Координаты фокуса параболы. Уравнение по трем точкам: как найти вершину параболы, формула. Формулы нахождения вершины


Параболой называется геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d , не проходящей через заданную точку. Это геометрическое определение выражает директориальное свойство параболы .

Директориальное свойство параболы

Точка F называется фокусом параболы, прямая d - директрисой параболы, середина O перпендикуляра, опущенного из фокуса на директрису, - вершиной параболы, расстояние p от фокуса до директрисы - параметром параболы, а расстояние \frac{p}{2} от вершины параболы до её фокуса - фокусным расстоянием (рис.3.45,а). Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок FM , соединяющий произвольную точку M параболы с её фокусом, называется фокальным радиусом точки M . Отрезок, соединяющий две точки параболы, называется хордой параболы.


Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства , и параболы, заключаем, что эксцентриситет параболы по определению равен единице (e=1) .


Геометрическое определение параболы , выражающее её директориальное свойство, эквивалентно её аналитическому определению - линии, задаваемой каноническим уравнением параболы:



Действительно, введем прямоугольную систему координат (рис.3.45,б). Вершину O параболы примем за начало системы координат; прямую, проходящую через фокус перпендикулярно директрисе, примем за ось абсцисс (положительное направление на ней от точки O к точке F ); прямую, перпендикулярную оси абсцисс и проходящую через вершину параболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).



Составим уравнение параболы, используя её геометрическое определение, выражающее директориальное свойство параболы. В выбранной системе координат определяем координаты фокуса F\!\left(\frac{p}{2};\,0\right) и уравнение директрисы x=-\frac{p}{2} . Для произвольной точки M(x,y) , принадлежащей параболе, имеем:


FM=MM_d,


где M_d\!\left(\frac{p}{2};\,y\right) - ортогональная проекция точки M(x,y) на директрису. Записываем это уравнение в координатной форме:


\sqrt{{\left(x-\frac{p}{2}\right)\!}^2+y^2}=x+\frac{p}{2}.


Возводим обе части уравнения в квадрат: {\left(x-\frac{p}{2}\right)\!}^2+y^2=x^2+px+\frac{p^2}{4} . Приводя подобные члены, получаем каноническое уравнение параболы


y^2=2\cdot p\cdot x, т.е. выбранная система координат является канонической.


Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.51), и только они, принадлежат геометрическому месту точек, называемому параболой. Таким образом, аналитическое определение параболы эквивалентно его геометрическому определению, выражающему директориальное свойство параболы.

Уравнение параболы в полярной системе координат

Уравнение параболы в полярной системе координат Fr\varphi (рис.3.45,в) имеет вид


r=\frac{p}{1-e\cdot\cos\varphi}, где p - параметр параболы, а e=1 - её эксцентриситет.


В самом деле, в качестве полюса полярной системы координат выберем фокус F параболы, а в качестве полярной оси - луч с началом в точке F , перпендикулярный директрисе и не пересекающий её (рис.3.45,в). Тогда для произвольной точки M(r,\varphi) , принадлежащей параболе, согласно геометрическому определению (директориальному свойству) параболы, имеем MM_d=r . Поскольку MM_d=p+r\cos\varphi , получаем уравнение параболы в координатной форме:


p+r\cdot\cos\varphi \quad \Leftrightarrow \quad r=\frac{p}{1-\cos\varphi},


что и требовалось доказать. Заметим, что в полярных координатах уравнения эллипса, гиперболы и параболы совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами (0\leqslant e<1 для , e=1 для параболы, e>1 для ).

Геометрический смысл параметра в уравнении параболы

Поясним геометрический смысл параметра p в каноническом уравнении параболы. Подставляя в уравнение (3.51) x=\frac{p}{2} , получаем y^2=p^2 , т.е. y=\pm p . Следовательно, параметр p - это половина длины хорды параболы, проходящей через её фокус перпендикулярно оси параболы.


Фокальным параметром параболы , так же как для эллипса и для гиперболы, называется половина длины хорды, проходящей через её фокус перпендикулярно фокальной оси (см. рис.3.45,в). Из уравнения параболы в полярных координатах при \varphi=\frac{\pi}{2} получаем r=p , т.е. параметр параболы совпадает с её фокальным параметром.

Замечания 3.11.


1. Параметр p параболы характеризует её форму. Чем больше p , тем шире ветви параболы, чем ближе p к нулю, тем ветви параболы уже (рис.3.46).


2. Уравнение y^2=-2px (при p>0 ) определяет параболу, которая расположена слева от оси ординат (рис. 3.47,a). Это уравнение сводится к каноническому при помощи изменения направления оси абсцисс (3.37). На рис. 3.47,a изображены заданная система координат Oxy и каноническая Ox"y" .


3. Уравнение (y-y_0)^2=2p(x-x_0),\,p>0 определяет параболу с вершиной O"(x_0,y_0) , ось которой параллельна оси абсцисс (рис.3.47,6). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).


Уравнение (x-x_0)^2=2p(y-y_0),\,p>0 , также определяет параболу с вершиной O"(x_0,y_0) , ось которой параллельна оси ординат (рис.3.47,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36) и переименования координатных осей (3.38). На рис. 3.47,б,в изображены заданные системы координат Oxy и канонические системы координат Ox"y" .



4. y=ax^2+bx+c,~a\ne0 является параболой с вершиной в точке O"\!\left(-\frac{b}{2a};\,-\frac{b^2-4ac}{4a}\right) , ось которой параллельна оси ординат, ветви параболы направлены вверх (при a>0 ) или вниз (при a<0 ). Действительно, выделяя полный квадрат, получаем уравнение


y=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a}+c \quad \Leftrightarrow \quad \!\left(x+\frac{b}{2a}\right)^2=\frac{1}{a}\left(y+\frac{b^2-4ac}{4a}\right)\!,


которое приводится к каноническому виду (y")^2=2px" , где p=\left|\frac{1}{2a}\right| , при помощи замены y"=x+\frac{b}{2a} и x"=\pm\!\left(y+\frac{b^2-4ac}{4a}\right) .


Знак выбирается совпадающим со знаком старшего коэффициента a . Эта замена соответствует композиции: параллельного переноса (3.36) с x_0=-\frac{b}{2a} и y_0=-\frac{b^2-4ac}{4a} , переименования координатных осей (3.38), а в случае a<0 еще и изменения направления координатной оси (3.37). На рис.3.48,а,б изображены заданные системы координат Oxy и канонические системы координат O"x"y" для случаев a>0 и a<0 соответственно.


5. Ось абсцисс канонической системы координат является осью симметрии параболы , поскольку замена переменной y на -y не изменяет уравнения (3.51). Другими словами, координаты точки M(x,y) , принадлежащей параболе, и координаты точки M"(x,-y) , симметричной точке M относительно оси абсцисс, удовлетворяют уравнению (3.S1). Оси канонической системы координат называются главными осями параболы .

Пример 3.22. Изобразить параболу y^2=2x в канонической системе координат Oxy . Найти фокальный параметр, координаты фокуса и уравнение директрисы.


Решение. Строим параболу, учитывая её симметрию относительно оси абсцисс (рис.3.49). При необходимости определяем координаты некоторых точек параболы. Например, подставляя x=2 в уравнение параболы, получаем y^2=4~\Leftrightarrow~y=\pm2 . Следовательно, точки с координатами (2;2),\,(2;-2) принадлежат параболе.


Сравнивая заданное уравнение с каноническим (3.S1), определяем фокальный параметр: p=1 . Координаты фокуса x_F=\frac{p}{2}=\frac{1}{2},~y_F=0 , т.е. F\!\left(\frac{1}{2},\,0\right) . Составляем уравнение директрисы x=-\frac{p}{2} , т.е. x=-\frac{1}{2} .

Общие свойства эллипса, гиперболы, параболы

1. Директориальное свойство может быть использовано как единое определение эллипса, гиперболы, параболы (см. рис.3.50): геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e , называется:


а) , если 0\leqslant e<1 ;

б) , если e>1 ;

в) параболой , если e=1 .


2. Эллипс, гипербола, парабола получаются в сечениях кругового конуса плоскостями и поэтому называются коническими сечениями . Это свойство также может служить геометрическим определением эллипса, гиперболы, параболы.


3. К числу общих свойств эллипса, гиперболы и параболы можно отнести биссекториальное свойство их касательных. Под касательной к линии в некоторой её точке K понимается предельное положение секущей KM , когда точка M , оставаясь на рассматриваемой линии, стремится к точке K . Прямая, перпендикулярная касательной к линии и проходящая через точку касания, называется нормалью к этой линии.


Биссекториальное свойство касательных (и нормалей) к эллипсу, гиперболе и параболе формулируется следующим образом: касательная (нормаль) к эллипсу или к гиперболе образует равные углы с фокальными радиусами точки касания (рис.3.51,а,б); касательная (нормаль) к параболе образует равные углы с фокальным радиусом точки касания и перпендикуляром, опущенным из нее на директрису (рис.3.51,в). Другими словами, касательная к эллипсу в точке K является биссектрисой внешнего угла треугольника F_1KF_2 (а нормаль - биссектрисой внутреннего угла F_1KF_2 треугольника); касательная к гиперболе является биссектрисой внутреннего угла треугольника F_1KF_2 (а нормаль - биссектрисой внешнего угла); касательная к параболе является биссектрисой внутреннего угла треугольника FKK_d (а нормаль - биссектрисой внешнего угла). Биссекториальное свойство касательной к параболе можно сформулировать так же, как для эллипса и гиперболы, если считать, что у параболы имеется второй фокус в бесконечно удаленной точке.



4. Из биссекториальных свойств следуют оптические свойства эллипса, гиперболы и параболы , поясняющие физический смысл термина "фокус". Представим себе поверхности, образованные вращением эллипса, гиперболы или параболы вокруг фокальной оси. Если на эти поверхности нанести отражающее покрытие, то получаются эллиптическое, гиперболическое и параболическое зеркала. Согласно закону оптики, угол падения луча света на зеркало равен углу отражения, т.е. падающий и отраженный лучи образуют равные углы с нормалью к поверхности, причем оба луча и ось вращения находятся в одной плоскости. Отсюда получаем следующие свойства:


– если источник света находится в одном из фокусов эллиптического зеркала, то лучи света, отразившись от зеркала, собираются в другом фокусе (рис.3.52,а);

– если источник света находится в одном из фокусов гиперболического зеркала, то лучи света, отразившись от зеркала, расходятся так, как если бы они исходили из другого фокуса (рис.3.52,б);

– если источник света находится в фокусе параболического зеркала, то лучи света, отразившись от зеркала, идут параллельно фокальной оси (рис.3.52,в).



5. Диаметральное свойство эллипса, гиперболы и параболы можно сформулировать следующим образом:


середины параллельных хорд эллипса (гиперболы) лежат на одной прямой, проходящей через центр эллипса (гиперболы) ;

середины параллельных хорд параболы лежат на прямой, коллинеарной оси симметрии параболы .


Геометрическое место середин всех параллельных хорд эллипса (гиперболы, параболы) называют диаметром эллипса (гиперболы, параболы) , сопряженным к этим хордам.


Это определение диаметра в узком смысле (см. пример 2.8). Ранее было дано определение диаметра в широком смысле, где диаметром эллипса, гиперболы, параболы, а также других линий второго порядка называется прямая, содержащая середины всех параллельных хорд. В узком смысле диаметром эллипса является любая хорда, проходящая через его центр (рис.3.53,а); диаметром гиперболы является любая прямая, проходящая через центр гиперболы (за исключением асимптот), либо часть такой прямой (рис.3.53,6); диаметром параболы является любой луч, исходящий из некоторой точки параболы и коллинеарный оси симметрии (рис.3.53,в).


Два диаметра, каждый их которых делит пополам все хорды, параллельные другому диаметру, называются сопряженными. На рис.3.53 полужирными линиями изображены сопряженные диаметры эллипса, гиперболы, параболы.



Касательную к эллипсу (гиперболе, параболе) в точке K можно определить как предельное положение параллельных секущих M_1M_2 , когда точки M_1 и M_2 , оставаясь на рассматриваемой линии, стремятся к точке K . Из этого определения следует, что касательная, параллельная хордам, проходит через конец диаметра, сопряженного к этим хордам.


6. Эллипс, гипербола и парабола имеют, кроме приведенных выше, многочисленные геометрические свойства и физические приложения. Например, рис.3.50 может служить иллюстрацией траекторий движения космических объектов, находящихся в окрестности центра F притяжения.

Рассмотрим на плоскости прямую и точку, не лежащую на этой прямой. И эллипс , и гипербола могут быть определены единым образом как геометрическое место точек, для которых отношение расстояния до данной точки к расстоянию до данной прямой есть постоянная вели-

чина ε. При 0 1 - гипербола. Параметр ε является эксцентриситетом как эллипса, так и гиперболы . Из возможных положительных значений параметра ε одно, а именно ε = 1, оказывается незадействованным. Этому значению соответствует геометрическое место точек, равноудаленных от данной точки и от данной прямой.

Определение 8.1. Геометрическое место точек плоскости, равноудаленных от фиксированной точки и от фиксированной прямой, называют параболой.

Фиксированную точку называют фокусом параболы , а прямую - директрисой параболы . При этом полагают, что эксцентриситет параболы равен единице.

Из геометрических соображений вытекает, что парабола симметрична относительно прямой, перпендикулярной директрисе и проходящей через фокус параболы. Эту прямую называют осью симметрии параболы или просто осью параболы . Парабола пересекается со своей осью симметрии в единственной точке. Эту точку называют вершиной параболы . Она расположена в середине отрезка, соединяющего фокус параболы с точкой пересечения ее оси с директрисой (рис. 8.3).

Уравнение параболы. Для вывода уравнения параболы выберем на плоскости начало координат в вершине параболы, в качестве оси абсцисс - ось параболы, положительное направление на которой задается положением фокуса (см. рис. 8.3). Эту систему координат называют канонической для рассматриваемой параболы, а соответствующие переменные - каноническими .

Обозначим расстояние от фокуса до директрисы через p. Его называют фокальным параметром параболы .

Тогда фокус имеет координаты F(p/2; 0), а директриса d описывается уравнением x = - p/2. Геометрическое место точек M(x; y), равноудаленных от точки F и от прямой d, задается уравнением

Возведем уравнение (8.2) в квадрат и приведем подобные. Получим уравнение

которое называют каноническим уравнением параболы .

Отметим, что возведение в квадрат в данном случае - эквивалентное преобразование урав-нения (8.2), так как обе части уравнения неотрицательны, как и выражение под радикалом.

Вид параболы. Если параболу у 2 = x, вид которой считаем известным, сжать с коэффициентом 1/(2р) вдоль оси абсцисс, то получится парабола общего вида, которая описывается уравнением (8.3).

Пример 8.2. Найдем координаты фокуса и уравнение директрисы параболы, если она проходит через точку, канонические координаты которой (25; 10).

В канонических координатах уравнение параболы имеет вид у 2 = 2px. Поскольку точка (25; 10) находится на параболе, то 100 = 50p и поэтому p = 2. Следовательно, у 2 = 4x является каноническим уравнением параболы, x = - 1 - уравнением ее директрисы, а фокус находится в точке (1; 0).

Оптическое свойство параболы. Парабола имеет следующее оптическое свойство . Если в фокус параболы поместить источник света, то все световые лучи после отражения от параболы будут параллельны оси параболы (рис. 8.4). Оптическое свойство означает, что в любой точке M параболы нормальный вектор касательной составляет с фокальным радиусом MF и осью абсцисс одинаковые углы.

Занятие 10 . Кривые второго порядка.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Кривыми второго порядка на плоскости называются линии, неявное задание которых имеет вид:

где
- заданные вещественные числа,
- координаты точек кривой. Наиболее важными линиями среди кривых второго порядка являются эллипс, гипербола, парабола.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

Определение эллипса. Эллипсом называется плоская кривая, у которой сумма расстояний от двух фиксированных точек
плоскости до любой точки

(т.е.). Точки
называются фокусами эллипса.

Каноническое уравнение эллипса :
. (2)


(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
(рис.1). Эллипс (2) симметричен относительно осей координат и начала координат (центра эллипса). Постоянные
,
называютсяполуосями эллипса .

Если эллипс задан уравнением (2), то фокусы эллипса находятся так.

1) Сначала определяем, где лежат фокусы: фокусы лежат на той координатной оси, на которой расположены бóльшие полуоси.

2) Затем вычисляется фокусное расстояние (расстояние от фокусов до начала координат).

При
фокусы лежат на оси
;
;
.

При
фокусы лежат на оси
;
;
.

Эксцентриситетом эллипса называется величина:(при
);(при
).

У эллипса всегда
. Эксцентриситет служит характеристикой сжатия эллипса.

Если эллипс (2) переместить так, что центр эллипса попадет в точку

,
, то уравнение полученного эллипса имеет вид

.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

Определение гиперболы. Гиперболой называется плоская кривая, у которой абсолютная величина разности расстояний от двух фиксированных точек
плоскости до любой точки
этой кривой есть постоянная величина, независящая от точки
(т.е.). Точки
называются фокусами гиперболы.

Каноническое уравнение гиперболы :
или
. (3)

Такое уравнение получается, если координатная ось
(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
. Гиперболы (3) симметричны относительно осей координат и начала координат. Постоянные
,
называютсяполуосями гиперболы .

Фокусы гиперболы находятся так.

У гиперболы
фокусы лежат на оси
:
(рис. 2.а).

У гиперболы
фокусы лежат на оси
:
(рис. 2.б)

Здесь - фокусное расстояние (расстояние от фокусов до начала координат). Оно вычисляется по формуле:
.

Эксцентриситетом гиперболы называется величина:

(для
);(для
).

У гиперболы всегда
.

Асимптотами гипербол (3) являются две прямые:
. Обе ветви гиперболы неограниченно приближаются к асимптотам с ростом.

Построение графика гиперболы следует проводить так: сначала по полуосям
строим вспомогательный прямоугольник со сторонами, параллельными осям координат; затем через противоположные вершины этого прямоугольника проводим прямые, это – асимптоты гиперболы; наконец изображаем ветви гиперболы, они касаются середин соответствующих сторон вспомогательного прямоугольника и приближаются с ростомк асимптотам (рис. 2).

Если гиперболы (3) переместить так, что их центр попадет в точку
, а полуоси останутся параллельны осям
,
, то уравнение полученных гипербол запишутся в виде

,
.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Определение параболы. Параболой называется плоская кривая, у которой для любой точки
этой кривой расстояние от
до фиксированной точкиплоскости (называемой фокусом параболы) равно расстоянию от
до фиксированной прямой на плоскости
(называемой директрисой параболы).

Каноническое уравнение параболы :
, (4)

где - постоянная, называемаяпараметром параболы.

Точка
параболы (4) называется вершиной параболы. Ось
является осью симметрии. Фокус параболы (4) находится в точке
, уравнение директрисы
. Графики параболы (4) со значениями
и
приведены на рис. 3.а и 3.б соответственно.

Уравнение
также определяет параболу на плоскости
, у которой по сравнению с параболой (4), оси
,
поменялись местами.

Если параболу (4) переместить так, что ее вершина попадет в точку
, а ось симметрии останется параллельна оси
, то уравнение полученной параболы имеют вид

.

Перейдем к примерам.

Пример 1 . Кривая второго порядка задана уравнением
. Дать название этой кривой. Найти ее фокусы и эксцентриситет. Изобразить кривую и ее фокусы на плоскости
.

Решение. Данная кривая является эллипсом с центром в точке
и полуосями
. В этом легко убедиться, если провести замену
. Это преобразование означает переход от заданной декартовой системы координат
к новой декартовой системе координат
, у которой оси
параллельны осям
,
. Это преобразование координат называется сдвигом системы
в точку. В новой системе координат
уравнение кривой преобразуется в каноническое уравнение эллипса
, его график приведен на рис. 4.

Найдем фокусы.
, поэтому фокусы
эллипса расположены на оси
.. В системе координат
:
. Т.к.
, в старой системе координат
фокусы имеют координаты.

Пример 2 . Дать название кривой второго порядкаи привести ее график.

Решение. Выделим полные квадраты по слагаемым, содержащим переменные и.

Теперь, уравнение кривой можно переписать так:

Следовательно, заданная кривая является эллипсом с центром в точке
и полуосями
. Полученные сведения позволяют нарисовать его график.

Пример 3 . Дать название и привести график линии
.

Решение. . Это – каноническое уравнение эллипса с центром в точке
и полуосями
.

Поскольку,
, делаем заключение: заданное уравнение определяет на плоскости
нижнюю половину эллипса (рис. 5).

Пример 4 . Дать название кривой второго порядка
. Найти ее фокусы, эксцентриситет. Привести график этой кривой.

- каноническое уравнение гиперболы с полуосями
.

Фокусное расстояние.

Знак "минус" стоит перед слагаемым с , поэтому фокусы
гиперболы лежат на оси
:. Ветви гиперболы располагаются над и под осью
.

- эксцентриситет гиперболы.

Асимптоты гиперболы: .

Построение графика этой гиперболы осуществляется в соответствии с изложенным выше порядком действий: строим вспомогательный прямоугольник, проводим асимптоты гиперболы, рисуем ветви гиперболы (см. рис.2.б).

Пример 5 . Выяснить вид кривой, заданной уравнением
и построить ее график.

- гипербола с центром в точке
и полуосями.

Т.к. , заключаем: заданное уравнение определяет ту часть гиперболы, которая лежит Справа от прямой
. Гиперболу лучше нарисовать во вспомогательной системе координат
, полученной из системы координат
сдвигом
, а затем жирной линией выделить нужную часть гиперболы

Пример 6 . Выяснить вид кривойи нарисовать ее график.

Решение. Выделим полный квадрат по слагаемым с переменной :

Перепишем уравнение кривой.

Это – уравнение параболы с вершиной в точке
. Преобразованием сдвигауравнение параболы приводится к каноническому виду
, из которого видно, что- параметр параболы. Фокуспараболы в системе
имеет координаты
,, а в системе
(согласно преобразованию сдвига). График параболы приведен на рис. 7.

Домашнее задание .

1. Нарисовать эллипсы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках эллипсов места расположения их фокусов.

2. Нарисовать гиперболы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках гипербол места расположения их фокусов. Написать уравнения асимптот данных гипербол.

3. Нарисовать параболы, заданные уравнениями:
. Найти их параметр, фокусное расстояние и указать на графиках парабол место расположения фокуса.

4. Уравнение
определяет часть кривой 2-го порядка. Найти каноническое уравнение этой кривой, записать ее название, построить ее график и выделить на нем ту часть кривой, которая отвечает исходному уравнению.

- (греч. parabole, от parabollo сближаю). 1) иносказание, притча. 2) кривая линия, происходящая от сечения конуса плоскостью, параллельною какой нибудь его производящей. 3) кривая линия, образующаяся при полете бомбы, ядра и т. п. Словарь… … Словарь иностранных слов русского языка

Иносказание, притча (Даль) См. пример … Словарь синонимов

- (греч. parabole) плоская кривая (2 го порядка). Парабола множество точек М, расстояния которых до данной точки F (фокуса) и до данной прямой D1D2 (директрисы) равны. В надлежащей системе координат уравнение параболы имеет вид: y2=2px, где р=2OF.… … Большой Энциклопедический словарь

ПАРАБОЛА, математическая кривая, КОНИЧЕСКОЕ СЕЧЕНИЕ, образуемое точкой, двигающейся таким образом, что ее расстояние до неподвижной точки, фокуса, равно ее расстоянию до неподвижной прямой, директрисы. Парабола образуется при разрезе конуса… … Научно-технический энциклопедический словарь

Жен., греч. иносказанье, притча. | мат. кривая черта, из числа конических сечений; разрез сахарной головы накось, опостен (параллельно) противной стороне. Парабольные вычисленья. Параболическое реченье, инословие, иноречие, переносное.… … Толковый словарь Даля

парабола - ы, ж. parabole f. <гр. parabole. 1. устар. Притча, иносказание. БАС 1. Француз, захотя посмеяться русаку, приезжему в Париж, спросил: Что такое значит парабол, фарибол и обол? Но тот вскоре ему отвечал: Парабол, есть то, что ты не разумеешь;… … Исторический словарь галлицизмов русского языка

ПАРАБОЛА - (1) незамкнутая кривая линия 2 го порядка на плоскости, являющаяся графиком функции у2 = 2рх, где р параметр. Параболу получают при пересечении кругового (см.) плоскостью, не проходящей через его вершину и параллельной одной из его образующих.… … Большая политехническая энциклопедия

- (от греческого parabole), плоская кривая, расстояния любой точки M которой до данной точки F (фокуса) и до данной прямой D 1D1 (директрисы) равны (MD=MF) … Современная энциклопедия

ПАРАБОЛА, параболы, жен. (греч. parabole). 1. Кривая второго порядка, представляющая коническое сечение прямого кругового конуса плоскостью, параллельною одной из образующих (мат.). || Путь, описываемый тяжелым телом (напр. пулей), брошенным под… … Толковый словарь Ушакова

ПАРАБОЛА, ы, жен. В математике: состоящая из одной ветви незамкнутая кривая, образующаяся при пересечении конической поверхности плоскостью. | прил. параболический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

- «ПАРАБОЛА», Россия, 1992, цв., 30 мин. Документальное эссе. Попытка понять мистическую суть сказаний удмуртов маленького народа в Поволжье. Режиссер: Светлана Стасенко (см. СТАСЕНКО Светлана). Автор сценария: Светлана Стасенко (см. СТАСЕНКО… … Энциклопедия кино

Книги

  • Парабола замысла поиска работы мечты. Архетипы HR-менеджеров... , Марина Зорина. Книга Марины Зориной "Парабола замысла поиска работы мечты" основана на реальном опыте автора и наполнена полезной информацией, касающейся закономерностей процесса внутреннего рекрутмента.…
  • Парабола моей жизни , Титта Руффо. Автор книги - известнейший итальянский певец, солист ведущих оперных театров мира. Воспоминания Титта Руффо, написанные живо и непосредственно, содержат зарисовкитеатральной жизни первой…

Парабола - это бесконечная кривая, которая состоит из точек, равноудаленых от заданной прямой, называемой директрисой параболы, и заданной точки - фокуса параболы. Парабола является коническим сечением, то есть представляет собой пересечение плоскости и кругового конуса.

В общем виде математическое уравнение параболы имеет вид: y=ax^2+bx+c, где a не равно нулю, b отражает смещение графика функции по горизонтали относительно начала координат, а c - вертикальное смещение графика функции относительно начала координат. При этом, если a>0, то при построении графика будут направленны вверх, а в случае, если aСвойства параболы

Парабола - это кривая второго порядка, которая имеет ось симметрии, проходящую через фокус параболы и перпендикулярную директрисе параболы.

Парабола обладает особым оптическим свойством, заключающемся в фокусировки параллельных относительно оси ее симметрии световых лучей, направленных в параболу, в вершине параболы и расфокусировки пучка света, направленного в вершину параболы, в параллельные световые лучи относительной той же оси.

Если произвести отражение параболы относительно любой касательной, то образ параболы окажется на ее директрисе. Все параболы подобны между собой, то есть для каждых двух точек A и B одной параболы, найдутся точки A1 и B1, для которых верно утверждение |A1,B1| = |A,B|*k, где k – коэффициент подобия, который в численном значении всегда больше нуля.

Проявление параболы в жизни

Некоторые космические тела, такие как кометы или астероиды, проходящие вблизи крупных космических объектов на высокой скорости имеют траекторию движения в форме параболы. Это свойство малых космических тел используется при гравитационных маневрах космических кораблей.

Для тренировок будущих космонавтов, на земле проводятся специальные полеты самолетов по траектории параболы, чем достигается эффект невесомости в гравитационном поле земли.

В быту параболы можно встретить в различных осветительных приборах. Это связано с оптическим свойством параболы. Одним из последних способов применения параболы, основанных на ее свойствах фокусировки и расфокусировки световых лучей, стали солнечные батареи, которые все больше входят в сферу энергоснабжения в южных регионах России.