Общие сведения о параметрах люминофоров. Процесс приготовления и меры безопасности. Энергетический выход люминесценции

ЛЮМИНОФОРЫ

(от лат. lumen, род. падеж luminis - свет и греч. phoros - несущий), синтетич. в-ва, способные преобразовывать разл. виды энергии в световую - люминесцировать. По типу возбуждения подразделяются на фото-, катодо-, электро-, рентгено-, радио-, хемилюминофоры и др. (см. также Люминесценция, Хемилюминесценция ).
Неорганические Л. (фосфоры). Их свечение м. б. обусловлено как св-вами в-ва основы, так и наличием примесей - активаторов, к-рые образуют в осн. в-ве центры свечения, соактиватора и сенсибилизатора. Концентрация активатора обычно составляет 10 -1 -10 -3 %. Существуют самоактивир. Л., не содержащие активаторов, напр. CaWO 4 . Л. обозначают ф-лой основы с указанием активатора и сенсибилизатора, часто соактиватора, напр. ZnS: Ag, Ni; в-во после знака ":" - активатор, соактиватор или сенсибилизатор. Большинство неорг. Л. имеет кристаллич. структуру и относятся к кристаллофосфорам. Требования к Л. - яркость и цвет свечения, длительность послесвечения, дисперсность, и др. - определяются параметрами устройств, в к-рых их применяют. Л. обычно используют в виде относительно тонких поликристаллич. слоев (1-100 мкм), наносимых на внутр. пов-сть светящихся - экранов электровакуумных приборов. Состав нек-рых фото- и катодолюминофоров и области их применения представлены в таблице. Фотолюминофоры возбуждаются оптич. излучением в диапазоне от вакуумной УФ до ближней ИК области. наиб. широкое применение фотолюминофоры находят в люминесцентных лампах низкого давления. В лампах для общего освещения используют галофосфат Са -3[Са 3 (РО 4) 2 ].Са(Сl, F) 2: Sb, Mn, в лампах высокого давления с исправленной цветопередачей - смеси на основе фосфатов и силикатов, излучающие в синей, зеленой и красной областях спектра. Свечение возбуждается резонансной линией Hg с l = 253,7 нм. Световая отдача (отношение светового потока лампы к мощности) ламп с галофосфатным Л. составляет 85 Лм/Вт, ламп со смесями - от 50 до 60 Лм/Вт. Созданы лампы "нового поколения" с Л. на основе РЗЭ ( , фосфаты и др.), сочетающие высокую светоотдачу (~ 95 Лм/Вт) с высоким качеством цветопередачи. Фотолюминофоры применяют для исправления цветности ламп высокого давления, ламп, излучающих в УФ области, и т. д. (см. табл.). Катодолюминофоры возбуждаются пучком электронов; используются в экранах кинескопов, в электронных микроскопах, электроннолучевых и радиолокац. установках. В кинескопах цветного изображения применяют Л. с синим (l макс 455 нм), зеленым (l макс 525 нм) и красным (l макс 612 и 620 нм) цветом свечения. Их наносят на экран кинескопа в виде точек, расположенных треугольником, или чередующихся полос. Суммарный цвет изображения получается при сложении трех цветов свечения нанесенных Л. и зависит от соотношения их яркостей. Для получения хорошей цветопередачи цвет свечения исходных Л. должен быть по возможности более насыщенным, для чего поверхность "синего" Л. пигментируют СоАl 2 О 4 , а "красного" - Fe 2 O 3 .


* При напряжении 6 кВ. ** При напряжении 14 кВ. *** При напряжении 12 кВ.

Покрытие кинескопов черно-белого изображения состоит из смеси Л., имеющих синий и желто-зеленый (l макс 560 нм) цвет свечения, обеспечивающих в целом белый свет свечения кинескопа. Для повышения контрастности используют пигментирование "синего" Л. красителем. Электролюминофоры возбуждаются переменным или постоянным электрич. полем. Hаиб. распространенные электролюминофоры - ZnS: Сu и Zn(Cd)S(Se) : Сu. В зависимости от введенного дополнительно к Сu соактиватора (Сl, Аl, Вr, Са или Mn) получают Л., обладающие голубым, зеленым, желтым, оранжевым и красным цветом свечения. Рентгенолюминофоры возбуждаются рентгеновскими лучами; применяются при рентгенологич. обследованиях человека и в пром. дефектоскопии. Л. CaWO 4 нашел применение в мед. экранах, пром. рентгенографии с использованием малосeребряных материалов и дефектоскопии при высоких напряжениях. В разл. типах мед. рентгенологич. экранов применяют также BaSO 4: Pb; (Sr,Ba)SO 4: Eu; BaF,Cl: Eu; Ba 3 (PO 4) 2: Eu; LaOBr: Tb,Yb; ZnS: Ag; ZnS.CdS: Ag; CsI: Tl. Радиолюминофоры возбуждаются радиоактивным излучением; применяются для дозиметрии и радиометрии. При дозиметрии обычно используют св-во нек-рых Л. высвечивать при повышении т-ры энергию, запасенную при возбуждении. Для дозиметрии g- и рентгеновского излучения применяют LiF: Mg,Ti и MgB 4 O 7: Dy, для быстрых нейтронов - CaS: Na, Bi, Zn; для a-радиометрии - ZnS: Ag. Среди неорг. Л. большое практич. применение находят также люминесцирующие стекла. Их получают при варке стекла, добавляя в шихту активаторы, чаще РЗЭ или . Стекла обладают хорошей оптич. прозрачностью и могут применяться в качестве лазерных материалов, а также визуализаторов изображения.
Органические Л. (люминоры, органолюминофоры). Их свечение обусловлено хим. строением орг. соед. и сохраняется в разл. агрегатных состояниях. По хим. строению различают след. орг. Л.: ароматич. или их производные (полифенильные углеводороды, углеводороды с конденсированными ароматич. ядрами или арилэтиленовой и арилацетиленовой группировками), 5- и 6-членные гетероциклы и их производные, соед. с карбонильными группами; к орг. Л. относят также комплексы металлов с орг. лигандами. Орг. фотолюминофоры применяют в качестве флуоресцентных красок, свечение к-рых вызывается УФ и коротковолновым видимым излучением. Пигменты красок представляют собой твердые р-ры орг. Л. или их смесей с красителями в разл. смолах (чаще всего в составе карбамид-и меламиноформальдегилных смол, модифицированных одно- и многоатомными спиртами или арилсульфамидами). Для получения желтого цвета используют обычно 3-метоксибензантрон, голубого - арилэтиленовые замещенные 2,5-диарилоксазолов, оранжевого - смесь 3-метоксибензантрона с родаминами С и 6Ж. Нек-рые орг. Л. применяют для окрашивания пластмасс и синтетич. волокон, оптич. отбеливания тканей, бумаги, натуральных и искусств. волокон и разл. покрытий. Так, для окрашивания сополимеров винилхлорида применяют родамин С (красный цвет), 2,2"-дигидрокси-1,1"-нафтальазин (желтый), смесь 2,2"-дигидрокси-1,1"-нафтальазина с фталоцианином меди (зеленый), производные пиримидинантрона (красно-оранжевый), для окрашивания полистирола в оранжево-красные окраски - нафтоиленбензилимидазолы и его замещенные. При оптич. отбеливании Л., поглощая свет в ближней УФ-области, флуоресцируют в фиолетовой (l макс 415-429 нм), синей (430-440 нм) или зелено-синей (441-466 нм) частях видимой области спектра. Оптич. наложение их флуоресценции и желтых лучей, отраженных отбеливаемым материалом, вызывает ощущение белизны. При оптич. отбеливании используют производные стильбена, кумарина, пиразолина, нафталимида, бензоксазола и др. Орг. Л., способные испускать свет под действием радиоактивных излучений, применяют в качестве сцинтилляторов. Существуют монокристаллич. ( , тетрацен, карбазол, арилзамещенные этилена и оксазола), жидкие (полифенильные углеводороды, 2,5-диарилзамешенные оксазола) и пластмассовые орг. сцинцилляторы. Последние представляют собой твердые р-ры жидких сцинцилляторов в полимерных основах (полистироле, поливинилксилоле). Многие орг. Л. - активные среды жидкостных лазеров, напр. цианиновые, полиметиленовые и др. красители, люминесцентные индикаторы. Кроме того, орг. Л. применяют в люминесцентной дефектоскопии и аналит. химии (см. Люминесцентный анализ ), а также в мол. биологии и медицине (флуоресцеин, и др.) в качестве меток или зондов (см., напр., Липидные зонды ). О хеминолюминофорах см. Хемилюминесценция. Лит.: Гугель Б. М., Люминофоры для электровакуумной промышленности, М.. 1967; Неорганические люминофоры, М., 1975; Карнаухов В. Н., Люминесцентный клетки, М., 1978; Красовицкий Б. М., Болотин Б. М., Органические люминофоры, 2 изд., М., 1984; Тезисы докладов 5-го Всесоюзного совещания "Синтез, свойства, исследования, технология и применение люминофоров", ч. 1-2. Ставрополь. 1985. И. Ф. Голубев.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ЛЮМИНОФОРЫ" в других словарях:

    - (от лат. lumen, род. п. luminis свет и греч. phoros несущий), твёрдые и жидкие в ва, способные люминесцировать под действием разл. рода возбуждений (см. ЛЮМИНЕСЦЕНЦИЯ). По типу возбуждения различают фотолюминофоры, рентгенолюминофоры,… … Физическая энциклопедия

    - (от лат. lumen свет и греч. phoros несущий) органические и неорганические вещества, способные светиться (люминесцировать) под действием внешних факторов (см. Люминесценция). Важнейший вид люминофоров кристаллофосфоры. Люминофоры используют в… … Большой Энциклопедический словарь

    Современная энциклопедия

    Вещества, способные светиться (люминесцировать) под влиянием различных возбуждений. Используются в лампах дневного света, электронно лучевых трубках, как источники аварийного освещения в различных указателях и т. д. EdwART. Толковый Военно… … Морской словарь

    люминофоры - Вещества, способные светиться под действием внешних факторов. Тематики машиностроение в целом … Справочник технического переводчика

    Люминофоры - ЛЮМИНОФОРЫ, органические и неорганические вещества, способные светиться под воздействием различных факторов (смотри Люминесценция). Используют для изготовления телевизионных и других светящихся экранов, индикаторов, люминесцентных красок, ламп… … Иллюстрированный энциклопедический словарь

    ЛЮМИНОФОРЫ - твёрдые и жидкие вещества, в которых под действием внешних физ. факторов возникает (см.). По хим. природе Л. разделяются на органические и неорганические. Их используют в люминесцентном анализе, при производстве светящихся красок, в химии,… … Большая политехническая энциклопедия

    - (от лат. lumen свет и греч. phorós несущий), органические и неорганические вещества, способные светиться (люминесцировать) под действием внешних факторов (смотри Люминесценция). Важнейший вид люминофоров кристаллофосфоры. Люминофоры используют … Энциклопедический словарь

    - (от лат. lumen свет и греч. phoros несущий) вещества, способные преобразовывать поглощаемую ими энергию в световое излучение (люминесцировать). По химической природе люминофоры разделяются на неорганические, большинство из которых относится к… … Википедия

    Люминофоры - (от лат. lumen свет и греч. phoros несущий) твердые и жидкие вещества, способные люминесцировать под действием разного рода возбуждений, т. е. иметь дискретные (разделенные зонами запрещенных энергий) спектры излучения.… … Энциклопедический словарь по металлургии

Книги

  • Химические понятия и химические изобретения. Книга 3. Новые принципы выявления патентоспособных химических объектов , Е. А. Устинова. В книге 3 монографии представлены новый подход к выявлению патентоспособных технических решений и результаты применения его на практике. Метод основан на глубокомисследовании химической…

«светящихся в темноте».

Примерно полгода назад мы искали для себя дополнительный бизнес с элементами развлечения. Остановились на светящихся в темноте красках и предметах. Настоящий вау-эффект был, когда мы своими руками покрасили буквы из пенопласта. Писал об этом в июле.

Немного денег

Я получил несколько вопросов в личном кабинете по поводу создания своего небольшого бизнеса на люминофорах.

Позволю себе пару абзацев по этому поводу.

Ситуация неоднозначна. Я списывался примерно с 40 компаниями, которые являются поставщиками или представителями крупных оптовиков. Все очень по-разному в зависимости от выбранной ниши и конкретного города. Один товарищ, к примеру, писал, что у него упали продажи, когда наступили белые ночи.

Все наперебой пишут, что это легкий для подъема бизнеса. Нифига подобного. Люминофор – штука для многих непонятная. Все до сих пор еще вспоминают фосфор, который лет 15 уже как запрещен к свободному использованию и несомненно, вреден для здоровья.

По-настоящему заработать можно либо на услугах, связанных с применением люминофора (дизайн интерьеров, тюнинг авто), либо с продажей крупных партий краски/порошка. На перепродаже готовых изделий заработать сложно. Их хорошо держать в офисе в качестве примеров применений, чтобы можно было «пощупать».

Это связано с тем, что на большинстве сайтов поставщиков фотки такие, что приходилось заказывать все, чтобы посмотреть, как это на самом деле выглядит.

Немного картинок



Вобщем, ищите нишу и задавайте вопросы. Я отвечу всем.

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ЛЮМИНОФОРЫ (от латинского lumen, родительный падеж luminis - свет и греческого phoros - несущий), синтетич. вещества, способные преобразовывать различные виды энергии в световую - люминесцировать. По типу возбуждения подразделяются на фото-, катодо-, электро-, рентгено-, радио-, хемилюминофоры и др. (см. также Люминесценция, Хемилюминесценция).

Неорганические ЛЮМИНОФОРЫ (фосфоры). Их свечение может быть обусловлено как свойствами вещества основы, так и наличием примесей - активаторов, которые образуют в основные веществе центры свечения, соактиватора и сенсибилизатора. Концентрация активатора обычно составляет 10 -1 -10 -3 %. Существуют самоактивир. ЛЮМИНОФОРЫ, не содержащие активаторов, например CaWO 4 .

ЛЮМИНОФОРЫ обозначают формулой основы с указанием активатора и сенсибилизатора, часто соактиватора, например ZnS: Ag, Ni; вещество после знака ":" - активатор, соактиватор или сенсибилизатор. Большинство неорганическое ЛЮМИНОФОРЫ имеет кристаллич. структуру и относятся к кристаллофосфорам.

Требования к ЛЮМИНОФОРЫ - яркость и цвет свечения, длительность послесвечения, дисперсность, термостойкость и др. - определяются параметрами устройств, в которых их применяют.

ЛЮМИНОФОРЫ обычно используют в виде относительно тонких поликристаллич. слоев (1-100 мкм), наносимых на внутр. поверхность светящихся - экранов электровакуумных приборов. Состав некоторых фото- и катодолюминофоров и области их применения представлены в таблице.

Фотолюминофоры возбуждаются оптический излучением в диапазоне от вакуумной УФ до ближней ИК области. наиболее широкое применение фотолюминофоры находят в люминесцентных лампах низкого давления. В лампах для общего освещения используют галофосфат Са -3[Са 3 (РО 4) 2 ]* Са(Сl, F) 2: Sb, Mn, в лампах высокого давления с исправленной цветопередачей - смеси на основе фосфатов и силикатов, излучающие в синей, зеленой и красной областях спектра. Свечение возбуждается резонансной линией Hg с l = 253,7 нм. Световая отдача (отношение светового потока лампы к мощности) ламп с галофосфатным ЛЮМИНОФОРЫ составляет 85 Лм/Вт, ламп со смесями - от 50 до 60 Лм/Вт. Созданы лампы "нового поколения" с ЛЮМИНОФОРЫ на основе РЗЭ (алюминаты, фосфаты и др.), сочетающие высокую светоотдачу (~ 95 Лм/Вт) с высоким качеством цветопередачи. Фотолюминофоры применяют для исправления цветности ламп высокого давления, ламп, излучающих в УФ области, и т.д. (см. табл.).

Катодолюминофоры возбуждаются пучком электронов; используются в экранах кинескопов, в электронных микроскопах, электроннолучевых и радиолокац. установках.

В кинескопах цветного изображения применяют ЛЮМИНОФОРЫ с синим (l макс 455 нм), зеленым (l макс 525 нм) и красным (l макс 612 и 620 нм) цветом свечения. Их наносят на экран кинескопа в виде точек, расположенных треугольником, или чередующихся полос. Суммарный цвет изображения получается при сложении трех цветов свечения нанесенных ЛЮМИНОФОРЫ и зависит от соотношения их яркостей. Для получения хорошей цветопередачи цвет свечения исходных ЛЮМИНОФОРЫ должен быть по возможности более насыщенным, для чего поверхность "синего" ЛЮМИНОФОРЫ пигментируют СоАl 2 О 4 , а "красного" - Fe 2 O 3 .


* При напряжении 6 кВ. ** При напряжении 14 кВ. *** При напряжении 12 кВ.

Покрытие кинескопов черно-белого изображения состоит из смеси ЛЮМИНОФОРЫ, имеющих синий и желто-зеленый (l макс 560 нм) цвет свечения, обеспечивающих в целом белый свет свечения кинескопа. Для повышения контрастности используют пигментирование "синего" ЛЮМИНОФОРЫ красителем.

Электролюминофоры возбуждаются переменным или постоянным электрический полем. Hаиболее распространенные электролюминофоры - ZnS: Сu и Zn(Cd)S(Se) : Сu. В зависимости от введенного дополнительно к Сu соактиватора (Сl, Аl, Вr, Са или Mn) получают ЛЮМИНОФОРЫ, обладающие голубым, зеленым, желтым, оранжевым и красным цветом свечения.

Рентгенолюминофоры возбуждаются рентгеновскими лучами; применяются при рентгенологич. обследованиях человека и в пром. дефектоскопии. ЛЮМИНОФОРЫ CaWO 4 нашел применение в мед. экранах, пром. рентгенографии с использованием малосeребряных материалов и дефектоскопии при высоких напряжениях. В различные типах мед. рентгенологич. экранов применяют также BaSO 4: Pb; (Sr,Ba)SO 4: Eu; BaF,Cl: Eu; Ba 3 (PO 4) 2: Eu; LaOBr: Tb,Yb; ZnS: Ag; ZnS* CdS: Ag; CsI: Tl.

Радиолюминофоры возбуждаются радиоактивным излучением; применяются для дозиметрии и радиометрии. При дозиметрии обычно используют свойство некоторых ЛЮМИНОФОРЫ высвечивать при повышении температуры энергию, запасенную при возбуждении. Для дозиметрии g - и рентгеновского излучения применяют LiF: Mg,Ti и MgB 4 O 7: Dy, для быстрых нейтронов - CaS: Na, Bi, Zn; для a -радиометрии - ZnS: Ag.

Среди неорганическое ЛЮМИНОФОРЫ большое практическое применение находят также люминесцирующие стекла. Их получают при варке стекла, добавляя в шихту активаторы, чаще соли РЗЭ или актиноиды. Стекла обладают хорошей оптический прозрачностью и могут применяться в качестве лазерных материалов, а также визуализаторов изображения.

Органические ЛЮМИНОФОРЫ (люминоры, органолюминофоры). Их свечение обусловлено химический строением органическое соединение и сохраняется в различные агрегатных состояниях. По химический строению различают следующей органическое ЛЮМИНОФОРЫ: ароматические углеводороды или их производные (полифенильные углеводороды, углеводороды с конденсированными ароматические ядрами или арилэтиленовой и арилацетиленовой группировками), 5- и 6-членные гетероциклы и их производные, соединение с карбонильными группами; к органическое ЛЮМИНОФОРЫ относят также комплексы металлов с органическое лигандами.

Орг. фотолюминофоры применяют в качестве флуоресцентных красок, свечение которых вызывается УФ и коротковолновым видимым излучением. Пигменты красок представляют собой твердые растворы органическое ЛЮМИНОФОРЫ или их смесей с красителями в различные смолах (чаще всего в составе карбамид-и меламиноформальдегилных смол, модифицированных одно- и многоатомными спиртами или арилсульфамидами). Для получения желтого цвета используют обычно 3-метоксибензантрон, голубого - арилэтиленовые замещенные 2,5-диарилоксазолов, оранжевого - смесь 3-метоксибензантрона с родаминами С и 6Ж.

Некоторые органическое ЛЮМИНОФОРЫ применяют для окрашивания пластмасс и синтетич. волокон, оптический отбеливания тканей, бумаги, натуральных и искусств. волокон и различные покрытий. Так, для окрашивания сополимеров винилхлорида применяют родамин С (красный цвет), 2,2»-дигидрокси-1,1»-нафтальазин (желтый), смесь 2,2»-дигидрокси-1,1»-нафтальазина с фталоцианином меди (зеленый), производные пиримидинантрона (красно-оранжевый), для окрашивания полистирола в оранжево-красные окраски - нафтоиленбензилимидазолы и его замещенные.

При оптический отбеливании ЛЮМИНОФОРЫ, поглощая свет в ближней УФ-области, флуоресцируют в фиолетовой (l макс 415-429 нм), синей (430-440 нм) или зелено-синей (441-466 нм) частях видимой области спектра. Оптич. наложение их флуоресценции и желтых лучей, отраженных отбеливаемым материалом, вызывает ощущение белизны. При оптический отбеливании используют производные стильбена, кумарина, пиразолина, нафталимида, бензоксазола и др.

Орг. ЛЮМИНОФОРЫ, способные испускать свет под действием радиоактивных излучений, применяют в качестве сцинтилляторов. Существуют монокристаллич. (антрацен, тетрацен, пирен, карбазол, арилзамещенные этилена и оксазола), жидкие (полифенильные углеводороды, 2,5-диарилзамешенные оксазола) и пластмассовые органическое сцинцилляторы. Последние представляют собой твердые растворы жидких сцинцилляторов в полимерных основах (полистироле, поливинилксилоле).

Многие органическое ЛЮМИНОФОРЫ - активные среды жидкостных лазеров, например цианиновые, полиметиленовые и др. красители, люминесцентные индикаторы. Кроме того, органическое ЛЮМИНОФОРЫ применяют в люминесцентной дефектоскопии и аналит. химии (см. Люминесцентный анализ), а также в мол. биологии и медицине (флуоресцеин, акридин и др.) в качестве меток или зондов (см., например, Липидные зонды).

О хеминолюминофорах см. Хемилюминесценция.

Химическая энциклопедия. Том 2 >>

Люминофо́ры (от лат. lumen - свет и греч. phoros - несущий), вещества, способность которых светиться под действием внешних факторов (см. Люминесценция), используется для практических целей. Люминофоры применяют для преобразования различных видов энергии в световую.

По химической природе различают органические люминофоры (органолюминофоры), и неорганические (фосфоры). Фосфоры, имеющие кристаллическую структуру, называются кристаллофосфорами .

По типу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры и т. д. Некоторые вещества могут люминесцировать при различных видах возбуждения, т. е. являются люминофорами смешанного типа (например, ZnS, легированный Cu, является фото-, катодо- и электролюминофором).

Требования к параметрам люминофоров определяются условиями их применения. Люминофоры различаются по типу возбуждения, спектру возбуждения (для возбуждения различных фотолюминофоров меняется от коротковолнового ультрафиолетового до ближнего инфракрасного), спектру излучения, выходу излучения, времени возбуждения, свечения и длительности послесвечения.

Цвет свечения определяется материалом основы люминофора, природой и концентрацией вводимых примесей-активаторов, которые образуют в основном веществе (основании) центры свечения. Подбором люминофора и соответствующих центров свечения можно варьировать длину волны люминесценции. Даже в одном люминофоре, меняя тип примесей, можно регулировать спектральный состав излучения. Например, люминофоры на основе ZnS отличаются высокой яркостью и светоотдачей в видимой области спектра. При введении в ZnS активаторов получаем для кристаллов ZnS (Ag) свечение голубое, для ZnS(Cu) - зеленое, а для ZnS(Mn) - оранжевое. Если же в ZnS ввести CdS, то спектр люминесценции сместится в сторону более длинных волн. Люминесценция в красной области спектра получается при использовании в качестве основы люминофора полупроводниковых твердых растворов Zn 1-x Cd x S и ZnS 1-x Se x .

Органические люминофоры представляют собой сложные высокомолекулярные соединения: ароматические углеводороды и их производные, гетероциклические соединения, комплексные соединения атомов металла с органическими лигандами и т.д. Механизм свечения органических люминофоров обычно внутрицентровой. Органические люминофоры могут люминесцировать в растворах (флуоресцеин, родамин) и в твердом состоянии (пластические массы и антрацен, стильбен и другие органические кристаллы), обладают ярким свечением и очень высоким быстродействием. Цвет люминесценции органических люминофоров может быть подобран для любой части видимой области. Применяются для люминесцентного анализа, изготовления люминесцирующих красок, указателей, оптического отбеливания тканей и т. д.

Основное применение среди неорганических люминофоров имеют кристаллофосфоры. К твердым неорганическим люминофорам относятся также люминесцирующие стекла, порошки, тонкие пленки. Люминесцирующие стекла изготовляют на основе стеклянных матриц различного состава. При варке стекла в шихту добавляют активаторы, чаще всего соли редкоземельных элементов или актиноидов. Такие люминофоры применяются в лазерах. В светотехнике широко используют различные порошковые люминофоры, многие их которых являются бертоллидами, т. е. имеют переменный химический состав (Zn 0, 6 Cd 0, 4 S, Zn 0, 75 Cd 0, 25 S, Zn S 0, 85 Se 0, 15). На основе порошковых электролюминофоров изготовляются плоские безвакуумные источники света сравнительно большой площади, которые нашли применение в светящихся панелях, табло, управляемых шкалах, мнемонических схемах, твердотельных экранах и т. д. Благодаря согласованию по спектральным характеристикам электролюминофоров с фотосопротивлениями создаются различные оптоэлектронные системы: приборы автоматики - оптроны, усилители и преобразователи изображения, например для рентгеноскопии. Получены тонкопленочные электролюминесцентные излучатели, которые позволяют получать яркость, сопоставимую по величине с яркостью обычного телевизионного экрана. В качестве активного слоя в них используется сульфид цинка, легированный марганцем или фторидами редкоземельных элементов. Излучатели на их основе, обладая большой яркостью, дают возможность получить полную цветовую гамму в плоскостных экранах для дисплеев. На их основе уже созданы эффективные излучатели сине-зеленого свечения (SrS (Cе), зеленого (СаS (Се)), красного (СаS (Еu), СаS (Еr)) и белого свечения (CaS (Рr, К), SrS (Но, Nd), SrS:(Sm, Cе)).

Классификация люминофоров по виду поглощаемой энергии.

Акту люминесценции предшествует акт поглощения энергии.

Люминофоры, возбуждаемые ультрафиолетовым видимым или инфракрасным светом, называются фотолюминофорами , а, соответствующая этому виду люминесценция – называется фотолюминесценцией .

Рентгенолюминофоры – это люминофоры, которые эффективно поглощают и возбуждаются рентгеновскими лучами.

Радиолюминофоры наиболее эффективно поглощают и возбуждаются: α – β – γ – лучами.

Катодолюминофоры – это люминофоры, светящиеся под воздействием потока электронов.

Электролюминофоры – вещества, эффективно излучающие при поглощении энергии электрического поля. Они подразделяются на люминофоры постоянного поля и люминофоры переменного поля.

Хемолюминофоры – вещества, использующие в качестве источника энергию химических реакций. Соответствующая им люминесценция, называется хемолюминесценцией .

Люминофоры предназначены для использования в приборах или устройствах определенного типа. К таким устройствам относятся: люминесцентные лампы, экраны телеприемников, мониторы компьютеров, счетчики квантов, рентгеновские усиливающие экраны и т.д.

Эти приборы должны по своим характеристикам удовлетворять определенным требованиям или стандартам, в том числе требованиям по светотехническим параметрам. Для достижения параметров прибора необходимо применять люминофоры с требуемым набором свойств, и, следовательно, предъявлять к люминофорам специальные требования.

Такие технические требования разрабатываются изготовителями приборов и в обязательном порядке согласовываются с изготовителем люминофоров. Они фиксируются в документе, который называется «Технические условия».

Рассмотрим наиболее важные и применяемые из них.

Экраны телеприемников, люминесцентные лампы или другое устройство должны иметь хорошие яркость, цвет, четкость изображения. Эти параметры устройства определяются конструкцией прибора и, в большей степени, свойствами люминофора

Одним из основных параметров является яркость свечения. Люминофор преобразует энергию с каким-то коэффициентом полезного действия. Доля поглощенной мощности, выделяемая в виде света, называется энергетическим выходом или эффективностью. Отношение величины излучаемого светового потока к падающей на него мощности называется светоотдачей люминофора. Она измеряется в люменах/Ватт (lm/W).

В случае фотолюминесценции мощность, поглощаемую и излучаемую люминофором можно выразить числом фотонов или квантов света. Отношение числа квантов света излучаемых в единицу времени к числу поглощенных за это время квантов называется квантовым выходом люминесценции. Энергия испускаемого кванта, как правило, всегда меньше энергии поглощаемого кванта (правило Стокса). Следовательно, излучение всегда находится в более длинноволновой области спектра, чем поглощение. Так как в реальных кристаллах излучение и поглощение не монохроматично, то возможно перекрытие длинноволновой части спектра поглощения и коротковолновой части спектра излучения. Однако, среднее значение энергии поглощения всегда выше среднего значения энергии люминесценции.


Основным энергетическим параметром технических условий является относительная яркость или интенсивность люминесценции . Это яркость или интенсивность испытуемого образца, измеренная относительно стандартного образца. При этом потребитель и изготовитель люминофора имеют одинаковые стандартный образец, методику испытаний и аппаратуру для проведения испытаний.

Цвет люминесценции определяется спектральным составом излучения. Спектральный состав описывается зависимостью спектральной плотности излучения от длин волны, либо от энергии фотона. В технические условия вносят такие спектральные параметры как положение максимума длины волны излучения, полуширину максимума излучения или определенную интенсивность излучения при фиксированных длинах волн.

Для некоторых типов приборов необходимо достижение определенных кинетических характеристик люминесценции: время спада интенсивности излучения до определенного уровня, или время возрастания интенсивности излучения до определенного уровня. В технические условия к таким люмиофорам вводится параметр «послесвечение» - время спада интенсивности излучения до определенного уровня.

Кроме уже рассмотренных параметров есть еще ряд параметров, необходимость введения которых, обусловлена требованиями к прибору по контрастности и разрешающей способности экрана. К ним относятся требования к коэффициентам отражения люминофора при определенных длинах волн и требования к размеру частиц или гранулометрическому составу люминофоров. Способ нанесения люминофора на экран или подложку, способ изготовления устройства, условия эксплуатации люминофора в устройстве также приводят к необходимости введения дополнительных параметров в технические условия.

Пункт «гранулометрический состав » включает:

Средний размер частиц люминофора, мкм;

Массовая доля частиц размером менее D1мкм, % не более;

Массовая доля частиц размером менее D2 мкм, % не более.

Этот параметр определяется с учетом вида возбуждения, необходимой разрешающей способности и режимом работы экрана.

Параметр «седиментационный объем » - объем занимаемый единицей массы люминофора в суспензии определенного типа (см3/г).

Параметры «гидроемкость » или «маслоемкость » - количество воды или масла адсорбированных поверхностью единицы массы люминофора (мл/г).

Эти параметры характеризуют склонность частиц люминофора объединяться в объемные агломераты. Они также характеризуют склонность частиц люминофора к плотной и равномерной упаковке по поверхности подложки.

Параметр «потеря яркости » после отжига люминофора при определенной температуре (как правило 350-450 С) в вакууме, на воздухе или смеси газов, обусловлен технологией изготовления устройства.

Необходимость введения параметра «отсутствие посторонних включений и частиц светящихся иным цветом » в ТУ практически всех люминофоров очевидна.

1.5 Основные операции синтеза люминофоров .

Как мы уже знаем, люминофоры являются веществами, оптические свойства которых чрезвычайно сильно зависят от наличия примесных и собственных дефектов. Поэтому для достижения заданных светотехнических параметров необходимо тщательное соблюдение режимов технологических операций при синтезе люминофоров и использование сырья и вспомогательных материалов с малым содержанием примесей.

Помещения должны быть чистыми. Они имеют систему приточной и вытяжной вентиляции. Воздух, поступающий из приточной системы очищен от пыли.

Технологическое оборудование, например, реакторы, выпарные чаши, не должно быть источником загрязнения. Оно изготавливается из химически стойких сортов стали. Применяется футеровка эмалью или тефлоном. Термическое оборудование также не должно являться источником примесей, поэтому нагреватели и внутренняя футеровка печей, сушильных аппаратов изготавливаются из материалов устойчивых к воздействию высоких температур и компонентов газовой среды (атмосферы), в которой идет термообработка.

Одним из основных компонентов в производстве люминофоров является вода. К ней предъявляются жесткие требования по содержанию примесей. Например, массовая доля ионов железа не должна превышать величину 1*10 -6 %, меди – 1*10 -6 %, никеля – 1*10 -6 %, кобальта – 5*10 -6 %, органических веществ - 1*10 -2 %. Удельное электрическое сопротивление должно быть не менее 18 Мом. Для получения такой чистой воды применяются специальные методы очистки: ультрафильтрация, обратный осмос, электродиализ, дистилляция, очистка в ионообменных колоннах.

Применяемое сырье (исходные материалы) также должно быть чистым. Как правило, в производстве люминофоров используют реактивы следующих квалификаций:

Особочистые (ос.ч),

Химически чистые для люминофоров (хч/дл),

Химически чистые (х/ч),

Чистые для анализа (ч.д.а.).

Реактивы более низкой квалификации должны подвергаться дополнительной очистке.

Рассмотрим последовательность технологических операций или технологических стадий, применяемых в производстве люминофоров.

1. Подготовка основных и вспомогательных материалов и оборудования. Эта стадия включает: уборку помещения, промывку и очистку оборудования, выбор исходных материалов требуемой квалификации.

2. Приготовление растворов. На этой стадии изготавливаются растворы тех реактивов, которые применяются в жидком виде. Как правила это растворы активатора, соактиватора, плавней (минерализаторов) или основных материалов. На этой стадии возможна доочистка материалов, например методами перекристаллизации, экстракции или фильтрации.

3. Осаждение или соосаждение. На этой стадии из растворов получают, например, оксалаты, сульфиды, гидроксиды, фторида или фосфаты материалов, которые являются основой люминофора. В случае соосаждения полученные полуфабрикаты в своем составе содержат и активатор. В ходе выполнения контролируется полнота осаждения.

4. Приготовление шихты (смеси). Операция включает тщательное смешивание полуфабрикатов (полупродуктов), или исходных материалов, растворов активатора, минерализатора и сушку смеси, в том случае, если применяются растворы. Иногда эта операция заключается только в смешивании сухих материалов. На этой стадии смесь контролируется на соответствие рецептуре.

5. Подготовка шихты к термообработке . На этой стадии проводят взвешивание шихты или ее части, снаряжение (наполнение) тиглей, кювет, ампул или иных контейнеров шихтой и вспомогательными материалами, которые необходимы для создания требуемой среды (атмосферы) в процессе термообработки (прокаливания) шихты.

6. Термообработка (прокаливание) Эта операция проводится в печах при температурах, лежащих в диапазоне 750 -1800 С. На этой стадии контролируется температура, время (длительность) и состав газовой атмосферы.

7. Разбраковка. После охлаждения контейнера, в котором проводили прокалку, полученный материал – люминофор осматривают под УФ излучением и вручную удаляют посторонние включения или части прокаленной шихты, которые не светятся или светятся отличающимся от требуемого цветом.

8. Просев (мокрый просев ). Люминофор просевают через крупное сито из капроновой ткани для того, чтобы разрушить не прочные образования – комки. Эта операция облегчает удаление минерализатора на следующей стадии.

9. Отмывка. На этой стадии осуществляется удаление минерализаторов (плавней) из состава люминофора. Как правило для отмывки используют дистиллированную или деионизованную воду, иногда органические растворители – этиловый спирт, ацетон, октан и т.п. Отмывку проводят в реакторах с мешалкой. Перемешивают не менее 20 – 30 минут, затем дают осесть твердой части суспензии. Промывочную жидкость декантируют. Операцию повторяют 3 – 5 раз. На этой стадии контролируется рН суспензии и иногда, концентрация некоторых элементов.

10. Дезагрегация. Целью операции является разрушение агломератов, которые образовались при прокаливании люминофора. Операцию проводят в реакторе с мешалкой. К суспензии люминофора в воде при перемешивании добавляют поверхностно-активное вещество (ПАВ), - соединение обладающее создавать на поверхности частиц люминофора заряд. Частицы, образующие агломерат, отталкиваются друг от друга за счет возникновения потенциала на поверхности. Одноименный заряд на поверхности частиц препятствует образованию повторных агломератов. При этом на люминофор оказывают и механическое воздействие различными способами. Наиболее распространенным способом является перемешивание суспензии, в которую помимо ПАВ добавлены шары из легкого материала, например, полиметилметакрилата. Механическое разрушение агломератов в суспензии может осуществляться также воздействием ультразвука с частотой 18-20 кГц, либо путем пропускания суспензии через распылительную форсунку. После проведения дезагрегации проводят отмывку суспензии от избытка ПАВ путем 2-3-х кратной отмывки деионизованной водой. На этой стадии контролируется параметр «Седиментационный объем». Чем он меньше, тем успешнее прошла дезагрегация.

11. Классификация или разделение частиц по размерам. Цель операции – удаление частиц с размером больше или меньше заданного. Операция проводится несколькими методами. Наиболее простой метод – просев через сито с заданным размером отверстий. Частицы требуемого размера можно выделить методом седиментации – осаждения. Водную суспензию перемешивают, затем останавливают мешалку, и дают осесть части суспензии. Частицы большего размера оседают на дно реактора в первую очередь. Частицы, которые не осели, передаются в другой реактор. Разделение частиц по размерам можно проводить в восходящем потоке жидкости или газа. Для разделения частиц по размерам также применяют и гидроциклон. Контролируемый параметр – гранулометрический состав.

12. Модифицирование поверхности. Цель операции – нанесение на поверхность частиц люминофора модифицирующего покрытия, которое решает задачи повышения термостойкости, гидролитической устойчивости, уменьшения повторной агломерации люминофора, увеличения срока службы люминофора в приборах. Для этого на поверхность частиц наносят тонкий слой соединения имеющего, например, высокую температуру плавления. Это могут быть силикаты, алюминаты металлов. Как разновидность модифицирования для люминофоров неустойчивых к воздействию влаги применяют капсулирование – нанесение на поверхность частиц сплошного слоя, например легкоплавкого стекла.

13. Отмывка. В том случае, если модифицирование проводили в суспензии, люминофор отмывают от избытка компонентов модифицирующего покрытия деионизованной водой или какой-либо другой жидкостью.

14. Фильтрация. Частицы люминофора отделяют от жидкости с применением нутч-фильтров, барабанных вакуумных фильтров, центробежных фильтров.

15. Сушка. Люминофор сушат при 80-150 С с применением сушильных шкафов, вращающихся сушильных печей, вакуумных сушилок.