Теорема косинусов Теорема (косинусов). Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон. Треугольник. Числовые зависимости между элементами треугольника (сторон, высот, медиан)




Доказательство: 1.Рассмотрим А 1 В 1 С 1 с прямым углом С 1, у которого А 1 С 1 =АС, В 1 С 1 =ВС. 2. По т. Пифагора А 1 В 1 2 = А 1 С В 1 С Но АВ 2 = АС 2 + ВС 2 (по условию теоремы). Значит, АВ 2 = А 1 В 1 2,откуда АВ= А 1 В А 1 В 1 С 1 = АВС (по трем сторонам), поэтому С= С Итак, АВС – прямоугольный с прямым углом С. Ч. и т. д. С А В


Исследуя множество натуральных чисел 1,2,3,… древние греки первыми осознали мысль о бесконечности объектов, изучаемых математикой. Поворотным моментом стало доказательство теоремы а 2 + в 2 = с 2. Согласно легенде Пифагор в знак благодарности принес богам в жертву 100 быков. Пифагорейцы (последователи и ученики Пифагора) знали тройки (3,4,5), (5,12,13), (7,24,25).


N. Проверьте для различных значений m и n. Кроме этого к нам от П" title="Пифагор или кто-то из его учеников нашли формулы для отыскания бесконечного множества таких троек: a = 2mn, b = m 2 – n 2, c =m 2 + n 2, где m и n –любые натуральные числа,такие, что m>n. Проверьте для различных значений m и n. Кроме этого к нам от П" class="link_thumb"> 5 Пифагор или кто-то из его учеников нашли формулы для отыскания бесконечного множества таких троек: a = 2mn, b = m 2 – n 2, c =m 2 + n 2, где m и n –любые натуральные числа,такие, что m>n. Проверьте для различных значений m и n. Кроме этого к нам от Пифагора пришли следующие термины «квадрат» для чисел n 2 и куб для чисел n 3. n. Проверьте для различных значений m и n. Кроме этого к нам от П"> n. Проверьте для различных значений m и n. Кроме этого к нам от Пифагора пришли следующие термины «квадрат» для чисел n 2 и куб для чисел n 3."> n. Проверьте для различных значений m и n. Кроме этого к нам от П" title="Пифагор или кто-то из его учеников нашли формулы для отыскания бесконечного множества таких троек: a = 2mn, b = m 2 – n 2, c =m 2 + n 2, где m и n –любые натуральные числа,такие, что m>n. Проверьте для различных значений m и n. Кроме этого к нам от П"> title="Пифагор или кто-то из его учеников нашли формулы для отыскания бесконечного множества таких троек: a = 2mn, b = m 2 – n 2, c =m 2 + n 2, где m и n –любые натуральные числа,такие, что m>n. Проверьте для различных значений m и n. Кроме этого к нам от П">

Стороны треугольника и угол , противолежащий стороне .

Следствие 1.Следствие из теоремы косинусов (о связи диагоналей и сторон параллелограмма).Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

d 1 2 + d 2 2 = 2 a 2 + 2 b 2

Следствие 2.Следствие из теоремы косинусов об определении вида треугольника.

Пусть с- наибольшая сторона треугольника.

Если с 2 =а 2 +b 2 , то угол против с=90 градусов и треугольник прямоугольный.

Если с 2 <а 2 +b 2 , то угол против с<90 градусов и треугольник остроугольный.

Если с 2 >а 2 +b 2 , то угол против с>90 градусов и треугольник тупоугольный.

Формула 1.Формулы для вычисления длины медианы треугольника.

или

Формула 2. , угол лежит напротив стороны а.

9. Теорема синусов. Следствие теоремы синусов(о радиусе описанной окружности).

Теорема 1 . Теорема синусов – стороны треугольника пропорциональны синусам противолежащих углов.

где , , - стороны треугольника, - соответственно противолежащие им углы.

Следствие 1.Следствие из теоремы синусов (о радиусе описанной окружности). Диаметр описанной окружности около треугольника равен отношению стороны треугольника к синусу противоположного угла.

где , , - стороны треугольника, - соответственно противолежащие им углы, а - радиус окружности, описанной вокруг треугольника.

10. Свойства прямоугольного треугольника

Теорема Пифагора . В любом прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Синус угла х – это отношение противолежащего катета к гипотенузе.

Косинус угла х – это отношение прилежащего катета к гипотенузе.

Тангенс угла х – э то отношение противолежащего катета к прилежащему.

Котангенс угла х – это отношение прилежащего катета к противолежащему.

Свойство высоты прямоугольного треугольника, опущенного на гипотенузу.

Свойство: 1. В любом прямоугольном треугольнике, высота, опущенная из прямого угла(на гипотенузу), делит прямоугольный треугольник, на три подобных треугольника.

Свойство: 2. Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу(или среднему геометрическому тех отрезков на которые высота разбивает гипотенузу).

Свойство: 3. Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.

Свойство: 4. Катет против угла в 30 градусов равен половине гипотенузы.

Формула 1. , где гипотенуза;

Формула 2. , где гипотенуза; , катеты.

Свойство: 5. В прямоугольном треугольнике медиана проведенная к гипотенузе, равна ее половине и равна радиусу описанной окружности.

Свойство: 6. Зависимость между сторонами и углами прямоугольного треугольника:

11. Свойство диаметра перпендикулярного хорде.

Свойство: 1. Диаметр перпендикулярный хорде делит эту хорду пополам.

12. Свойство дуг, заключенных между параллельными хордами.

Свойство: 1. Дуги, заключенные между параллельными хордами, равны.

13. Свойства касательной.

Определение . Касательная – прямая, имеющая только одну точку пересечения с окружностью.

Свойство: 1. Касательная к окружности перпендикулярна к радиусу проведенного в точку касания.

Свойство: 2. Две касательные проведенные из одной точки к окружности – равны.

14. Определение вписанного угла, центрального угла. Измерение их величин. Свойство вписанного угла, его связь с центральным углом, опирающимся на туже хорду.

Определение 1 . Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность – вписанный угол.

Определение 2 . Центральный угол в окружности – плоский угол с вершиной в ее центре.

Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Свойство: 1. Все вписанные углы, опираются на одну и ту же дугу, равны между собой.

Свойство: 2. Вписанный угол, опирающийся на диаметр прямой.

15. Угол с вершиной внутри круга; угол с вершиной вне круга; угол межу касательной и хордой. Измерение их величин.

Свойство: 1. Угол, вершина которого лежит внутри круга, измеряется полусуммой двух дуг, из которых одна заключается между его сторонами, а другая между продолжениями сторон.

Свойство: 2. Угол, вершина которого лежит вне круга, измеряется полуразностью двух дуг, заключенных между его сторонами.

Свойство: 3. Угол, составленный касательной и хордой, измеряется половиной дуги заключенной внутри него.

16. Свойство хорд, пересекающихся в круге.

Свойство: 1. Если хорды, АВ и СD окружности пересекаются в точке S, то AS ВS=DS CS.

17. Свойство секущей и касательной, проведенной из одной точки.

Свойство: 1. Произведение отрезков секущей окружности равно квадрату отрезка касательной, проведенной из той же точки.

18. Свойство секущих, проведенных из одной точки.

Если из одной точки P к окружности проведены две секущие, пересекающие окружность в точках A,B,C,D соответственно, то AP ВP=CP DP.

19. Свойства вписанного и описанного четырехугольника.

Свойство: 1. Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равна 180 градусов.

Свойство: 2. Четырехугольник можно описать около окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

20. Правильный многогранник. Формулы для вычисления радиусов вписанной и описанной окружности.

Определение 1. Правильныймногоугольник - это выпуклый многоугольник, у которого все стороны между собой равны и все углы между собой равны.Площадь правильного многоугольника

Формула 1.Для радиуса окружности, описанной около правильного n-угольника.

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

между сторонами прямоугольного треугольника .

Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Геометрическая формулировка теоремы Пифагора.

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата , построенного на гипотенузе , равна сумме площадей квадратов ,

построенных на катетах.

Алгебраическая формулировка теоремы Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

измерив только длины сторон прямоугольного треугольника .

Обратная теорема Пифагора.

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

треугольник прямоугольный.

Или, иными словами:

Для всякой тройки положительных чисел a , b и c , такой, что

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора для равнобедренного треугольника.

Теорема Пифагора для равностороннего треугольника.

Доказательства теоремы Пифагора.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

доказательства методом площадей , аксиоматические и экзотические доказательства (например,

с помощью дифференциальных уравнений ).

1. Доказательство теоремы Пифагора через подобные треугольники.

Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим

её основание через H .

Треугольник ACH подобен треугольнику AB C по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения:

получаем:

,

что соответствует -

Сложив a 2 и b 2 , получаем:

или , что и требовалось доказать.

2. Доказательство теоремы Пифагора методом площадей.

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

  • Доказательство через равнодополняемость.

Расположим четыре равных прямоугольных

треугольника так, как показано на рисунке

справа.

Четырёхугольник со сторонами c - квадратом,

так как сумма двух острых углов 90°, а

развёрнутый угол — 180°.

Площадь всей фигуры равна, с одной стороны,

площади квадрата со стороной (a+b ), а с другой стороны, сумме площадей четырёх треугольников и

Что и требовалось доказать.

3. Доказательство теоремы Пифагора методом бесконечно малых.


Рассматривая чертёж, показанный на рисунке, и

наблюдая изменение стороны a , мы можем

записать следующее соотношение для бесконечно

малых приращений сторон с и a (используя подобие

треугольников):

Используя метод разделения переменных, находим:

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

Интегрируя данное уравнение и используя начальные условия, получаем:

Таким образом, мы приходим к желаемому ответу:

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

данном случае катет b ). Тогда для константы интегрирования получим:

Измерены одной единицей, то квадрат числа, выражающего гипотенузу равен сумме квадратов чисел, выра жающих катеты.

Эту теорему обыкновенно выражают сокращенно так:

Квадрат гипотенузы равен сумме квадратов катетов.

Это соотношение было впервые замечено греческим геометром Пифагором (VI в. до н.э.) и носит поэтому его имя - теорема Пифагора .

Теорема .

острого угла , равен сумме квадратов двух других сторон без удвоенного произведения какой-нибудь из этих сторон на ее отрезок от вершины острого угла до высоты.

Пусть B С - сторона треугольника AB С (черт. 1 и черт. 2), лежащая против острого угла A , и BD - высота опущенная на какую-либо из остальных сторон, например, на A С (или на ее продолжение).Требуется доказать, что:

BC 2 = AB 2 + A С 2 - 2 A С. A D.

Из прямоугольных треугольников BDС и AB D выводим:

BC 2 = BD 2 +D С 2 [ 1 ] ;

BD 2 = AB 2 - A D 2 [ 2] .

С другой стороны: D С = AС-A D (черт. 1) или D С = A D -AС (черт. 2). В обоих случаях для D С 2 получим одно и то же выражение:

D С 2 = (A С -A D) 2 = A С 2 - 2A С . A D + A D 2 ;

D С 2 = (A D -A С ) 2 = A D 2 - 2A D . A С + A С 2 .

Подставив в равенство вместо BD 2 и D С 2 их выражения из равенств и , получим:

BC 2 = AB 2 - A D 2 + A С 2 - 2 A С . A D + A D 2 .

Это равенство, после сокращения членов -A D 2 и + A D 2 , и есть то самое, которое требовалось доказать.

Замечание. Доказанная теорема остается верной и тогда, когда угол С прямой. Тогда отрезок СD обратится в ноль, т.е. AС станет равна AD, и мы будем иметь:

BC 2 = AB 2 + A С 2 - 2A С 2 = AB 2 - A С 2 .

Что согласуется с теоремой о квадрате гипотенузы .

Теорема.

В треугольнике квадрат стороны, лежащей против тупого угла , равен сумме квадратов двух других сторон, сложенных с удвоенным произведением какой-нибудь из этих сторон на отрезок ее продолжения от вершины тупого угла до высоты. Доказательство аналогично предыдущему.

Следствие.

Из трех последних теорем выводим, что квадрат стороны треугольника равен, меньше или больше суммы квадратов других сторон, смотря по тому, будет ли противолежащий угол прямой, острый или тупой.

Отсюда следует обратное предложение: Угол треугольника окажется прямым, острым или тупым, смотря по тому, будет ли квадрат противолежащей стороны равен, меньше или больше суммы квадратов других сторон.

Вычисление высоты треугольника по его сторонам.

Обозначим высоту , опущенную на сторону а треугольника AB С , через h a . Чтобы вычислить ее, предварительно из уравнения:

b 2 = a 2 + с 2 - 2 a с .

находим отрезок основания с’:

.

После чего из DABD определяем высоту, как катет:

.

Таким же путем можно определить высоты h b и h с, опущенные на стороны b и с.

Вычисление медиан треугольника по его сторонам.

Пусть даны стороны треугольника AB С и требуется вычислить его медиану BD . Для этого продолжим ее на расстояние DE = BD и точку E соединим с A и С . Тогда получим параллелограмм ABCE .

Применяя к нему предыдущую теорему, найдем: BE 2 = 2 AB 2 + 2 B С 2 - A С 2 .