Вещества содержащие углерод. Углерод и его соединения. Основные соединения и их характеристика

Химические свойства Ковалентный радиус 77 пм Радиус иона 16 (+4e) 260 (-4e) пм Электроотрицательность 2,55 (шкала Полинга) Степени окисления 4 , 3 , 2, 1 , , , , , -4 Энергия ионизации
(первый электрон) 1085,7 (11,25) кДж /моль (эВ) Термодинамические свойства простого вещества Плотность (при н. у.) 2,25 (графит) г/см³ Температура плавления 3550 °C Температура кипения 5003 K; 4830 °C Критическая точка 4130 , 12 МПа Молярная теплоёмкость 8,54 (графит) Дж/(K·моль) Молярный объём 5,3 см ³/моль Кристаллическая решётка простого вещества Структура решётки гексагональная (графит), кубическая (алмаз) Параметры решётки a=2,46; c=6,71 (графит); а=3,567 (алмаз) Отношение c /a 2,73 (графит) Температура Дебая 1860 (алмаз) Прочие характеристики Теплопроводность (300 K) 1,59 Вт/(м·К) Номер CAS 7440-44-0 Эмиссионный спектр

Способность углерода образовывать полимерные цепочки порождает огромный класс соединений на основе углерода, называемых органическими, которых значительно больше, чем неорганических, и изучением которых занимается органическая химия .

История

На рубеже XVII-XVIII вв. возникла теория флогистона, выдвинутая Иоганном Бехером и Георгом Шталем . Эта теория признавала наличие в каждом горючем теле особого элементарного вещества - невесомого флюида - флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь - это почти чистый флогистон. Именно этим объясняли, в частности, «флогистирующее» действие угля, - его способность восстанавливать металлы из «известей» и руд. Поздние флогистики, Реомюр, Бергман и другие, уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым «чистый уголь» был признан Антуаном Лавуазье , исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво , Лавуазье, Бертолле и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерод» (carbone) вместо французского «чистый уголь» (charbone pur). Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье.

Происхождение названия

В начале XIX века в русской химической литературе иногда применялся термин «углетвор» (Шерер, 1807; Севергин , 1815); с 1824 года Соловьёв ввёл название «углерод». Соединения углерода имеют в названии часть карб(он) - от лат. carbō (род. п. carbōnis ) «уголь».

Физические свойства

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Изотопы углерода

Природный углерод состоит из двух стабильных изотопов - 12 С (98,93 %) и 13 С (1,07 %) и одного радиоактивного изотопа 14 С (β-излучатель, Т ½ = 5730 лет), сосредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14 N (n, p) 14 C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб .

Аллотропные модификации углерода

Кристаллический углерод

Аморфный углерод

  • Ископаемый уголь: антрацит и Ископаемый уголь .
  • Кокс каменноугольный , нефтяной и др.

На практике, как правило, перечисленные выше аморфные формы являются химическими соединениями с высоким содержанием углерода, а не чистой аллотропной формой углерода.

Кластерные формы

Структура

Жидкий углерод существует только при определённом внешнем давлении. Тройные точки: графит - жидкость - пар Т = 4130 K, р = 10,7 МПа и графит - алмаз - жидкость Т ≈ 4000 K, р ≈ 11 ГПа. Линия равновесия графит - жидкость на фазовой р , Т -диаграмме обладает положительным наклоном, переходящим по мере приближения к тройной точке графит - алмаз - жидкость в отрицательный, что связано с уникальными свойствами атомов углерода создавать углеродные молекулы, состоящие из различного количества атомов (от двух до семи). Наклон линии равновесия алмаз - жидкость, в отсутствие прямых экспериментов в области очень высоких температур (> 4000-5000 K) и давлений (> 10-20 ГПа), долгие годы считался отрицательным. Проведённые японскими исследователями прямые эксперименты и обработка полученных экспериментальных данных с учётом аномальности высокотемпературной теплоёмкости алмаза показали, что наклон линии равновесия алмаз - жидкость положителен, т. е. алмаз тяжелее своей жидкости (в расплаве он будет тонуть, а не всплывать как лёд в воде).

Ультрадисперсные алмазы (наноалмазы)

В 1980-е годы в СССР было обнаружено, что в условиях динамической нагрузки углеродсодержащих материалов могут образовываться алмазоподобные структуры, получившие название ультрадисперсных алмазов (УДА). В настоящее время всё чаще применяется термин «наноалмазы ». Размер частиц в таких материалах составляет единицы нанометров. Условия образования УДА могут быть реализованы при детонации взрывчатых веществ со значительным отрицательным кислородным балансом , например, смесей тротила с гексогеном . Такие условия могут быть реализованы также при ударах небесных тел о поверхность Земли в присутствии углеродсодержащих материалов (органика, торф , уголь и пр.). Так, в зоне падения Тунгусского метеорита в лесной подстилке были обнаружены УДА.

Карбин

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин . Цепи имеют либо полиеновое строение (−C≡C−), либо поликумуленовое (=C=C=). Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68-3,30 г/см³). Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно - окислительной дегидрополиконденсацией ацетилена , действием лазерного излучения на графит, из углеводородов или CCl 4 в низкотемпературной плазме.

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода, уложенных параллельно друг другу.

Карбин - линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно или тройными и одинарными связями (полиеновое строение), либо постоянно двойными связями (поликумуленовое строение). Это вещество впервые получено советскими химиками В. В. Коршаком, А. М. Сладковым, В. И. Касаточкиным и Ю. П. Кудрявцевым в начале 1960-х годов в Академии наук СССР . Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение - в фотоэлементах .

Фуллерены и углеродные нанотрубки

Углерод известен также в виде кластерных частиц С 60 , С 70 , C 80 , C 90 , C 100 и подобных (фуллерены), а также графенов , нанотрубок и сложных структур - астраленов .

Аморфный углерод (строение)

В основе строения аморфного углерода лежит разупорядоченная структура монокристаллического (всегда содержит примеси) графита. Это кокс , бурые и каменные угли, техуглерод , сажа , активный уголь .

Графен

Графен - двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, соединенных посредством sp² связей в гексагональную двумерную кристаллическую решётку.

Нахождение в природе

Было оценено, что Земля в целом состоит из 730 ppm углерода, с содержанием 2000 ppm в ядре и 120 ppm в мантии и коре. Так как масса Земли 5,972⋅10 24 kg , то это предполагает наличие 4360 миллионов гигатонн углерода.

Представление о том, что химические связи могут быть результатом владения парой электронов двумя атомами, было выдвинуто Льюисом (1916) и развито Гейтлером и Лондоном (1927). В дальнейшем Лайнус Полинг ввел чрезвычайно важные понятия направленной валентности и гибридизации орбитали.

Согласно понятию направленной валентности , связь атомов осуществляется в том направлении, при котором обеспечивается максимальное перекрывание орбиталей. Чем лучше перекрывание, тем прочнее должна быть связь, и только при максимальном перекрывании достигается минимум энергии системы.

Атом углерода в основном состоянии имеет электронное строение 1s22s22p2. Посмотрим внимательно на распределение электронов по орбиталям в атоме углерода:

Два неспаренных электрона могут образовывать только две химические связи с другими атомами, то есть в соответствии с этой схемой атом углерода должен быть двух валентным. Но в органической химии атом углерода всегда имеет валентность, равную четырем .

Для образования четырех ковалентных связей атом углерода должен иметь четыре неспаренных электрона.

Как же объяснить четырехвалентность углерода?

Атом может изменять свое валентное состояние, когда, спареные электроны распариваются и переходят на другие атомные орбитали. В нашем случае один электрон с s-орбитали переходит на свободную р-орбиталь.

Рассмотрим образование связей в молекуле простейшего водородного соединения углерода – в молекуле метана (СН4). Каждый атом водорода имеет по одному неспаренному электрону на s-орбитали первого электронного слоя (1s1). У атома углерода, находящегося в возбужденном состоянии, есть четыре неспаренных электрона: один на s - и три на р-орбиталях второго слоя. Можно было бы ожидать, что вследствие различных форм s - и р-орбиталей связи между атомом углерода и атомами водорода будут неравноценными. Исследования же показывают, что связи в молекуле метана равноценны.

Строение некоторых молекул с точки зрения перекрывания атомных орбиталей «чистого типа», то есть s, p, d объяснить не возможно. Поэтому американский ученый Лайнус Полинг разработал теорию гибридизации атомных орбиталей. Он предположил, что орбитали внешнего электронного слоя атомов могут как бы смешиваться – гибридизоваться.

При этом получаются гибридные атомные орбитали , электроны

на которых обладают усредненной энергией.

Итак, в гибридизации участвует 1-s электрон и 3 р-электрона, поэтому такой тип гибридизации называется sp 3 -гибридизация . Такое состояние орбиталей атома углерода называют первым валентным состояние. Так как в гибридизации участвует четыре электрона, то и образется четыре одинаковых гибридных орбитали. При образовании гибридных орбиталей они расходятся на возможно большее расстояние друг от друга. Угол между ними оказывается равным 109028/, то есть все гибридные орбитали атома углерода в состоянии sp3-гибридизации направлены к вершинам тетраэдра – правильной треугольной пирамиды.

Химическая связь – это перекрывание атомных орбиталей . Так как углерод четырехвалентный, то и химических связей будет четыре. У атома водорода один неспаренный электрон находится на s-орбитали и имеет форму шара. Поэтому, молекула метана СН4 имеет следующее пространственное строение.

Молекула этана СН3 – СН3, соответственно будет иметь следующее пространственное строение:

https://pandia.ru/text/80/289/images/image016_17.jpg" align="left" width="147 height=110" height="110">В гибридизации могут принимать участие не все р-орбитали атома углерода. Так, из одной s - и двух р-орбиталей образуется три sp2-гибридные орбитали, угол между которыми равен 1200(плоский равносторонний треугольник). Оставшаяся без изменения одна р-орбиталь распологается перпендикулярно плоскости, в которой лежат гибридные орбитали. Именно негибридные р-электроны будут участвовать в отразовании π-связи, которая образуется при боковом перекрывании р-облаков и располагается над и под плоскостью связывающие ядра.

С sp2-гибридизацией мы встречаемся в соединениях с двойной связью, атомы образующие двойную связь и будет находиться в sp2-гибридизации.

Рассмотрим пространственное строение молекулы этена СН2 = СН2, в которой атомы углерода находятся в состоянии sp2-гибридизации. Волнистой линией на рисунке показано перекрывание негибридных р-орбиталей (π-связь).

Третье валентное состояние атома углерода, sp – гибридизация .

При смешивании одной s - и одной р-орбиталей атома углерода осуществляется sp-гибридизация. При sp-гибридизации атомных орбиталей две р-орбитали остаются негибридными. sp-Гибридные орбитали ориентированы под углом 1800 друг к другу (линейная конфигурация).

Две не участвующие в гибридизации р-орбитали располагаются взаимно перпендикулярно и участвуют в образовании двух π-связей. С sp-гибридизацией мы встречаемся в соединениях с тройной связью, атомы углерода образующие тройную связь и будет находиться в sp-гибридизации.

Итак , атомы углерода участвующие в образовании простых, одинарных σ-связей находятся в состоянии sp3-гибридизации, атомы углерода участвующие в образовании двойных связей находятся в состоянии sp2-гибридизации, атомы углерода участвующие в образовании тройных связей находятся в состоянии sp-гибридизации. Любая кратная связь всегда будет иметь одну σ-связь, все остальные будут π-связями. Например, в молекуле СН2 = СН2, между атомами углерода, одна связь σ-, другая π-связь. В молекуле СН≡СН между атомами углерода, одна связь σ-, и две π-связи.

Проверьте себя, как Вы поняли тему, для этого выполните тестовое задание:

1. Сколько π-связей содержит молекула бутена -1 (СН3 – СН2 – СН = СН2):

а) 2, б) 4, в) 1, в) 12.

2.Сколько атомов углерода в молекуле пентина-2 (СН3 – С ≡ С – СН2 – СН3) находится в состоянии sp3 гибридизации:

а) все 5 атомов углерода, б) 2, в) 1, г) 3.

3.Какова ожидаемая равновесная конфигурация молекулы СН2 = СН2:

а) линейная, б) угловая, в) плоский равносторонний треугольник, г) тетраэдр.

4. Выберите соединения, для которых характерна ковалентная полярная связь:

а) Cl2; б) С - Н;

5.Определите тип гибридизации атомных орбиталей по следующим данным:

Правильные ответы теста:

1. (в); 2. (г); 3. (в); 4. (в); 5. sp2.

Структура алмаза (а) и графита (б)

Углерод (латинское Carboneum ) - С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Встречается в природе в виде кристаллов алмаза, графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19%.

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы - для изготовления шлифовального и режущего инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды , соединения углерода с металлами , а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов . Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость .

Историческая справка

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название "графит", происходящее от греческого слова, означающего "писать", предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны "черный свинец", "карбидное железо", "серебристый свинец".

В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа . Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867.

В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Свойства

Известны четыре кристаллические модификации углерода:

  • графит,
  • алмаз,
  • карбин,
  • лонсдейлит.

Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1 кгс/см 2) графит термодинамически стабилен.

Алмаз - очень твёрдое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решётку. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется .

Жидкий углерод может быть получен при давлениях выше 10,5 Мн/м 2 (105 кгс/см 2) и температурах выше 3700 °С. Для твёрдого углерода (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемый «аморфный» углерод, который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей «аморфного» углерода выше 1500-1600 °С без доступа воздуха вызывает их превращение в графит.

Физические свойства «аморфного» углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность , теплоёмкость , теплопроводность и электропроводность «аморфного» углерода всегда выше, чем графита.

Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см 3). Построен из длинных цепочек атомов С , уложенных параллельно друг другу.

Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.

Свойства углерода
Атомный номер 6
Атомная масса 12,011
Изотопы: стабильные 12, 13
нестабильные 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22
Температура плавления 3550°С
Температура кипения 4200°С
Плотность 1,9-2,3 г/см 3 (графит)

3,5-3,53 г/см 3 (алмаз)

Твердость (по Моосу) 1-2
Содержание в земной коре (масс.) 0,19%
Степени окисления -4; +2; +4

Сплавы

Сталь

Кокс применяют в металлургии, как восстановитель. Древесный уголь – в кузнечных горнах, для получения пороха (75%KNO 3 + 13%C + 12%S), для поглощения газов (адсорбция), а также в быту. Сажу применяют, как наполнитель резины, для изготовления черных красок – типографская краска и тушь, а также в сухих гальванических элементах. Стеклоуглерод применяют для изготовления аппаратуры для сильно агрессивных сред, а также в авиации и космонавтике.

Активированный уголь поглощает вредные вещества из газов и жидкостей: им заполняют противогазы, очистительные системы, его применяют в медицине при отравлениях.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является СО 2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Применение радиоактивного изотопа 14 C способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14 C в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.

Источники

В этой статье мы рассмотрим элемент, входящий в состав периодической таблицы Д.И. Менделеева, а именно углерод. В современной номенклатуре он обозначается символом С, входит в четырнадцатую группу и является «участником» второго периода, имеет шестой порядковый номер, а его а.е.м. = 12.0107.

Атомные орбитали и их гибридизация

Начнем рассмотрение углерода с его орбиталей и их гибридизации - его главных особенностей, благодаря которым он и по сей день заставляет удивляться ученых всего мира. Каково же их строение?

Гибридизации атома углерода устроена таким образом, что валентные электроны занимают позиции на трех орбиталях, а именно: один находится на орбитали 2s, а два - на 2p-орбиталях. Последние две из трех орбиталей образуют угол, равный 90 градусам по отношению друг к другу, а 2s-орбиталь обладает сферической симметрией. Однако данная форма устройства рассматриваемых орбиталей не позволяет нам понять, почему же углерод, входя в органические соединения, образует углы в 120, 180 и 109.5 градусов. Формула электронного строения атома углерода выражает себя в следующем виде: (He) 2s 2 2p 2 .

Разрешение возникшего противоречия было сделано при помощи введения в оборот понятия гибридизации атомных орбиталей. Чтобы понять трехгранную, вариантную природу С, потребовалось создать три формы представления о его гибридизации. Главный вклад в появление и развитие данной концепции был сделан Лайнусом Полингом.

Свойства физического характера

Строение атома углерода обуславливает наличие ряда некоторых особенностей физического характера. Атомы этого элемента образуют простое вещество - углерод, который имеет модификации. Вариации изменений его строения могут придавать образовавшемуся веществу различные качественные характеристики. Причина наличия большого количества модификаций углерода заключается в его способности устанавливать и образовывать разнотипные связи химической природы.

Строение атома углерода может варьироваться, что позволяет ему иметь определенное количество изотопных форм. Углерод, находимый в природе, образуется при помощи двух изотопов в стабильном состоянии - 12 C и 13 C - и изотопа с радиоактивными свойствами - 14 С. Последний изотоп сосредотачивается в верхних слоях коры Земли и в атмосфере. Вследствие влияния космического излучения, а именно его нейтронов, на ядро атомов азота, образуется радиоактивный изотоп 14 С. После середины пятидесятых годов двадцатого века он стал попадать в окружающую среду в качестве техногенного продукта, образованного при работе АЭС, и вследствие использования водородной бомбы. Именно на процессе распада 14 С основывается методика радиоуглеродного датирования, нашедшая свое широкое применение в археологии и геологии.

Модификация углерода в аллотропной форме

В природе существует множество веществ, в состав которых входит углерод. Человек использует строение атома углерода в собственных целях при создании различных веществ, среди которых:

  1. Кристаллические углероды (алмазы, углеродные нанотрубки, волокна и проволоки, фуллерены и т.д.).
  2. Аморфные углероды (активированный и древесный уголь, различные виды кокса, техуглерод, сажа, нанопена и антрацит).
  3. Кластерные формы углерода (диуглероды, наноконусы и астраленовые соединения).

Структурные особенности атомного строения

Электронное строение атома углерода может обладать различной геометрией, которая зависит от уровня гибридизации орбиталей, которыми он обладает. Существует 3 главных вида геометрии:

  1. Тетраэдрическая - создается вследствие смещения четырех электронов, один из которых s-, а три принадлежат к p-электронам. Атом С занимается центральное положение в тетраэдре, связывается четырьмя равносильным сигма-связями с другими атомами, занимающими вершину данного тетраэдра. При таком геометрическом расположении углерода могут образоваться его аллотропные формы, например алмаз и лонсдейлит.
  2. Тригональная - обязана своим появлением смещению трех орбиталей, из которых одна s- и две p-. Здесь имеются три сигма-связи, которые находятся между собой в равносильной положении; они залегают в общей плоскости и придерживаются угла в 120 градусов по отношению друг к другу. Свободная р-орбиталь располагается перпендикулярно по отношению к плоскости сигма-связей. Подобной геометрией строения обладает графит.
  3. Диагональная - появляется благодаря смешиванию s- и p-электронов (гибридизация sp). Электронные облака вытягиваются вдоль общего направления и принимают форму несимметричной гантели. Свободные электроны создают π-связи. Данное строение геометрии в углероде дает начало появлению карбина, особой формы модификации.

Атомы углерода в природе

Строение и свойства атома углерода издавна рассматриваются человеком и используются с целью получения большого количества разнообразных веществ. Атомы этого элемента, благодаря своей уникальной способности образовывать разные химические связи и наличию гибридизации орбиталей, создают множество различных аллотропных модификаций при участии всего лишь одного элемента, из атомов одного типа, - углерода.

В природе углерод содержится в земной коре; принимает формы алмазов, графитов, различных горючих природных богатств, например, нефти, антрацита, бурого угля, сланцев, торфа и т.д. Входит в состав газов, используемых человеком в энергетической промышленности. Углерод в составе его диоксида заполняет гидросферу и атмосферу Земли, причем в воздухе доходит до 0.046%, а в воде - до шестидесяти раз больше.

В организме человека С содержится в количестве, приблизительно равном 21%, а выводиться преимущественно с мочой и выдыхаемым воздухом. Этот же элемент участвует в биологическом цикле, он поглощается растениями и расходуется в ходе процессов фотосинтеза.

Атомы углерода благодаря своей способности устанавливать разнообразные ковалентные связи и строить из них цепи, и даже циклы, могут создавать огромнейшее количество веществ органической природы. Помимо этого, данный элемент входит в состав солнечной атмосферы, пребывая в соединениях с водородом и азотом.

Свойства химической природы

Теперь рассмотрим строение и свойства атома углерода с химической точки зрения.

Важно знать, что углерод проявляет инертные свойства в условиях обычной температуры, но может показывать нам свойства восстановительного характера под влиянием высоких температур. Основные степени окисления: + - 4, иногда +2, а также +3.

Участвует в реакции с большим количеством элементов. Может вступать в реакции с водой, водородом, галогенами, щелочными металлами, кислотами, фтором, серой и т.д.

Строение атома углерода порождает невероятно огромное количество веществ, отделенных в отдельный класс. Такие соединения называются органическими и основываются на С. Это является возможным благодаря свойству атомов данного элемента образовывать полимерные цепи. Среди самых известных и обширных групп находятся протеины (белки), жиры, углеводы и углеводородные соединения.

Способы эксплуатации

Благодаря уникальному строения атома углерода и сопутствующим этому свойствам, элемент широко применяется человеком, например, при создании карандашей, выплавке металлических тиглей - здесь используют графит. Алмазы используются в качестве абразивных материалов, украшений, насадок для бормашин и т.д.

Фармакология и медицина также занимаются использованием углерода в разнообразных соединениях. Этот элемент входит в состав стали, служит основой для каждого органического вещества, участвует в процессе фотосинтеза и т.д.

Токсичность элемента

Строение атома элемента углерода заключает в себе наличие опасного воздействия на живую материю. Углерод попадает в мир вокруг нас в результате угольного сгорания на ТЭС, входит в состав газов, вырабатываемых автомобилями, в случае получения угольного концентрата и т.д.

Высок процент содержания углерода в аэрозолях, что влечет за собой увеличение процента заболеваемости людей. Чаще всего страдают верхние дыхательные пути и легкие. Некоторые заболевания можно относить к профессиональным, например, пылевой бронхит и болезни группы пневмокониоза.

14 С - токсичен, а силу его влияния определяет радиационное взаимодействие с β-частицами. Этот атом входит в составы биологических молекул, в том числе содержится в дезокси- и рибонуклеиновых кислотах. Допустимым количеством 14 С в воздухе рабочей зоны считается отметка в 1.3Бк/л. Максимальное количество поступающего в организм углерода во время дыхания равно соответствует 3.2*10 8 Бк/год.

Рассматривают как химию соединений углерода, но, отдавая дань уважения истории, по-прежнему продолжают называть ее органической химией. Поэтому так важно более подробно рассмотреть строение атома этого элемента, характер и пространственное направление образуемых им химических связей.

Валентность химического элемента чаще всего определяется числом неспаренных электронов. Атом углерода, как видно из электронно-графической формулы, имеет два неспаренных электрона, поэтому с их участием могут образоваться две электронные пары, осуществляющие две ковалентные связи. Однако в органических соединениях углерод не двух-, а всегда четырехвалентен. Это можно объяснить тем, что в возбужденном (получившем дополнительную энергию) атоме происходит распаривание 2«-электронов и переход одного из них на 2р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в создании четырех ковалентных связей.

Для образования ковалентной связи необходимо, чтобы ор-биталь одного атома перекрывалась с орбиталью другого. При этом чем больше перекрывание, тем прочнее связь.

В молекуле водорода Н 2 образование ковалентной связи происходит за счет перекрывания s-орбиталей (рис. 3).

Расстояние между ядрами атомов водорода, или длина связи, составляет 7,4 * 10 -2 нм, а ее прочность - 435 кДж/моль.

Для сравнения: в молекуле фтора F 2 ковалентная связь образуется за счет перекрывания двух р-орбиталей.

Длина связи фтор-фтор равна 14,2 10 -2 нм, а прочность (энергия) связи - 154 кДж/моль.

Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются а-связями (сигма-связями).

Линия связи - прямая, соединяющая ядра атомов. Для в-орбиталей возможен лишь единственный способ перекрывания - с образованием а-связей.

р-Орбитали могут перекрываться с образованием а-связей, а также могут перекрываться в двух областях, образуя ковалентную связь другого вида - за счет «бокового» перекрывания:

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т. е. в двух областях, называются п-связями (пи-связями).

Рассмотренный вид связи характерен для молекул этилена С2Н4, ацетилена С2Н2. Но об этом более подробно вы узнаете из следующего параграфа.

1. Запишите электронную формулу атома углерода. Объясните смысл каждого символа в ней.

Каковы электронные формулы атомов бора, бериллия и лития?

Составьте электронно-графические формулы, соответствующие атомам этих элементов.

2. Запишите электронные формулы:

а) атома натрия и катиона Nа + ;

б) атома магния и катиона Мg 2+ ;

в) атома фтора и аниона F - ;

г) атома кислорода и аниона О 2- ;

д) атома водорода и ионов Н + и Н - .

Составьте электронно-графические формулы распределения электронов по орбиталям в этих частицах.

3. Атому какого химического элемента соответствует электронная формула 1s 2 2s 2 2р 6 ?

Какие катионы и анионы имеют такую же электронную формулу? Составьте электронно-графическую формулу атома и этих ионов.

4. Сравните длины связей в молекулах водорода и фтора. Чем вызвано их различие?

5. Молекулы азота и фтора двухатомны. Сравните числа и характер химических связей между атомами в них.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки