача отыскания критерия устойчивости для систем, описываемых дифференциальными уравнениями любого порядка, была сформулирована Максвеллом в 1868 году. Эта задача была впервые решена в алгебраической форме Раусом в 1873 году для уравнений четвертой и пятой степени и в 1877 году – полностью.

Поскольку критерий Рауса дан в форме алгоритма, определяющего последовательность математических операций, необходимых для решения задачи, использование его в практике является неудобным. Поэтому большее распространение получил алгебраический критерий устойчивости, сформулированный в 1895 году математиком А. Гурвицем. Этот критерий был найден Гурвицем по просьбе словацкого профессора Стодолы, занимавшегося исследованием процесса регулирования турбин.

Ниже критерий Гурвица приводится без доказательства.

Для характеристического уравнения (5.9) составим квадратную матрицу (таблицу) коэффициентов, содержащую п строк и п столбцов:

Эта таблица составляется следующим образом.

По диагонали от левого верхнего до правого нижнего углов выписывают­ся все коэффициенты по порядку от а 1 до а п. Каждая строка дополняется коэффициентами с возрастающими индексами слева направо так, чтобы чередовались строки с нечетными и четными индексами. В случае отсутствия данного коэффициента, а также если индекс его меньше нуля или больше п, на месте его пишется нуль.

Критерий устойчивости сводится к тому, что при а 0 > 0 должны быть больше нуля все п определителей Гурвица, получаемых из квадратной матри­цы коэффициентов.

Определители Гурвица составляются по следующему правилу (см. (5.11)):

(5.12)

(5.13)

(5.14)

Последний определитель включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель Гурвица выражается через предпоследний сле­дующим образом:

(5.15)

Однако в устойчивой системе предпоследний определитель тоже должен быть положительным. Поэтому условие положительности последнего опреде­лителя сводится к условию а п > 0, т. е. к положительности свободного члена характеристического уравнения.

Условия нахождения системы на границе устойчивости можно получить, приравнивая нулю последний определитель:
, при положительности всех остальных определителей. Как следует из (5.15), это условие распадает­ся на два условия:а п =0 и
. Первое условие соответствует границе устойчивости первого типа (апериодическая граница устойчивости) и вто­рое – границе устойчивости второго типа (колебательная граница устойчи­вости).

Раскрывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более них порядков.

1. Уравнение первого порядка

Для этого уравнения критерий Гурвица дает

т. е. коэффициенты характеристического уравнения должны быть положительными.

2. Уравнение второго порядка

Для этого уравнения критерий Гурвица требует

Последний определитель, как отмечалось выше, сводится к условию положительности последнего коэффициента: а 2 >0.

Таким образом, и для уравнения второго порядка необходимым и достаточным условием устойчивости является положительность всех коэффициентов характеристического уравнения.

3. Уравнение третьего порядка

Для этого уравнения получаем условия

Третий (последний) определитель Δ 3 дает условие а 3 > 0. Условие Δ 2 >0 , при а 0 > 0, а 1 > 0 и а 3 > 0 может выполняться только при а 2 >. 0.

Следовательно, для уравнения третьего порядка уже недостаточно положительности всех коэффициентов характеристического уравнения. Требуется еще выполнение определенного соотношения между коэффициентами:

4. Уравнение четвертого порядка

На основании критерия Гурвица можно получить, что для уравнения четвертого порядка, кроме положительности всех коэффициентов, требуется выполнение условия

5. Уравнение пятого порядка

Для уравнения пятого порядка, кроме положительности всех коэффи­циентов, должны выполняться еще два условия:

Как видно, уже для уравнения пятой степени условия устойчивости по критерию Гурвица получаются достаточно громоздкими. Поэтому использование этого критерия практически ограничивается уравнениями четвертого порядка.

Существенным недостатком крите­рия Гурвица является также то, что для уравнений высоких порядков в лучшем случае можно получить ответ о том, устойчива или неустойчива си­стема автоматического регулирования. При этом в случае неустойчивой системы критерий не дает ответа на то, каким образом надо изменить параметры системы, чтобы сделать ее устойчивой. Это обстоятельство привело к поискам других критериев, которые были бы бо­лее удобными в инженерной практике.

Для иллюстрации применения кри­терия Гурвица рассмотрим пример на определение устойчивости дистанционной следящей системы. Принципи­альная и структурная схемы изображены на рис. 5.4. В качестве чувстви­тельного элемента использованы два сельсина (СД и СП), включенные по трансформаторной схеме. Передаточная функция сельсинов равна коэффи­циенту передачи схемы:

где
ошибка, равная разности углов поворота командной и испол­нительной осей.

Передаточная функция усилителя:

где k 2 – коэффициент усиления и Т у – постоянная времени усилителя.

Передаточная функция двигателя (Д):

где
коэффициент передачи двигателя но скорости, аT M – электромеханическая постоянная времени двигателя совместно с оконечным каска­дом усилителя.

Передаточная функция редуктора (Р) равна его коэффициенту передачи, определяемому передаточным отношением:

Так как цепь регулирования состоит из включенных последовательно звеньев, то передаточная функция разомкнутой цепи будет равна произведению передаточных функций отдельных звеньев:

где
общий коэффициент усиления разомкнутой цепи.

Характеристическое уравнение:

После подстановки
получаем

В данном случае характеристическое уравнение имеет третий порядок. Нетрудно видеть, что условие положительности всех коэффициентов выпол­няется всегда, если выполнено условие К >0, что будет при правильном согласовании направления вращения двигателя со знаком рассогласования.

Дополнительное условие
, накладываемое на коэффициенты характеристического уравнения, сводится при подстановке значений коэффициентов ( и
) к неравенству

которое и является условием устойчивости рассматриваемой системы.

Из этого неравенства, в частности, можно заметить, что увеличение каждой постоянной времени сказывается отрицательно на устойчивости системы, так как при этом снижается предельное значение общего коэффи­циента усиления К, при котором система еще остается устойчивой.

Критерий Гурвица.

Линейная система, характеристический полином которой равен

где a 0 >0, устойчива, если положительны n главных определителей матрицы Гурвица:

(5.8)

Порядок составления матрицы Гурвица следующий. На главной диагонали записываются все коэффициенты, начиная с первого. Далее заполняются строки: четными коэффициентами по порядку, если на главной диагонали стоит четный коэффициент, и нечетными, если на главной диагонали стоит нечетный коэффициент. Если какой-либо коэффициент отсутствует, то вместо него заносится нуль.

Для оценки устойчивости системы необходимо вычислить определители Гурвица D i (i = 1, 2, ... , n), которые получают из матрицы (5.8) путем отчеркивания равного числа строк и столбцов в левом верхнем углу матрицы.

Система устойчива, если D i > 0 для всех i = 1, 2, ... , n.

Последний определитель Гурвица, как видно из приведенной выше матрицы, равен

D n = a n ´ D n -1 .

Поэтому его положительность сводится при D n -1 >0 к условию a n >0,

Для систем первого и второго порядка критерий Гурвица сводится просто к положительности коэффициентов a i .

Если определитель D n =0, то система находится на границе устойчивости. Возможны два случая: апериодическая граница устойчивости, если свободный член характеристического уравнения равен нулю, что соответствует нейтрально устойчивой системе; колебательная граница устойчивости, если определитель D n -1 =0. Из условия D n -1 =0 можно определить параметры, при которых система находится на границе устойчивости.

Пример. Передаточная функция разомкнутой системы задана в виде: . Исследовать устойчивость системы.

Решение. Характеристическое уравнение замкнутой системы

D(p)=0, где .

Откуда следует

Раскрыв скобки, получим

T 1 T 2 p 3 + (T 1 + T 2)p 2 + p + k = 0.

Тогда имеем: a 0 = T 1 T 2 ; a 1 = (T 1 + T 2); a 2 = 1; a 3 = k.

Коэффициенты характеристического уравнения положительны.

Составляем матрицу Гурвица

и найдем определители этой матрицы. Для устойчивости системы все они должны быть положительными:

D 1 = a 1 , откуда (T 1 + T 2) > 0;

D 2 = a 1 ´a 2 - a 0 ´a 3 , откуда (T 1 + T 2) - kT 1 T 2 > 0;

D 3 = a 1 ´a 2 ´a 3 - a 0 ´a 3 2 = a 3 (a 1 ´a 2 - a 0 ´a 3), откуда a 3 >0 , то есть k > 0.

Условие устойчивости по критерию Гурвица получает вид

(T 1 + T 2) > kT 1 T 2 или k < ( + ).

Границы устойчивости:

1) a n = 0, k = 0;

2) D n -1 = 0, k гр = ( + );

3) a 0 = 0, T 1 T 2 = 0.

Эти три границы устойчивости можно изобразить графически в пространстве параметров k, T 1 , T 2 и найти области устойчивости системы.

Найдем сначала область устойчивости системы по одному параметру k (общий коэффициент передачи разомкнутой системы). Пространство параметров здесь одна прямая линия, а границы устойчивости - точки на ней: k = 0 и k = k гр (рис.5.6). Область устойчивости лежит между этими точками.

Рис. 5.6. Область устойчивости по одному параметру

Те же границы устойчивости системы можно построить на плоскости двух параметров, например: k и T 1 (рис.5.7). Первая граница k = 0 лежит на оси T 1 . Вторая граница = k - имеет вид гиперболы с асимптотами k = 0 и k = . Третья граница T 1 = 0 совпадает с осью k. Штриховка границ сделана в сторону области устойчивости.

Критерии устойчивости

Определение устойчивости АСУ по корням характеристического уравнения сопряжено с большими трудностями, связанными с решением дифференциального уравнения и большим объемом вычислений. Поэтому в практике ТАУ для определения устойчивости чаще используют критерии устойчивости.

Критерием устойчивости называется совокупность правил, методов или алгоритмов, которые позволяют судить об устойчивости АСУ без решения характеристического уравнения, используя другие признаки. Все критерии можно разделить на две группы: алгебраические критерии устойчивости и частотные критерии устойчивости. К алгебраическим критериям устойчивости относятся:

1) критерий устойчивости Вишнеградского;

2) критерий устойчивости Гурвица;

3) критерий устойчивости Рауса.

К частотным критериям устойчивости относятся:

4) частотный критерий устойчивости Найквиста;

5) частотный критерий устойчивости Михайлова.

Критерий устойчивости Гурвица можно сформулировать в форме, предложенной автором:

Если система описывается линейным дифференциальным уравнением, характеристическое уравнение которого имеет вид:

то для того, чтобы она была устойчива, т.е. чтобы все действительные корни и действительные части комплексных корней характеристического уравнения были бы отрицательны, необходимо и достаточно, чтобы все коэффициенты уравнения имели бы один и тот же знак, а диагональный детерминант порядка п-1 , составленный из коэффициентов уравнения, и все его диагональные миноры были бы положительными.

Диагональный детерминант составляется следующим образом: по диагонали определителя выписывают коэффициенты характеристического уравнения, начиная с a n -1 по а 1 . Таким образом, получается матрица, содержащая n-1 строку и n-1 столбец. Столбцы заполняют следующим образом: вверх выписывают коэффициенты с убывающими индексами, а вниз – с возрастающими. При достижении нулевого или n -го индекса далее ставят нули.

(8.6)

Таким образом, получается квадратная матрица размером (n-1 )* (n-1 ), на главной диагонали которой расположены коэффициенты от a n -1 по a 1 .

Каждый диагональный минор получают из предыдущего минора путем вычеркивания последней строки и последнего столбца.

(8.7)

(8.8)

(8.9)

D 1 =a n -1 (8.10)

Для решения вопроса об устойчивости АСУ выполняется анализ матрицы по следующим правилам:

1) если определители матрицы и всех диагональных миноров положительны, то АСУ устойчива;

2) если определитель или хотя бы один минор равен нулю, то АСУ находится на границе устойчивости;

3) если определитель или хотя бы один минор отрицательны, то АСУ неустойчива.



Рассмотрим конкретные примеры исследования систем на устойчивость с помощью критерия Гурвица.

Пример №1. АСУ включает статический объект второго порядка с передаточной функцией и интегральный регулятор с передаточной функцией . Определить при каком значении коэффициента передачи регулятора система будет устойчивой.

Запишем передаточную функцию замкнутой системы, при этом неважно по какому каналу будет записана передаточная функция, так как нас будет интересовать только знаменатель передаточной функции.

(811)

Знаменатель передаточной функции, приравненный к нулю, является характеристическим уравнением, т.е.

(8.12)

Подставим в уравнение (8.12) значения передаточных функций:

(8.13)

Приводя уравнение (8.13) к общему знаменателю и приравнивая числитель к нулю, получим характеристическое уравнение для системы

Составим главный детерминант, который для данного случая имеет второй порядок:

(8,15)

Из последнего равенства получим

(8.16)

В уравнении (8.16) слева записан параметр настройки регулятора, а справа параметры объекта. Чтобы система была более устойчивой, необходимо иметь как можно меньшее значение коэффициента передачи регулятора. Но в этом случае регулятор будет медленно воздействовать на объект. Поэтому приходится принимать компромиссное решение: чтобы система была устойчивой и регулятор достаточно быстро воздействовал на объект.

Если в уравнении (8.16) поставить знак равенства, т.е. , то система окажется на границе устойчивости. Если , то система будет неустойчивой. Поскольку параметры объекта изменяются довольно медленно, то воздействовать на характер переходного процесса можно, изменяя параметры регулятора.

Коэффициент передачи регулятора, при котором система оказывается на границе устойчивости, называется критическим.

Условие (8.17) можно записать и так

(8.18)

Уравнение (8.18) перепишем в форме

Уравнение (8.19) является уравнением гиперболы Вышнеградского, который сформулировал критерий устойчивости для систем, описываемых уравнениями не выше третьего порядка.

При переходе от уравнения (8.18) к уравнению (8.19) необходимо соблюдать следующие правила:

1) параметры X и Y должны быть безразмерными;

2) параметр X должен быть пропорционален коэффициенту передачи регулятора.

(8.20)

Построим гиперболу Вышнеградского в полученных координатах (рис. 8.4).

Рисунок 8.4 – Гипербола Вышнеградского для систем третьего порядка

Пример №2. Рассмотрим задачу, сформулированную в примере №1, но для случая, когда объект имеет передаточную функцию вида

Приравняв в уравнении (8.14) Т 2 к нулю, получим характеристическое уравнение

(8.22)

Составим главный детерминант, который для данного случая имеет первый порядок:

Получено условие, которое выполняется при любых параметрах системы.

Системы, которые при определенных значениях своих параметров могут быть устойчивыми, называются структурно-устойчивыми.

Пример №3. АСУ включает астатический объект второго порядка с передаточной функцией и интегральный регулятор с передаточной функцией . Определить, при каком значении коэффициента передачи регулятора система будет устойчивой.

Используя уравнение (8.13) и подставляя в него значения передаточных функций, получим

(8.23)

(8.24)

Перепишем уравнение (8.24) следующим образом:

Тогда главный детерминант примет вид:

В данном случае главный детерминант отрицательный, т.е. система неустойчивая, при этом она неустойчивая при любых своих параметрах. О таких системах говорят, что она структурно-неустойчивая.

Из последнего примера можно сделать вывод: что интегральный регулятор нельзя устанавливать на астатическом объекте, так как в любом случае мы получим неустойчивую систему.

Несмотря на простоту применения критерия Гурвица, он обладает рядом недостатков:

1) необходимо рассматривать передаточную функцию замкнутой системы, которая получается достаточно сложной;

2) с помощью критерия можно анализировать системы, у которых в знаменателе передаточной функции стоит рациональный многочлен.

Действительно, если передаточная функция объекта , а регулятора , то характеристическое уравнение имеет вид:

С помощью критерия устойчивости Гурвица эту систему исследовать нельзя. В этом случае нужны другие критерии.

Критерий основан на построении определителя, составленного из коэффициентов, входящих в характеристическое уравнение системы.

Запишем характеристическое уравнение для системы 6-го порядка в виде

Аналогично можно записать уравнение системы любой степени, если порядок системы обозначить n . В нашем случае n =6.Уравнение записывается таким образом, чтобы коэффициент при высшей производной (а 6) был положительным, т.е. а 6 > 0.

Порядок построения определителя Гурвица.

1. По главной диагонали записываются все коэффициенты от до а 0 включительно (=5).

2. Вверх по диагонали записываются коэффициенты уравнения в порядке убывания индексов, а вниз от диагонали – в порядке возрастания индексов.

3. На месте коэффициентов, не входящих в характеристическое уравнение, ставят нули.

4. Определители меньших порядков получают вычеркиванием последнего столбца и последней строки.

5. Определитель высшего порядка D n =a 0 D n -1 (D 6 =а 0 D 5).

Условие устойчивости по Гурвицу

Система автоматического управления будет устойчивой, если все определители, составленные из коэффициентов характеристического уравнения системы, от D n (D 6) до D 1 будут положительными, при этом а n (а 6) должно быть больше нуля.

Построим определитель Гурвица для системы шестого порядка.

Система устойчива, если а 0 >0; D 5 >0; D 4 >0; D 3 >0; D 2 >0; D 1 =а 5 >0.

Если хотя бы один из определителей, называемых определителями Гурвица, отрицателен, система будет неустойчива.

Если главный определитель системы D п =0, а все остальные определители положительны, то система находится на границе устойчивости.

Рассмотрим частные случаи критерия Гурвица для систем 1, 2, 3-го порядков. Раскрывая определители, фигурирующие в общей формулировке критерия, можно получить следующие условия.

1. Для уравнений первого порядка

условие устойчивости

а 1 > 0 и D 1 = а 0 > 0,

т.е. необходимым и достаточным условием устойчивости является положительность коэффициентов уравнения (<0).

2. Для уравнений второго порядка

,

условие устойчивости

а 2 > 0, D 1 = а 1 > 0; D 2 = а 0 а 1 > 0.

Таким образом, и для системы второго порядка положительность коэффициентов является необходимым и достаточным условием устойчивости.

3. Для уравнений третьего порядка

условие устойчивости

а 3 > 0, D 1 = а 2 > 0; D 2 = а 1 а 2 – а 0 а 3 > 0; D 3 = а 0 D 2 > 0.

Последнее неравенство Δ 3 > 0 эквивалентно неравенству D 2 > 0. Следовательно, для системы третьего порядка кроме положительности всех коэффициентов уравнения требуется, чтобы D 2 > 0.

Критерий Гурвица применяют для анализа устойчивости систем не выше пятого порядка. При n > 5 вычисление определителей становится громоздким.