Доверительный интервал для оценки дисперсии нормального распределения. Доверительный интервал для дисперсии при известном среднем. Построение доверительного интервала

В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную выборочную статистику, которая используется для оценки параметра генеральной совокупности. Например, выборочное среднее - это точечная оценка математического ожидания генеральной совокупности, а выборочная дисперсия S 2 - точечная оценка дисперсии генеральной совокупности σ 2 . было показано, что выборочное среднее является несмещенной оценкой математического ожидания генеральной совокупности. Выборочное среднее называется несмещенным, поскольку среднее значение всех выборочных средних (при одном и том же объеме выборки n ) равно математическому ожиданию генеральной совокупности.

Для того чтобы выборочная дисперсия S 2 стала несмещенной оценкой дисперсии генеральной совокупности σ 2 , знаменатель выборочной дисперсии следует положить равным n – 1 , а не n . Иначе говоря, дисперсия генеральной совокупности является средним значением всевозможных выборочных дисперсий.

При оценке параметров генеральной совокупности следует иметь в виду, что выборочные статистики, такие как , зависят от конкретных выборок. Чтобы учесть этот факт, для получения интервальной оценки математического ожидания генеральной совокупности анализируют распределение выборочных средних (подробнее см. ). Построенный интервал характеризуется определенным доверительным уровнем, который представляет собой вероятность того, что истинный параметр генеральной совокупности оценен правильно. Аналогичные доверительные интервалы можно применять для оценки доли признака р и основной распределенной массы генеральной совокупности.

Скачать заметку в формате или , примеры в формате

Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении

Построение доверительного интервала для доли признака в генеральной совокупности

В этом разделе понятие доверительного интервала распространяется на категорийные данные. Это позволяет оценить долю признака в генеральной совокупности р с помощью выборочной доли р S = Х/ n . Как указывалось , если величины n р и n (1 – р) превышают число 5, биномиальное распределение можно аппроксимировать нормальным. Следовательно, для оценки доли признака в генеральной совокупности р можно построить интервал, доверительный уровень которого равен (1 – α)х100% .


где p S - выборочная доля признака, равная Х/ n , т.е. количеству успехов, деленному на объем выборки, р - доля признака в генеральной совокупности, Z - критическое значение стандартизованного нормального распределения, n - объем выборки.

Пример 3. Предположим, что из информационной системы извлечена выборка, состоящая из 100 накладных, заполненных в течение последнего месяца. Допустим, что 10 из этих накладных составлены с ошибками. Таким образом, р = 10/100 = 0,1. Доверительному уровню 95% соответствует критическое значение Z = 1,96.

Таким образом, вероятность того, что от 4,12% до 15,88% накладных содержат ошибки, равна 95%.

Для заданного объема выборки доверительный интервал, содержащий долю признака в генеральной совокупности, кажется более широким, чем для непрерывной случайной величины. Это объясняется тем, что измерения непрерывной случайной величины содержат больше информации, чем измерения категорийных данных. Иначе говоря, категорийные данные, принимающие лишь два значения, содержат недостаточно информации для оценки параметров их распределения.

В ычисление оценок, извлеченных из конечной генеральной совокупности

Оценка математического ожидания. Поправочный коэффициент для конечной генеральной совокупности (fpc ) использовался для уменьшения стандартной ошибки в раз. При вычислении доверительных интервалов для оценок параметров генеральной совокупности поправочный коэффициент применяется в ситуациях, когда выборки извлекаются без возвращения. Таким образом, доверительный интервал для математического ожидания, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Пример 4. Чтобы проиллюстрировать применение поправочного коэффициента для конечной генеральной совокупности, вернемся к задаче о вычислении доверительного интервала для средней суммы накладных, рассмотренной выше в примере 3. Предположим, что за месяц в компании выписываются 5000 накладных, причем =110,27долл., S = 28,95 долл., N = 5000, n = 100, α = 0,05, t 99 = 1,9842. По формуле (6) получаем:

Оценка доли признака. При выборе без возвращения доверительный интервал для доли признака, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Доверительные интервалы и этические проблемы

При выборочном исследовании генеральной совокупности и формулировании статистических выводов часто возникают этические проблемы. Основная из них - как согласуются доверительные интервалы и точечные оценки выборочных статистик. Публикация точечных оценок без указания соответствующих доверительных интервалов (как правило, имеющих 95%-ный доверительный уровень) и объема выборки, на основе которых они получены, может породить недоразумения. Это может создать у пользователя впечатление, что точечная оценка - именно то, что ему необходимо, чтобы предсказать свойства всей генеральной совокупности. Таким образом, необходимо понимать, что в любых исследованиях во главу угла должны быть поставлены не точечные, а интервальные оценки. Кроме того, особое внимание следует уделять правильному выбору объемов выборки.

Чаще всего объектами статистических манипуляций становятся результаты социологических опросов населения по тем или иным политическим проблемам. При этом результаты опроса выносят на первые страницы газет, а ошибку выборочного исследования и методологию статистического анализа печатают где-нибудь в середине. Чтобы доказать обоснованность полученных точечных оценок, необходимо указывать объем выборки, на основе которой они получены, границы доверительного интервала и его уровень значимости.

Следующая заметка

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 448–462

Центральная предельная теорема утверждает, что при достаточно большом объеме выборок выборочное распределение средних можно аппроксимировать нормальным распределением. Это свойство не зависит от вида распределения генеральной совокупности.

Построим доверительный интервал для оценки дисперсии случайной величины, распределенной по нормальному закону, в MS EXCEL .

Построение доверительного интервала для оценки приведено в статье . Процедура построения доверительного интервала для оценки имеет много общего с процедурой для оценки среднего , поэтому в этой статье она изложена менее подробно, чем в указанной статье.

Формулировка задачи. Предположим, что из генеральной совокупности имеющей с неизвестным средним значением μ и неизвестной дисперсией σ 2 взята выборка размера n. Необходимо на основании этой выборки оценить дисперсию распределения и построить доверительный интервал .

Примечание : Построение относительно нечувствительно к отклонению генеральной совокупности от . А вот при построении доверительного интервала для оценки требование нормальности является строгим.

СОВЕТ : Для построения Доверительного интервала нам потребуется знание следующих понятий:

В качестве точечной оценкой дисперсии распределения, из которого взята выборка , используют Дисперсию выборки s 2 .

Также, перед процедурой проверки гипотезы , исследователь устанавливает требуемый – это допустимая для данной задачи ошибка первого рода , т.е. вероятность отклонить нулевую гипотезу , когда она верна (уровень значимости обозначают буквой α (альфа) и чаще всего выбирают равным 0,1; 0,05 или 0,01)

В статье про ХИ2-распределение показано, что y=(n-1)s 2 /σ 2 , имеет ХИ2-распределение с n-1 степенью свободы.

Воспользуемся этим свойством и построим двухсторонний доверительный интервал для оценки дисперсии .

Построение доверительного интервала для дисперсии нормально распределенной генеральной совокупности основывается на том, что случайная величина:

имеет c 2 -распределение Пирсона c n=n –1 степенями свободы. Зададим доверительную вероятность g и определим числа и из условия

Числа и , удовлетворяющие этому условию, можно выбрать бесчисленным числом способов. Один из способов состоит в следующем

и .

Значения чисел и определяются из таблиц для распределения Пирсона. После этого образуем неравенство

В результате получаем следующую интервальную оценку дисперсии генеральной совокупности:

. (3.25)

Иногда это выражение записывают в виде

, (3.26)

, (3.27)

где для коэффициентов и составляют специальные таблицы.

Пример 3.10. На фабрике работает автоматическая линия по фасовке растворимого кофе в жестяные 100-граммовые банки. Если средняя масса наполняемых банок отличается от точной, то линии налаживается для подгонки средней массы в рабочем режиме. Если дисперсия массы превышает заданное значение, то линия должна быть остановлена на ремонт и переналадку. Время от времени производится отбор банок с кофе для проверки средней массы и ее колеблемости. Предположим, что с линии в случайном порядке производится отбор банок с кофе и оценка дисперсии s 2 =18,540. Постройте 95%-й доверительный интервал для генеральной дисперсии s 2 .

Решение. Предполагая, что генеральная совокупность имеет нормальное распределение, воспользуемся формулой (3.26). По условию задачи уровень значимости a=0,05 и a/2=0,025. По таблицам для c 2 -распределение Пирсона с n=n –1=29 степенями свободы находим

и .

Тогда доверительный интервал для s 2 можно записать в виде

,

.

Для средне квадратичного отклонения ответ будет иметь вид

. â

Проверка статистических гипотез

Основные понятия

Большинство эконометрических моделей требует многократного улучшения и уточнения. Для этого необходимо проведение соответствующих расчетов, связанных с установлением выполнимости или невыполнимости тех или иных предпосылок, анализом качества найденных оценок, достоверностью полученных выводов. Поэтому знание основных принципов проверки гипотез является обязательным в эконометрике.



Во многих случаях необходимо знать закон распределения генеральной совокупности. Если закон распределения неизвестен, но есть основания предположить, что он имеет определенный вид, то выдвигают гипотезу: генеральная совокупность распределена по этому закону. Например, можно выдвинуть предположение, что доход населения, ежедневное количество покупателей в магазине, размер выпускаемых деталей имеют нормальный закон распределения.

Возможен случай, когда закон распределения известен, а его параметры нет. Если есть основания предположить, что неизвестный параметр q равен ожидаемому числу q 0 , то выдвигают гипотезу: q=q 0 . Например, можно выдвинуть предположение о величине среднего дохода населения, среднего ожидаемого дохода по акциям, о разбросе в доходах и т.д.

Под статистической гипотезой H понимают любое предположение о генеральной совокупности (случайной величине), проверяемое по выборке. Это может быть предположение о виде распределения генеральной совокупности, о равенстве двух выборочных дисперсий, о независимости выборок, об однородности выборок, т.е. что закон распределения не меняется от выборки к выборке и др.

Гипотеза называется простой , если она однозначно определяет какое-либо распределение или какой-либо параметр; в противном случае гипотеза называется сложной . Например, простой гипотезой является предположение о том, что случайная величина X распределена по стандартному нормальному закону N (0;1); если же высказывается предположение, что случайная величина X имеет нормальной распределение N (m ;1), где a £m £b , то это сложная гипотеза.

Проверяемая гипотеза называется основной или нулевой гипотезой и обозначается символом H 0 . Наряду с основной гипотезой рассматривают и противоречащую ей гипотезу, которую обычно называют конкурирующей или альтернативной гипотезой и обозначают символом H 1 . Если основная гипотеза будет отвергнута, то имеет место альтернативная гипотеза. Например, если проверяется гипотеза о равенства параметра q некоторому заданному значению q 0 , т.е. H 0:q=q 0 , то в качестве альтернативной гипотезы можно рассмотреть одну из следующих гипотез: H 1:q>q 0 , H 2:qH 3:q¹q 0 , H 4:q=q 1 . Выбор альтернативной гипотезы определяется конкретной формулировкой задачи.

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Поскольку проверка осуществляется статистическими методами, то в связи с этим с определенной долей вероятности может быть принято неправильное решение. Здесь могут быть допущены ошибки двух видов. Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Вероятность ошибки первого рода обозначают буквой a, т.е.

Ошибка второго рода состоит в том, что будет принята неправильная гипотеза. Вероятность ошибки второго рода обозначают буквой b, т.е.

Последствия указанных ошибок неравнозначны. Первая приводит к более осторожному, консервативному решению, вторая – к неоправданному риску. Что лучше или хуже – зависит от конкретной постановки задачи и содержания нулевой гипотезы. Например, если H 0 состоит в признании продукции предприятия качественной и допущена ошибка первого рода, то будет забракована годная продукция. Допустив ошибку второго рода, мы отправим потребителю брак. Очевидно, последствия этой ошибки более серьезны с точки зрения имиджа фирмы и ее долгосрочных перспектив.

Исключить ошибки первого и второго рода невозможно в силу ограниченности выборки. Поэтому стремятся минимизировать потери от этих ошибок. Отметим, что одновременное уменьшение вероятностей данных ошибок невозможно, т.к. задачи их уменьшения являются конкурирующими. И снижение вероятности допустить одну из них влечет за собой увеличение вероятности допустить другую. В большинстве случаев единственный способ уменьшения обеих вероятностей состоит в увеличении объема выборки.

Правило, в соответствие с которым принимается или отклоняется основная гипотеза, называется статистическим критерием . Для этого подбирается такая случайная величина K, распределение которой точно или приближенно, известно и которая служит мерой расхождения между опытными и гипотетическими значениями.

Для проверки гипотезы по данным выборки вычисляют выборочное (или наблюдаемое ) значение критерия K набл . Затем, в соответствии с распределением выбранного критерия, строится критическая область K крит . Это такая совокупность значений критерия, при которых нулевую гипотезу отвергают. Оставшуюся часть возможных значений называют областью принятия гипотезы . Если ориентироваться на критическую область, то можно совершить ошибку
1-го рода, вероятность которой задана заранее и равна a, называемой уровнем значимости гипотезы. Отсюда вытекает следующее требование к критической области K крит :

.



Уровень значимости a определяет "размер" критической области K крит . Однако ее положение на множестве значений критерия зависит от вида альтернативной гипотезы. Например, если проверяется нулевая гипотеза H 0:q=q 0 , а альтернативная гипотеза имеет вид H 1:q>q 0 , то критическая область будет состоять из интервала (K 2 , +¥), где точка K 2 определяется из условия P (K>K 2)=a (правосторонняя критическая область H 2:qP (Kлевосторонняя критическая область ). Если альтернативная гипотеза имеет вид H 3:q¹q 0 , то критическая область будет состоять из двух интервалов (–¥;K 1) и (K 2 , +¥), где точки K 1 и K 2 определяются из условий: P (K>K 2)=a/2 и P (Kдвухсторонняя критическая область ).

Основной принцип проверки статистических гипотез можно сформулировать следующим образом. Если K набл попадает в критическую область, то гипотеза H 0 отвергается и принимается гипотеза H 1 . Однако поступая таким образом, следует понимать, что здесь можно допустить ошибку 1-го рода с вероятностью a. Если K набл попадает в область принятия гипотезы – то нет оснований, чтобы отвергать нулевую гипотезу H 0 . Но это вовсе не означает, что H 0 является единственно подходящей гипотезой: просто расхождения между выборочными данными и гипотезой H 0 невелико; однако таким же свойством могут обладать и другие гипотезы.

Мощностью критерия называется вероятность того, что нулевая гипотеза будет отвергнута, если верна альтернативная гипотеза; т.е. мощность критерия равна 1–b, где b – вероятность совершить ошибку 2-го рода. Пусть для проверки гипотезы принят определенный уровень значимости a и выборка имеет фиксированный объем. Поскольку в выборе критической области есть определенный произвол, то ее целесообразно строить так, чтобы мощность критерия была максимальной или чтобы вероятность ошибки 2-го рода была минимальной.

Критерии, используемые для проверки гипотез о параметрах распределения, называются критериями значимости . В частности, построение критической области аналогично построению доверительного интервала. Критерии, используемые для проверки согласия между выборочным распределением и гипотетическим теоретическим распределением, называются критериями согласия .