Теорема косинусов Теорема (косинусов). Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон. Визуальный гид (2019)

Пифагор - греческий учёный, живший около 2500 лет назад (564-473 гг. до нашей эры).

Пусть дан прямоугольный треугольник, стороны которого а , b и с (рис. 267).

Построим на его сторонах квадраты. Площадиэтих квадратов соответственно равны а 2 , b 2 и с 2 . Докажем, что с 2 = а 2 + b 2 .

Построим два квадрата МКОР и М’К’О’Р’ (рис. 268, 269), приняв за сторону каждого из них отрезок, равный сумме катетов прямоугольного треугольника АBС.

Выполнив в этих квадратах построения, показанные на риунках 268 и 269, мы увидим, что квадрат МКОР разбился на два квадрата с площадями а 2 и b 2 и четыре равных прямоугольных треугольника, каждый изкоторых равен прямоугольному треугольнику АВС. Квадрат М’К’О’Р’ разбился на четырёхугольник (он на рисунке 269 заштрихован) и четыре прямоугольных треугольника, каждый из которых также равен треугольнику АBС. Заштрихованный четырёхугольник - квадрат, так как стороны его равны (каждая равна гипотенузе треугольника АBС, т. е. с ), а углы - прямые ∠1 + ∠2 = 90°, откуда ∠3 = 90°).

Таким образом, сумма площадей квадратов, построенных на катетах (на рисунке 268 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырёх равных треугольников, а площадь квадрата, построенного на гипотенузе (на рисунке 269 этот квадрат тоже заштрихован), равна площади квадрата М’К’О’Р’, равного квадрату МКОР, без суммы площадей четырёх таких же треугольников. Следовательно, площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

Получаем формулу с 2 = а 2 + b 2 , где с - гипотенуза, а и b - катеты прямоугольного треугольника.

Теорему Пифагора кратко принято формулировать так:

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Из формулы с 2 = а 2 + b 2 можно получить такие формулы:

а 2 = с 2 - b 2 ;

b 2 = с 2 - а 2 .

Этими формулами можно пользоваться для нахождения неизвестной стороны прямоугольного треугольника по двум данным его сторонам.

Например:

а) если даны катеты а = 4 см, b = 3 см, то можно найти гипотенузу (с ):

с 2 = а 2 + b 2 , т. е. с 2 = 4 2 + 3 2 ; с 2 = 25, откуда с = √25 = 5(см);

б) если даны гипотенуза с = 17 см и катет а = 8 см, то можно найти другой катет (b ):

b 2 = с 2 - а 2 , т. е. b 2 = 17 2 - 8 2 ; b 2 = 225, откуда b = √225 = 15 (см).

Следствие: Если в двух прямоугольных треугольниках ABC и А 1 В 1 С 1 гипотенузы с и с 1 равны, а катет b треугольника АBС больше катета b 1 треугольника А 1 В 1 C 1 ,

то катет а треугольника ABC меньше катета а 1 треугольника А 1 В 1 C 1 .

В самом деле, на основании теоремы Пифагора получим:

а 2 = с 2 - b 2 ,

а 1 2 = с 1 2 - b 1 2

В записанных формулах уменьшаемые равны, а вычитаемое в первой формуле больше вычитаемого во второй формуле, следовательно, первая разность меньше второй,

т. е. а 2 а 1 2 . Откуда а а 1 .

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

между сторонами прямоугольного треугольника .

Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Геометрическая формулировка теоремы Пифагора.

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата , построенного на гипотенузе , равна сумме площадей квадратов ,

построенных на катетах.

Алгебраическая формулировка теоремы Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

измерив только длины сторон прямоугольного треугольника .

Обратная теорема Пифагора.

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

треугольник прямоугольный.

Или, иными словами:

Для всякой тройки положительных чисел a , b и c , такой, что

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора для равнобедренного треугольника.

Теорема Пифагора для равностороннего треугольника.

Доказательства теоремы Пифагора.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

доказательства методом площадей , аксиоматические и экзотические доказательства (например,

с помощью дифференциальных уравнений ).

1. Доказательство теоремы Пифагора через подобные треугольники.

Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим

её основание через H .

Треугольник ACH подобен треугольнику AB C по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения:

получаем:

,

что соответствует -

Сложив a 2 и b 2 , получаем:

или , что и требовалось доказать.

2. Доказательство теоремы Пифагора методом площадей.

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

  • Доказательство через равнодополняемость.

Расположим четыре равных прямоугольных

треугольника так, как показано на рисунке

справа.

Четырёхугольник со сторонами c - квадратом,

так как сумма двух острых углов 90°, а

развёрнутый угол — 180°.

Площадь всей фигуры равна, с одной стороны,

площади квадрата со стороной (a+b ), а с другой стороны, сумме площадей четырёх треугольников и

Что и требовалось доказать.

3. Доказательство теоремы Пифагора методом бесконечно малых.


Рассматривая чертёж, показанный на рисунке, и

наблюдая изменение стороны a , мы можем

записать следующее соотношение для бесконечно

малых приращений сторон с и a (используя подобие

треугольников):

Используя метод разделения переменных, находим:

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

Интегрируя данное уравнение и используя начальные условия, получаем:

Таким образом, мы приходим к желаемому ответу:

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

данном случае катет b ). Тогда для константы интегрирования получим:

Измерены одной единицей, то квадрат числа, выражающего гипотенузу равен сумме квадратов чисел, выра жающих катеты.

Эту теорему обыкновенно выражают сокращенно так:

Квадрат гипотенузы равен сумме квадратов катетов.

Это соотношение было впервые замечено греческим геометром Пифагором (VI в. до н.э.) и носит поэтому его имя - теорема Пифагора .

Теорема .

острого угла , равен сумме квадратов двух других сторон без удвоенного произведения какой-нибудь из этих сторон на ее отрезок от вершины острого угла до высоты.

Пусть B С - сторона треугольника AB С (черт. 1 и черт. 2), лежащая против острого угла A , и BD - высота опущенная на какую-либо из остальных сторон, например, на A С (или на ее продолжение).Требуется доказать, что:

BC 2 = AB 2 + A С 2 - 2 A С. A D.

Из прямоугольных треугольников BDС и AB D выводим:

BC 2 = BD 2 +D С 2 [ 1 ] ;

BD 2 = AB 2 - A D 2 [ 2] .

С другой стороны: D С = AС-A D (черт. 1) или D С = A D -AС (черт. 2). В обоих случаях для D С 2 получим одно и то же выражение:

D С 2 = (A С -A D) 2 = A С 2 - 2A С . A D + A D 2 ;

D С 2 = (A D -A С ) 2 = A D 2 - 2A D . A С + A С 2 .

Подставив в равенство вместо BD 2 и D С 2 их выражения из равенств и , получим:

BC 2 = AB 2 - A D 2 + A С 2 - 2 A С . A D + A D 2 .

Это равенство, после сокращения членов -A D 2 и + A D 2 , и есть то самое, которое требовалось доказать.

Замечание. Доказанная теорема остается верной и тогда, когда угол С прямой. Тогда отрезок СD обратится в ноль, т.е. AС станет равна AD, и мы будем иметь:

BC 2 = AB 2 + A С 2 - 2A С 2 = AB 2 - A С 2 .

Что согласуется с теоремой о квадрате гипотенузы .

Теорема.

В треугольнике квадрат стороны, лежащей против тупого угла , равен сумме квадратов двух других сторон, сложенных с удвоенным произведением какой-нибудь из этих сторон на отрезок ее продолжения от вершины тупого угла до высоты. Доказательство аналогично предыдущему.

Следствие.

Из трех последних теорем выводим, что квадрат стороны треугольника равен, меньше или больше суммы квадратов других сторон, смотря по тому, будет ли противолежащий угол прямой, острый или тупой.

Отсюда следует обратное предложение: Угол треугольника окажется прямым, острым или тупым, смотря по тому, будет ли квадрат противолежащей стороны равен, меньше или больше суммы квадратов других сторон.

Вычисление высоты треугольника по его сторонам.

Обозначим высоту , опущенную на сторону а треугольника AB С , через h a . Чтобы вычислить ее, предварительно из уравнения:

b 2 = a 2 + с 2 - 2 a с .

находим отрезок основания с’:

.

После чего из DABD определяем высоту, как катет:

.

Таким же путем можно определить высоты h b и h с, опущенные на стороны b и с.

Вычисление медиан треугольника по его сторонам.

Пусть даны стороны треугольника AB С и требуется вычислить его медиану BD . Для этого продолжим ее на расстояние DE = BD и точку E соединим с A и С . Тогда получим параллелограмм ABCE .

Применяя к нему предыдущую теорему, найдем: BE 2 = 2 AB 2 + 2 B С 2 - A С 2 .

Теорема косинусов Теорема (косинусов). Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними, c 2 = a 2 + b 2 – 2ab cos C. Доказательство: Обозначим АВ = с, ВС = а, АС = b. Из вершины А опустим перпендикуляр АD. Тогда АD = b sin C, CD = b cos C, BD = a – b cos C. По теореме Пифагора имеем c 2 = (a – b cos C) 2 + (b sin C) 2 = a 2 – 2ab cos C + b 2 cos 2 C + b 2 sin 2 C = a 2 + b 2 – 2ab cos C. Самостоятельно рассмотрите случаи прямого и тупого угла С.
























Упражнение 12 Ответ: а) острый; При каких значениях угла А квадрат стороны треугольника, лежащей против этого угла: а) меньше суммы квадратов двух других сторон; б) равен сумме квадратов двух других сторон; в) больше суммы квадратов двух других сторон? б) прямой;в) тупой.








Упражнение 17 Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон. Доказательство. По теореме косинусов имеем Складывая эти равенства и учитывая, что косинус угла ADC равен минус косинус угла BAD, получим требуемое утверждение.




Пусть в треугольнике ABC AB = c, AC = b, BC = a. Докажите, что для медианы m c, проведенной из вершины C, имеет место формула Доказательство. По теореме косинусов, примененной к треугольникам ACD и BCD, имеем: Складывая эти равенства, получим равенство из которого непосредственно следует искомая формула. Упражнение 19




Пусть в треугольнике ABC AC = b, BC = a. Докажите, что для биссектрисы l c, проведенной из вершины C, имеет место формула где c, c – отрезки на которые биссектриса делит сторону AB Доказательство. По теореме косинусов, примененной к треугольникам ACD и BCD, имеем: Умножим первое равенство на a, второе на b и вычтем из первого равенства второе. Делая тождественные преобразования, получим равенство из которого непосредственно следует искомая формула. Упражнение 22



Упражнение 27 Можно ли описать окружность около четырехугольника со сторонами 1 см, 2 см, 3 см, 4 см? Более точная формулировка: существует ли четырехугольник со сторонами 1 см, 2 см, 3 см, 4 см, около которого можно описать окружность? Решение. Около четырехугольника ABCD можно описать окружность в случае, если По теореме косинусов Откуда Следовательно, такой четырехугольник существует.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.