Особенности поэзии ахматовой и цветаевой. Феномен женской поэзии серебряного века. А. Ахматова и М. Цветаева. Два поэта — две женщины — две трагедии

по проектированию и конструированию полупроводниковых приборов

1. Тема: Расчет выпрямительного диффузионного диода.

2. Срок представления курсового проекта к защите:

3. Исходные данные для проектирования:

3.1 Повторяющееся импульсное обратное напряжение: U RRM = 2000 B.

3.2 Максимально допустимый прямой ток: I FAV = 350 A.

3.3 Обратный допустимый ток: I RRM ≤ 3 мА.

3.4 Прямое падение напряжения: U FM ≤ 1,5 В.

4.1 Расчет удельного сопротивления исходного кристалла.

4.2 Расчет геометрических размеров слоев выпрямительного элемента.

4.3 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода.

4.4 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов.

5. Перечень графического материала.

5.1Вольт амперная характеристика диода единичной площади.

5.2 Графики зависимости выделяемой и отводимой мощности от диаметра выпрямительного элемента.

5.3 Структура выпрямительного элемента.


РЕФЕРАТ

Пояснительная записка содержит 32 страницы печатного текста, 2 рисунка, 3 таблицы, 3 приложения, при написании использовалось 3 источника литературы.

выпрямительный элемент, экспоненциальная модель, диффузионный профиль, удельное сопротивление, напряжение пробоя, область пространственного заряда, прямой ток, диод.

Объектом разработки является выпрямительный диффузионный диод.

Цель работы - проектирование выпрямительного диффузионного диода.

Методы разработки - аналитический расчет.

Полученные результаты: по заданным электрическим параметрам определены технологические параметры изготовления выпрямительного элемента, разработана структура диода.

Основные конструкционные и эксплуатационные характеристики: Повторяющееся импульсное обратное напряжение U RRM = 2000 B, максимально допустимый прямой ток I FAV = 350 A, обратный допустимый ток I RRM ≤ 70 мА, прямое падение напряжения U FM ≤ 1,5 В. Удельное сопротивление исходного кристалла r = 70 Ом×см, толщина структуры W = 270 мкм, глубина залегания p - n-перехода x j = 55 мкм, параметры диффузии Dt = 2,17 ×10 -6 см -2 , диаметр выпрямительного элемента d В = 24 мм. Максимальная температура корпуса T C = 140°C.

Область применения:разработанный диод может применяться в любой силовой аппаратуре, где необходимо его использование и соблюдаются условия эксплуатации.


Введение

1. Теоретическая часть

1.1 Выбор материала диода и типа проводимости исходного кристалла

1.2 Определение удельного сопротивления исходного кристалла

1.3 Расчет геометрических размеров слоев выпрямительного элемента

1.4 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода

1.5 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов

2. Расчетная часть

2.1 Расчет удельного сопротивления исходного кристалла

2.2 Расчет геометрических размеров слоев выпрямительного элемента

2.3 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода

2.4 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов

Заключение

Список использованных источников

Приложение А

Приложение Б

Приложение В


ВВЕДЕНИЕ

Целью данного курсового проекта является определение основных электрических, технологических и эксплуатационных параметров выпрямительного диффузионного диода на основании заданной структуры (характера распределения примеси) и электрических характеристик.

Проектирование полупроводниковых приборов является сложной задачей, требующей фундаментальных знаний в области физики полупроводников и полупроводниковых приборов, полупроводниковой технологии и т. д. Физические процессы в полупроводниковых приборах в большинстве случаев описываются системой нелинейных дифференциальных уравнений в частных производных, не имеющих аналитических решений. Точный расчет в них возможен лишь численными методами. На этапе обучения более целесообразно приобретение навыков проектирование на основе аналитических формул и выражений для закрепления навыков расчета полупроводниковых приборов.

Не смотря на то, что при расчете применялись аналитические формулы, которые применимы только в некотором приближении, все же благодаря приобретенным навыкам, для каждого конкретного случая были подобраны те соотношения, которые дают наименьшую погрешность расчета. Вследствие чего был разработан диод, который легко изготовить в стандартном технологическом цикле, причем все электрические и эксплуатационные характеристики будут соответствовать заданным.

Экономический расчет проекта не проводился.

Новизны в работе нет, так как проектирование проводилось по материалам научной литературы.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Выбор материала диода и типа проводимости исходного кристалла

В настоящее время выпрямительные диоды почти целиком изготавливаются на основе германия и кремния. Такие материалы, как арсенид галлия и карбид кремния, пока еще не получили широкого распространения из-за сложной технологии получения и обработки.

Кремниевые выпрямительные диоды обладают рядом преимуществ по сравнению с германиевыми. Благодаря тому, что у кремния больше ширина запрещенной зоны, кремниевые диоды имеют более высокие рабочие температуры (до 190 °С против 85 °С для германиевых диодов). Вследствие этого они могут работать при более высоких плотностях токов в прямом направлении.

Из-за более широкой запрещенной зоны в кремнии концентрация собственных носителей заряда n i на два порядка меньше, чем в германии, в результате кремниевые диоды имеют обратные токи в тысячи раз меньше германиевых. Кремниевые диоды выдерживают большие обратные напряжения, определяемые лавинным пробоем р - n-перехода. В то время как в германиевых диодах (вследствие относительно больших обратных токов) раньше может развиться тепловой пробой. Этому способствует и меньшее значение коэффициента теплопроводности германия.

Недостатком кремниевых диодов является сравнительно большое падение напряжения в прямом направлении. Из-за различия в ширине запрещенной зоны в кремниевых р - n-переходах высота потенциального барьера (при одинаковых уровнях легирования базовых областей) в 1,5 - 2,0 раза превышает высоту потенциального барьера германиевых р - n-переходов. Примерно во столько же раз и падение напряжения на р - n-переходе в кремниевых диодах будет больше.

Исходный кристалл для выпрямительных диодов может иметь проводимость как n-, так и p-типа. Но поскольку в германии и кремнии подвижность электронов заметно превышает подвижность дырок, то предпочтительнее использовать исходные материалы электронного типа проводимости, так как в этом случае падение напряжения будет меньше.

На выбор типа проводимости исходного кристалла может влиять состояние поверхности полупроводника. В кремниевых р - n-переходах в оксиде кремния или на границе кремний - диоксид кремния почти всегда присутствует значительный положительный заряд, который может существенно уменьшить напряжение поверхностного пробоя в p + -n-переходах (если диффузия проводилась в исходный кристалл n-типа проводимости) или привести к образованию инверсионного канала и резкому увеличению обратного тока в n + - p-переходах (если диффузия проводилась в исходный кристалл p-типа проводимости). Если в первом случае можно применять достаточно разработанные способы устранения поверхностного пробоя, то последнее обстоятельство сильно затрудняет создание высоковольтных p - n-переходов с малыми обратными токами. Поэтому для создания высоковольтных диодов лучше выбирать исходный кремний электронного типа проводимости.

1.2 Определение удельного сопротивления исходного кристалла

Удельное, сопротивление исходного кристалла влияет на ряд параметров выпрямительного диода: прямое падение напряжения, обратный ток, емкость и т. д. Но в наибольшей степени от него зависит напряжение лавинного пробоя p - n-перехода U B , поэтому выбор удельного сопротивления исходного кристалла производится то напряжению лавинного пробоя.

Напряжение лавинного пробоя определяется по заданному значению повторяющегося импульсного обратного напряжения U rrm :


, (1.2.1)

где k - коэффициент запаса.

Значение коэффициента запаса выбирается равным 0,75 - 0,80 .

Напряжение лавинного пробоя диффузионного р - n-перехода зависит не только от удельного сопротивления исходного кристалла, но и от характера распределения диффундирующей примеси.

Примесные профили диффузионных (особенно высоковольтных) р - n-переходов, в пределах области объемного заряда наиболее точно аппроксимируются экспонентой . Тогда результирующая примесная концентрация, например, для случая диффузии акцепторной примеси в исходный материал n-типа, имеет вид:

, (1.2.2)

где x j - глубина залегания р - n-перехода от поверхности;

N 0 , λ - параметры аппроксимации.

Сильно зависит от концентрации примесей. Полупроводники, электрофизические свойства которых зависят от примесей других химических элементов, называются примесными полупроводниками. Примеси бывают двух видов донорной и акцепторной.

Донорной называется примесь, атомы которой дают полупроводнику свободные электроны, а получаемая в этом случае электропроводность, связанная с движением свободных электронов, - электронной . Полупроводник с электронной проводимостью называется электронным полупроводником и условно обозначается латинской буквой n - первой буквой слова «негативный».

Рассмотрим процесс образования электронной проводимости в полупроводнике. За основной материал полупроводника возьмём кремний (кремниевые полупроводники самые распространённые). У кремния (Si) на внешней орбите атома есть четыре электрона, которые обуславливают его электрофизические свойства (т.е. они перемещаясь под действием напряжения создают электрический ток). При введении в кремний атомов примеси мышьяка (As), у которого на внешней орбите пять электронов, четыре электрона вступают во взаимодействие с четырьмя электронами кремния, образуя ковалентную связь, а пятый электрон мышьяка остаётся свободным. При этих условиях он легко отделяется от атома и получает возможность перемещаться в веществе.

Акцепторной называется примесь, атомы которой принимают электроны от атомов основного полупроводника. Получаемая при этом электропроводность, связанная с перемещением положительных зарядов - дырок, называется дырочной. Полупроводник с дырочной электропроводностью называется дырочным полупроводником и условно обозначается латинской буквой p - первой буквой слова «позитивный».

Рассмотрим процесс образования дырочной проводимости. при введении в кремний атомов примеси индия (In), у которого на внешней орбите три электрона, они вступают в связь с тремя электронами кремния, но эта связь оказывается неполной: не хватает ещё одного электрона для связи с четвёртым электроном кремния. Атом примеси присоединяет к себе недостающий электрон от одного из расположенных поблизости атомов основного полупроводника, после чего он оказывается связанным со всеми четырьмя соседними атомами. Благодаря добавлению электрона он приобретает избыточный отрицательный заряд, то есть превращается в отрицательный ион. В тоже время атом полупроводника, от которого к атому примеси ушёл четвёртый электрон оказывается связанным с соседними атомами только тремя электронами. таким образом, возникает избыток положительного заряда и появляется незаполненная связь, то есть дырка .

Одним из важных свойств полупроводника является то, что при наличии дырок через него может проходить ток, даже если в нём нет свободных электронов. Это объясняется способностью дырок переходить с одного атома полупроводника на другой.

Перемещение «дырок» в полупроводнике

Вводя в часть полупроводника донорную примесь, а в другую часть - акцепторную, можно получить в нём области с электронной и дырочной проводимостью. На границе областей электронной и дырочной проводимости образуется так называемый электронно-дырочный переход.

P-N-переход

Рассмотрим процессы происходящий при прохождении тока через электронно-дырочный переход . Левый слой, обозначенный буквой n, имеет электронную проводимость. Ток в нём связан с перемещением свободных электронов, которые условно обозначены кружками со знаком «минус». Правый слой, обозначенный буквой p, обладает дырочной проводимостью. Ток в этом слое связан с перемещением дырок, которые на рисунке обозначены кружками с «плюсом».



Движение электронов и дырок в режиме прямой проводимости



Движение электронов и дырок в режиме обратной проводимости.

При соприкосновении полупроводников с различными типами проводимости электроны вследствие диффузии начнут переходить в p-область, а дырки - в n-область, в результате чего пограничный слой n-области заряжается положительно, а пограничный слой p-области - отрицательно. Между областями возникает электрическое поле, которое является как бы барьеров для основных носителей тока, благодаря чему в p-n переходе образуется область с пониженной концентрацией зарядов. Электрическое поле в p-n переходе называют потенциальным барьером, а p-n переход - запирающим слоем. Если направление внешнего электрического поля противоположно направлению поля p-n перехода («+» на p-области, «-» на n-области), то потенциальный барьер уменьшается, возрастает концентрация зарядов в p-n переходе, ширина и, следовательно, сопротивление перехода уменьшается. При изменении полярности источника внешнее электрическое поле совпадает с направлением поля p-n перехода, ширина и сопротивление перехода возрастает. Следовательно, p-n переход обладает вентильными свойствами.

Полупроводниковый диод

Диодом называется электро преобразовательный полупроводниковый прибор с одним или несколькими p-n переходами и двумя выводами. В зависимости от основного назначения и явления используемого в p-n переходе различают несколько основных функциональных типов полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Для каждого типа полупроводникового диода ВАХ имеет свой вид, но все они основываются на ВАХ плоскостного выпрямительного диода, которая имеет вид:


Вольт-амперная характеристика (ВАХ) диода: 1 — прямая вольт-амперная характеристика; 2 — обратная вольт-амперная характеристика; 3 — область пробоя; 4 — прямолинейная аппроксимация прямой вольт-амперной характеристики; Uпор — пороговое напряжение; rдин — динамическое сопротивление; Uпроб — пробивное напряжение

Масштаб по оси ординат для отрицательных значений токов выбран во много раз более крупным, чем для положительных.

Вольт-амперные характеристики диодов проходят через нуль, но достаточно заметный ток появляется лишь при пороговом напряжении (U пор), которое для германиевых диодов равно 0,1 - 0,2 В, а у кремниевых диодов равно 0,5 - 0,6 В. В области отрицательных значений напряжения на диоде, при уже сравнительно небольших напряжениях (U обр.) возникает обратный ток (І обр). Этот ток создается неосновными носителями: электронами р-области и дырками n-области, переходу которых из одной области в другую способствует потенциальный барьер вблизи границы раздела. С ростом обратного напряжения увеличение тока не происходит, так как количество неосновных носителей, оказывающихся в единицу времени на границе перехода, не зависит от приложенного извне напряжения, если оно не очень велико. Обратный ток для кремниевых диодов на несколько порядков меньше, чем для германиевых. Дальнейшее увеличение обратного напряжения до напряжения пробоя (U проб) приводит к тому что электроны из валентной зоны переходят в зону проводимости, возникает эффект Зенера . Обратный ток при этом резко увеличивается, что вызывает нагрев диода и дальнейшее увеличение тока приводит к тепловому пробою и разрушению p-n-перехода.

Обозначение и определение основных электрических параметров диодов


Обозначение полупроводникового диода

Как указывалось ранее диод в одну сторону ток проводит (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую – нет (т. е. превращается в проводник с очень большим сопротивлением), одним словом, обладает односторонней проводимостью . Соответственно выводов у него всего два. Они как повелось ещё со времён ламповой техники, называются анодом (положительным выводом) и катодом (отрицательным).

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды , как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Выпрямительные диоды

Конструктивно выпрямительные диоды делятся на плоскостные и точечные, а по технологии изготовления на сплавные, диффузионные и эпитаксиальные. Плоскостные диоды благодаря большой площади p-n-перехода используют для выпрямления больших токов . Точечные диоды имеют малую площадь перехода и, соответственно, предназначены для выпрямления малых токов . Для увеличения напряжения лавинного пробоя используют выпрямительные столбы, состоящие из ряда последовательно включенных диодов.

Выпрямительные диоды большой мощности называют силовыми . Материалом для таких диодов обычно служит кремний или арсенид галлия. Кремниевые сплавные диоды используют для выпрямления переменного тока с частотой до 5 кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенидгалиевые диоды способны работать в диапазоне частот до нескольких МГц.

Силовые диоды обычно характеризуются набором статических и динамических параметров. К статическим параметрам диода относятся:

  • падение напряжения U пр на диоде при некотором значении прямого тока;
  • обратный ток I обр при некотором значении обратного напряжения;
  • среднее значение прямого тока I пр.ср. ;
  • импульсное обратное напряжение U обр.и. ;

К динамическим параметрам диода относятся его временные и частотные характеристики. К таким параметрам относятся:

  • время восстановления t вос обратного напряжения;
  • время нарастания прямого тока I нар. ;
  • предельная частота без снижения режимов диода f max .

Статические параметры можно установить по вольт-амперной характеристике диода.

Время обратного восстановления диода t вос является основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно определяется при переключении диода с заданного прямого тока I пр на заданное обратное напряжение U обр. Во время переключения напряжение на диоде приобретает обратное значение. Из-за инерционности диффузионного процесса ток в диоде прекращается не мгновенно, а в течении времени t нар. По существу, происходит рассасывание зарядов на границе p-n-перехода (т. е. разряд эквивалентной емкости). Из этого следует, что мощность потерь в диоде резко повышается при его включении, особенно, при выключении. Следовательно, потери в диоде растут с повышением частоты выпрямляемого напряжения.

При изменении температуры диода изменяются его параметры. Наиболее сильно от температуры зависят прямое напряжение на диоде и его обратный ток. Приблизительно можно считать, что ТКН (температурный коэффициент напряжения) Uпр = -2 мВ/К, а обратный ток диодаимеет положительный коэффициент. Так при увеличении температуры на каждые 10 °С обратный ток германиевых диодов увеличивается в 2 раза, а кремниевых – 2,5 раз.

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки . В этих диодах вместо p-n-перехода используется контакт металлической поверхности с . В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.

В определениях женской поэзии Серебряного Века имена Анны Ахматовой и Марины Цветаевой идут всегда рядом. Но спутать между собой стихи этих поэтесс может разве что человек, далекий от мира искусства и не способный чувствовать явные различия. Кстати, само слово «поэтесса» они обе не любили и старались избегать, потому что чувствовали себя наравне с самыми именитыми коллегами по цеху мужского пола. Серебряный Век впервые в истории русской поэзии допустил и согласился с таким эмансипированным раскладом.

Ахматова и Цветаева, как две противоположных грани, очертили контуры русской женской поэзии в самом классическом ее проявлении, подарив современникам и потомкам огромное количество ярких, самобытных и очень искренних стихов. Но если творчество Ахматовой - это спокойная и уверенная сила воды, то в стихах Цветаевой мы ощущаем жаркое, порывистое пламя.

Женская поэзия всегда включает много любовной лирики. Именно с нее началось творчество Анны Ахматовой. Но с самых первых сборников стихов ее лирика звучала по-своему, с уникальной интонацией. Все женские черты: внимательный взор, трепетная память о милых вещах, грациозность и нотки капризов - находим мы в ранних стихах Ахматовой, и это придает им истинную лиричность.

В первых стихотворных опытах Цветаевой тоже много традиционных любовных сюжетов, более того, мастерски используется классическая, строгая форма сонета, позволяющая судить о высоком мастерстве юного автора. Но звучание, интонации, накал страстей у Марины Цветаевой - совсем другие. В ее стихах всегда есть и порыв, и надрыв, и в то же время совершенно несвойственная женской лирике резкость, даже жесткость. Здесь нет внешнего спокойного созерцания - все пережито изнутри, каждая строка как будто рождена с болью, даже когда темы светлы и мажорны. И если в стихах Ахматовой строгость форм и ритмичность, как правило, сохраняется, то Цветаева вскоре уходит от строгости сонетов в мир собственной поэтической музыкальности, порой далекий от любых традиций, с рваными строками и обилием восклицательных знаков.

И Ахматова, и Цветаева жили и творили на стыке эпох, в непростой и трагичный период российской истории. Эта сумятица и боль проникают и в стихи, ведь женщины очень остро чувствуют все происходящее. И постепенно любовная лирика выходит за рамки отношений между двумя людьми: в ней слышатся ноты перемен, ломки стереотипов, суровые ветра времени.

У Ахматовой это ноты тревоги и печали, муки совести, постоянное ощущение сумятицы внутри и боль за судьбу Родины. У Цветаевой - кипение страстей, постоянные контрасты и острое предчувствие гибели. У Ахматовой все чаще слышится традиционный для женской поэзии молитвенный стиль, и молится она о судьбе своей страны. У Цветаевой, особенно в период эмиграции, слышна ненависть ко всему, что так перевернуло эпоху, и в то же время невыносимая боль от разлуки с любимой землей.

Что же объединяет творчество Ахматовой и Цветаевой? Через свой внутренний мир, через свои эмоции и переживания обе они раскрыли нам духовную сторону своего времени. Раскрыли по-женски ярко и тонко, подарив читателю множество незабываемых мгновений