Записи с меткой "пропорциональность чисел". Упражнения с решениями

1. Число 45 пропорционально числам 4, 5 и 6 . Если в задаче есть такие слова «пропорционально числам 4, 5 и 6″, то всегда обозначают одну часть через х . Тогда число 45=4х+5х+6х. Упрощаем: 15х=45, отсюда х=3. Меньшее число содержит 4х, значит, оно равно 4·3=12.

2. Требуется решить уравнение |4-x|=1,5. Идем от определения модуля числа: модуль неотрицательного числа равен самому этому числу, модуль отрицательного числа равен числу противоположному. Под знаком модуля могло быть как положительное число, так и отрицательное. Так и запишем:

4-х=1,5 или 4-х=-1,5;

Х=1,5-4; -х=-1,5-4.

Х=-2,2; -х=-5,5.

х=2,2; х=5,5.

3. Итак, автомобилист, выехавший из пункта А через полчаса после мотоциклиста, догнал его. Спрашивают, на каком расстоянии от А, если скорость мотоциклиста 48,4 км/ч , а скорость автомобиля больше скорости мотоцикла в

4. Отметим на числовой прямой «пустыми» точками -2 и 3 . Решаем неравенство методом интервалов. Проверим знак дроби при х=10, подставив значение 10 . Расставим знаки на промежутках. Так как у нас неравенство больше нуля, то выбираем промежуток знака «+».

5. Упростим данное выражение cos(30°+α)-cos(30°-α) , используя формулу разности косинусов двух углов. Получим минус удвоенное произведение синуса полусуммы на синус полуразности: cos(30°+α)-cos(30°-α)= -2sin30°sinα=-sinα.

6. Нам дано однородное линейное уравнение. Решают его делением обеих частей равенства на косинус данного аргумента. В результате получают простейшее уравнение с тангенсом.

7. Известны девятый член (a 9 =12) и разность (d=1,5) арифметической прогрессии.

Требуется найти первый член a 1 данной арифметической прогрессии. Применим формулу n-го члена арифметической прогрессии: a n =a 1 +(n-1)d . Подставим в нее наши данные и получим: a 9 =a 1 +8d;

12=a 1 +8∙1,5;

12+a 1 =12 → a 1 =0.

8. Площадь фигуры, ограниченной данными линиями y=x 2 , y=0, x=2 , найдем с помощью определенного интеграла. Искомая площадь будет равна определенному интегралу от нуля до двух функции икс в квадрате по дэ икс. Если вам это понятно — значит, вы представляете себе графики данных линий и так и должно быть! Если непонятно — строим графики и вспоминаем формулу площади криволинейной трапеции, ограниченной сверху графиком функции y=f(x) , а слева и справа — прямыми х=a, x=b.

9. По условию внешний угол при вершине А треугольника АВС в два раза больше одного из несмежных углов треугольника, а по определению, внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Получается, что эти несмежные углы равны между собой. Отсюда следует, что данный треугольник является равнобедренным с вершиной А . И если мы проведем медиану из вершины А , то она будет являться и высотой и биссектрисой .

10. Найдем корень данного уравнения и подставим его значение в выражение (-13х+2) 2 +х.

11. Дано уравнение (100x) lgx =x 3 . Требуется найти сумму его корней. Так как и основание и показатель степени содержат переменную, то решение уравнения начинаем с логарифмирования обеих частей равенства по основанию 10 (у нас ведь десятичный логарифм).

lg(100x) lgx =lgx 3 ; логарифм степени равен произведению показателя этой степени на логарифм основания:

lgx∙lg(100x)=3lgx. Перенесем 3lgx в левую часть равенства и вынесем lgx за скобки: lgx∙lg(100x)-3lgx =0;

lgx∙(lg(100x)-3)=0. Каждый из множителей может быть равен нулю. Если lgx=0, то x=10 0 =1. Если lg(100x)-3=0, то lg(100x)=3, откуда 100x=10 3 ; 100x=1000; x=10. Сумма квадратов корней: 1 2 +10 2 =1+100=101.

12. Упростим данную систему уравнений, освободившись от знака логарифма во 2-ом уравнении.

log 5 (2y+10x+3)=2 → 2y+10x+3=5 2 → 2y+10x+3=25; 10x+2y=22. Выразим 2х из первого уравнения: 2х=20-3у. Подставим это значение во 2-ое уравнение, имея ввиду, что 10х=5∙2х. Тогда вместо 10x+2y=22 запишем:

5∙(20-3у )+2у=22. Упростим: 100-15у+2у=22 или -13у=-78, откуда у=6. Подставляем это значение в выражение 2х=20-3у. Получаем:

2х=20-3∙6=2. Тогда х=1 . Решением системы служит пара значений переменных: (1; 6) .

13. Возведем обе части равенства в квадрат. Получаем: x-5=a 2 → x=a 2 +5.

14. Область определения функции — это множество таких значений х , при которых выражение в правой части равенства имеет смысл. Так как у нас дробь, то знаменатель ее должен быть отличен от нуля, т.е. x+3x 2 ≠0 . Приравняем знаменатель к нулю, решим уравнение, а затем исключим корни этого уравнения.

15. Требуется найти производную сложной функции y=(lnx) 2 . Итак, мы имеем степень, значит, берем производную по формуле производной степени. Далее: основание этой степени — натуральный логарифм, — берем производную от натурального логарифма и умножаем производную степени на производную натурального логарифма.

16. Стороны треугольника ВА=14 см и ВС=17 см, а косинус угла В между ними равен (-8/17) . Нужно найти площадь треугольника. Мы знаем формулу площади треугольника по двум сторонам и углу между ними: S=(1/2)ac·sinβ . Зная косинус угла В , вычислим синус этого угла, используя основное тригонометрическое тождество sin 2 β + cos 2 β=1 , и подставим в формулу площади.

17. Дан равносторонний треугольник. Точка, равноудаленная от сторон треугольника на 5 см , от плоскости отстоит на 3 см. Нужно найти площадь этого треугольника.

18. Основания призмы — правильные треугольники со стороной 6 см . Требуется найти объем призмы, если ее боковое ребро равно Решение. Применяем формулу объема призмы: V=S осн. ∙H , где S осн. – площадь основания призмы, значит, в нашей задаче, площадь правильного треугольника со стороной 6 см. H – высота призмы, а так как у нас призма прямая, то в качестве высоты можно взять длину бокового ребра.

19. Чтобы найти координаты точек пересечения окружности x 2 +y 2 -10x-6y+9=0 с осью абсцисс, подставим у=0 , так как точки, лежащие на оси Ох имеют ординату, равную нулю, и решим получившееся квадратное уравнение х 2 -10х+9=0 . Подбираем корни по теореме Виета: х 1 =1, х 2 =9 . Искомые точки пересечения: (1; 0) и (9; 0) .

20. Разложим числитель первой дроби по формуле разности кубов двух выражений a 3 -b 3 =(a-b)(a 2 +ab+b 2). У нас а 6 -64=(а 2) 3 -4 3 =(а 2 -4)(а 4 +4а 2 +16). В знаменателе первой дроби такое же выражение, как во вторых скобках разложения. Сокращаем. Остается а 2 -4. Преобразуем вторую дробь. Числитель второй дроби разложим по формуле разности квадратов двух выражений а 2 -b 2 =(a-b)(a+b). У нас а 4 -16=(а 2) 2 -4 2 =(а 2 -4)(а 2 +4). Сократим вторую дробь на (а 2 +4), останется: а 2 -4. Имеем: а 2 -4+ а 2 -4=2а 2 -8.

21. Чтобы найти значение данного выражения, выразим а из предложенного равенства (из пропорции): 3(a+b)=2(a-2b). Раскрываем скобки: 3a+3b=2a-4b → a=-7b. Теперь подставим вместо а в данное выражение значение (-7b) и упростим.

22. Представим единицу в правой части неравенства в виде логарифма по основанию (2х+1) . При потенцировании будем учитывать, что от значения основания логарифма (2х+1) будет зависеть, возрастает функция (если 2х+1>1 ) или убывает (если 0<2x+1<1 ). Если функция возрастает, то знак неравенства сохраним, если функция убывает, то знак неравенства поменяем на противоположный. Кроме этого, учтем, что под знаком логарифма могут быть только положительные числа.

23. Упростим предложенное неравенство: sinx+cos2x>1. Есть формула: 1-cos2α=2sin 2 α. Перепишем данное неравенство в виде:

sinx-(1-cos2x)>0. Применим формулу и получим: sinx-2sin 2 x>0. Сделаем замену переменной. Пусть sinx=y . Тогда: y-2y 2 >0 → y(1-2y)>0. Решим полученное неравенство методом интервалов.

24. Дана функция f(x)=6x 2 -4x+1. Известно, что F(x) является первообразной для f(x) , причем, F(-1)=2 . Требуется найти F(1) . Для этого запишем F(x) для данной функции, найдем значение постоянной величины С , а затем искомое значение F(1) .

Находим значение С , используя равенство: F(-1)=2.

2=2∙(-1) 3 -2∙(-1) 2 -1+С;

2=-2-2-1+C → C=7. Тогда первообразная F(x)=2x 3 -2x 2 +x+7 . Подставим вместо х число 1 и получим: F(1)= 2-2+1+7=8.

25. Пусть в актовом зале х скамеек. Если на каждую скамейку посадить по 5 учеников, то четверо останутся без места, значит, всего 5х+4 учащихся. Если на каждую скамью посадить по 6 детей, то 2 места останутся свободными. Получается 6х-2 учащихся. Но учащихся определенное количество — имеем равенство: 5х+4=6х-2. Отсюда х=6. Следовательно, в зале 6 скамеек, а учеников 5·6+4=34 .

1. Чтобы разделить некоторое число пропорционально данным числам (разделить в данном отношении), надо разделить это число на сумму данных чисел и результат умножить на каждое из них.

2. Чтобы разделить число на части, обратно пропорциональные данным числам, достаточно разделить это число на части, прямо пропорциональные числам, обратным данным.

УПРАЖНЕНИЯ С РЕШЕНИЯМИ

1. Отрезок длиной 15 см разделить в отношении Решение. см.

2. Число 27 разделить обратно пропорционально числам 4 и 5.

Решение. Числа, обратные данным, относятся как Получим

ДИДАКТИЧЕСКИЙ МАТЕРИАЛ

А. 1. Отрезок длиной разделили на четыре части, пропорциональные числам 2, 3, 4 и 5. Найдите длины этих частей.

2. Стороны треугольника, периметр которого пропорциональны числам 5, 7 и 8. Найдите стороны треугольника.

3. Число 196 разделите на части, пропорциональные числам:

4. Число 434 разделите на части, обратно пропорциональные числам: а) 15 и 16; б) 2, 3 и 5.

Б. 1. Площади полей, засеянных рожью, пшеницей и ячменем, пропорциональны числам 9, 5 и 3. Сколько гектаров засеяно рожью и сколько ячменем, если известно, что пшеницей засеяно

Тема урока : Пропорциональное деление

В школьном курсе математики предлагается очень мало задач на «пропорциональное деление». Однако их можно встретить в экзаменационных сборниках для 9 класса авт. Л.И.Звавич и др. Эти задачи предлагаются на вступительных экзаменах в ВУЗы на специальности, связанные с экономикой, химией, связанных с легкой промышленностью и народного хозяйства.
Предлагаемые задачи можно использовать на факультативах в общеобразовательных школах, включить их в программу гимназий и лицеев, связанных с углубленным изучением математики, начиная с 6 класса, для индивидуальной работы с сильными учениками.

Эти задачи может решить шестиклассник.

Необходимость разделить заданную величину или число в данном отношении часто возникает в практической жизни человека – при приготовлении различных смесей, растворов, блюд по кулинарным рецептам, при распределении прибыли или мест в парламенте и так далее.

Например, если два предпринимателя вложили в проект соответственно 3 млн. рублей и 4 млн.рублей и получили 14 млн. рублей прибыли, то справедливость требует, чтобы полученная прибыль делилась пропорционально числам 3 и 4. Само слово «пропорционально» происходит от латинского «гармонично», «соразмерно».
Как же узнать, сколько денег должен получить каждый предприниматель? Обозначим части, которые они должны получить, соответственно a и b. Тогда a: b = 3: 4.
Поменяем в пропорции местами средние члены и обозначим коэффициент пропорциональности k. Получим равенство:

Из которого следует, что а = 3k, b = 4k. Так как сумма двух частей составляет 14 млн. рублей, то значение k должно удовлетворять равенству
3k + 4k =14 <=> 7k = 14 <=> k = 2.
Значит, при справедливом делении первый предприниматель должен получить 2 3 = 6 млн.рублей, а второй - 2 4 = 8 млн.рублей.

Рассмотрим еще одну задачу.

Для приготовления строительного раствора на 2 части цемента берут 2 части песка и 0,8 частей воды. Сколько цемента, песка и воды потребуется для приготовления 180 кг раствора?

Решение:

1) Пусть для приготовления строительного раствора требуется а кг цемента, b кг песка и с кг воды. Обозначим коэффициент пропорциональности k , тогда

Следовательно, а = 2 k , b = 2 k , c = 0,8 k .
По условию задачи, сумма всех частей равна 180 кг, значит:
2 k + 2 k + 0,8 k = 180 <=>4,8 k = 180 <=> k = 37,5.
2) 37,5 2 = 75 (кг) – потребуется песка и цемента.
3) 37,5 0,8 = 30 (кг) – потребуется воды.
Ответ: потребуется 75 кг цемента, 75 кг песка и 30 кг воды.

Для краткого обозначения условия задач о прямо пропорциональном делении в математическом языке используют иногда «длинные отношения». Например, a: b: c = 2: 2: 0,8. При этом говорят: «Числа a, b и с относятся как 2 к 3 к 0,8».
Длинные отношения – это условные записи, которые показывают, сколько равных долей величины приходится на каждую часть. Их нельзя понимать как запись деления нескольких чисел. Действительно, подставив в последнее равенство вместо букв соответствующие им числа, получим верное высказывание 75: 75: 30 = 2: 2: 0,8;
Тогда как при непосредственном подсчете левой и правой части получаются разные числа: в левой части , а в правой части – 1,25.
Зато длинные отношения можно преобразовывать, как обычные дроби: умножать все его члены на одно и то же число, сокращать. Эти преобразования позволяют упрощать запись, а значит, и решение задач. Так, если бы в нашей задаче мы сначала умножили все члены отношения на 10, а затем разделили их на 4, то избавились бы от дробей: 2: 2: 0,8 = 20: 20: 8 = 5: 5: 2 и получили более простое уравнение.
Решая задачи на пропорциональное деление, мы вновь наблюдаем, как абстрактные математические понятия – в данном случае прямая и обратная пропорциональность – помогают отвечать на серьезные практические вопросы.

Предлагаю еще несколько задач по этой теме.

Задача 1.

Трое рабочих получили 4080 рублей. Суммы, полученные первым и вторым рабочими, относятся, как . Сумма, полученная третьим рабочим составляет того. Что получил первый рабочий. Сколько денег получил каждый рабочий?

Решение:

Ответ: 2448 рублей получил первый рабочий; 571,2 рубля получил второй рабочий и 1060,8 рубля получил третий рабочий.

Задача 2.

Три цеха сшили 16800 пар обуви. Количество пар обуви сшитой первым и вторым цехами относятся как а третий цех сшил 75% того, что сшил первый цех. На сколько процентов выполнил план первый цех, если план каждого цеха был 4000 пар обуви?

Решение:

Ответ: на 180% выполнил план первый цех.

Задача 3.

В палатку привезли свеклу, морковь, капусту. Количество свеклы и моркови равно отношению , а вес капусты составляет 250% от веса моркови. Капусты было на 80 кг больше, чем свеклы. Сколько килограммов каждого овоща привезли в палатку?

Решение:

Ответ: в палатку привезли 120 кг свеклы; 80 кг моркови и 200 кг капусты.

Задача 4.

Магазин продал за 4 дня некоторое количество ткани. Количество ткани, проданной за первые три дня относились, как 0,9: 1,4: 1,3. В четвертый день продали 420 м ткани, что составило 28% всей ткани, проданной магазином за четыре дня. Сколько ткани продали за каждый день?

Решение:

  1. n1 : n2 : n3 = 0,9: 1,4: 1,3 = 9: 14: 13
  2. 28% составляет 420 м: 420: 0,28 = 1500 (м) – ткани продали за четыре дня.
  3. 1500 – 420 = 1080 (м) – ткани продали за первые три дня.
  4. 9 + 14 + 13 = 36 (ч.) – приходится на 1080 м ткани.
  5. 1080: 36 = 30 (м) – ткани приходится на 1 часть.
  6. 30 9 = 270 (м) – ткани продали за первый день.
  7. 30 14 = 520 (м) – ткани продали за второй день.
  8. 30 13 = 390 (м) – ткани продали за третий день.

Ответ: магазин продал 270 м ткани за первый день; 520 м ткани за второй день; 390 м ткани за третий день и 420 м за четвертый день.

Задача 5.

Три класса собирали металлолом. Количество металлолома, собранного первым и вторым классами относится, как 4,5: 3. Количество металлолома, собранного третьим классом составляет 40% того, что собрал первый класс. Сколько металлолома собрал каждый класс, если второй класс собрал на 0,8 тонны металлолома больше, чем третий класс?

Решение:

  1. n1 : n2 = 4,5: 3 = 45: 30 = 3: 2.
  2. 40% от 3: 3 0,4 = 1,2(ч.) – приходится на третий класс
  3. n1 : n2 : n3 = 3: 2: 1,2 = 30: 20: 12 =15: 10: 6.
  4. 10 – 6 = 4 (ч.) – приходится на 0,8 т металлолома.
  5. 0,8: 4 15 = 3 (т) – собрал первый класс.
  6. 0,8: 4 10 = 2 (т) – собрал второй класс.
  7. 0,8: 4 6 = 1,2 (т) – собрал третий класс.

Ответ: первый класс собрал 3 т металлолома, второй класс собрал
2 т металлолома, третий класс собрал 1,2 т металлолома.

Задача 6.

Три бригады начали одновременно пахоту земли. Норма вспашки первой бригады ко второй относится как 0,5 к 0,4, а норма вспашки второй бригады к третьей относится как 2 к 1,8; но первая и третья бригады увеличили нормы вспашки на 10%, а вторая бригада – на 20%. Таким образом, к одному и тому же сроку,первая бригада вспахала на 15,4 га больше, чем третья бригада. Сколько га земли вспахала к этому времени каждая бригада?

Решение:

  1. n1 : n2 = 0,5: 0,4 = 5: 4.
  2. n2 : n3 = 2: 1,8 = 20 = 18 = 10: 9
  3. выразим n 1 : n 2 : n 3 в одинаковых долях n 1 : n 2 : n 3 =25: 20: 18
  4. 10% от 25: 25 0,1 = 2,5; 25 + 2,5 = 27,5 (ч) составляет норма первой бригады после увеличения.
  5. 20% от 20: 20 0,2 = 4 ; 20 + 4 = 24 (ч) –составляет норма второй бригады после увеличения.
  6. 10% от 18: 18 0,1 = 1,8; 18 + 1,8 = 19,8 (ч) составляет норма третьей бригады после увеличения.
  7. n 1 : n 2 : n 3 =27,5: 24: 19,8 = 275: 240: 198
  8. 275 – 198 – 77(ч) – приходится на 14, 4 га земли
  9. 15,4: 77 = 0,2 (га) – приходится на одну часть.
  10. 0,2 275 = 55 (га) – вспахала первая бригада.
  11. 0,2 240 = 48(га) – вспахала вторая бригада.
  12. 0,2 198 = 39,6 (га) – вспахала третья бригада.

Ответ: 55 га земли вспахала первая бригада, 48 га земли спахала вторая бригада, 39,6 га земли вспахала третья бригада.

Предлагаю несколько задач для самостоятельного решения.

Задача 1.

Колхоз засыпал в три склада картофель в отношении 1,3 к 2,5 к 1,2, причем во второй склад засыпали на 43,2 тонны картофеля больше, чем в первый склад. В течение месяца с первого склада вывезли 40% имевшегося там картофеля, со второго - 30%, а с третьего – 25% имевшегося там картофеля. Сколько картофеля вывезли с трех складов?
Ответ: вывезли всего 56,62 т картофеля.

Задача 2.

Магазин продавал муку в течение четырех дней. Количество муки, проданной за первые три дня, относится, как 1,8 к 2,8 к 2,6. В четвертый день продали 840 килограммов муки, что составляет 56% всей муки, проданной за четыре дня. Сколько муки продавали каждый день?

Задача 3.

Колхоз засыпал зерно в три склада. На первом складе было 40% всего зерна, засыпанного в три склада. Количество зерна, засыпанного во второй и третий склады, относится, как 16 к 21. Сколько зерна было на первом складе, если на третьем складе было на 450 ц больше, чем на втором.
Ответ: 2220 ц зерна было засыпано в первый склад.

Задача 4.

Три цеха изготовили 6500 деталей. Количество деталей, изготовленных первым и вторым цехами, относится, как 0,1875 к 0,25., количество деталей, изготовленных третьим цехом на 50% больше, чем количество деталей, изготовленных вторым цехом.. Сколько деталей изготовил каждый цех.

Задача 5.

Отряд отправился в поход из пункта А в пункт В. Первую часть пути школьники проехали на велосипедах, вторую часть пути прошли пешком, а оставшиеся 30 километров проплыли на лодке. Зная, что длины этих частей пути относятся, как 1,625 к 1,3 к 3, 25, определите длину всего маршрута.
Ответ: длина всего маршрута 57 километров.

Задача 6.

Из четырех чисел первые три относятся между собой, как , а четвертое составляет 40% от первого числа. Найти сумму всех четырех чисел, если первое больше суммы остальных на 40.

Продолжим решение задач.

Задача 7.

Найти сумму трех чисел, зная, что первое число равно 100, а первое число относится ко второму, как ; а второе к третьему, как 12 к 7.

Решение:

Ответ: сумма трех чисел равна 385.

Задача 8.
Найти сумму трех чисел, зная, что первое число относится к третьему, как ; второе число относится к третьему как 5 к 2, а сумма первых двух чисел равна 500.

Решение:

Ответ: сумма трех чисел равна 650.

Задача 9.

Найти каждое из трех чисел, если первое число относится ко второму как 0,6: 0,75, а второе к третьему, как 1: 0,9. Сумма первого и третьего чисел на 105 больше второго числа.

Решение:

  1. n 1 : n 3 = 0,6: 0,75 = 60: 75 = 4: 5
  2. n 2 : n 3 = 1: 0,9 = 10: 9.
  3. выразим n 1 : n 2 : n 3 в одинаковых долях n 1 : n 2 : n 3 = 8: 10: 9.
  4. (8 + 9) – 10 = 7 (ч.) – приходится на 105.
  5. 105: 7 8 = 120 – первое число.
  6. 105: 7 10 – 150 – второе число.
  7. 105: 7 9 = 135 – третье число.

Ответ: 120; 150; 135.

Задача 10.

Из данных четырех чисел первые три относятся, как , а четвертое составляет 15% второго числа. Найти эти числа, если известно, что второе число больше суммы остальных на 8.

Решение:

Ответ: 48; 80; 12; 12.

Задача 11.

Задача 12.

Три колхоза построили хлебозавод. Суммы, внесенные колхозами в строительство, относятся, как . Сколько денег внес каждый колхоз, если стройматериалы стоят 1620 миллионов рублей, расход на рабочую силу составляет от стоимости материала, на оборудование израсходовали стоимости материала и рабочей силы вместе?

Решение:

Ответ: на материалы – 2700 млн.рублей; на рабочую силу – 3600 млн.рублей; на оборудование – 4500 млн. рублей.

Две величины y и x , связанные зависимостью

прямо пропорциональными . Число k называется коэффициентом прямой пропорциональности .

Графиком прямо пропорциональной зависимости величин является прямая линия . Например, при k = 2 график прямо пропорциональной зависимости имеет следующий вид

Отношение прямо пропорциональных величин является постоянным числом и равно k :

Две величины y и x , связанные зависимостью

где k – некоторое число, называются обратно пропорциональными . Число k называется коэффициентом обратной пропорциональности .

Графиком обратно пропорциональной зависимости величин является гипербола . Например, при k = 2 график обратно пропорциональной зависимости имеет следующий вид

Произведение обратно пропорциональных величин является постоянным числом и равно k :

Пример 1 . Число 110 разделить на три слагаемых прямо пропорционально числам 1, 3 и 7 .

Решение . Если обозначить слагаемые буквами a , b и c , а коэффициент прямой пропорциональности буквой k и воспользоваться тем, что отношение прямо пропорциональных величин является числом постоянным, то будут выполнены соотношения:

Следовательно,

b = 3a , c = 7a .

Таким образом,

b = 3a = 30, c = 7a = 70.

Итак, первое слагаемое равно 10 , второе слагаемое равно 30 , а третье слагаемое равно 70 . Их сумма равна 110 .

Ответ : 10 , 30 , 70 .

Пример 2 . Число 40 разделить на два слагаемых обратно пропорционально числам 1 и .

Решение . Если обозначить слагаемые буквами a и b , а коэффициент обратной пропорциональности буквой k , и воспользоваться тем, что произведение обратно пропорциональных величин является числом постоянным, то будут выполнены соотношения:

Следовательно:

b = 3a , a + b = 40,
a + 3a = 40,
4a = 40,
a = 10, b = 30.

Итак, первое слагаемое равно 10 , а второе слагаемое равно 30 . Их сумма равна 40 .

Ответ : 10 , 30 .

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

У нас также для школьников организованы