Химическая связь гибридизация. Перекрывание атомных орбиталей. Правила выявления в молекулах неорганических веществ

Поговорим о том, как определить тип гибридизации, а также рассмотрим геометрическое строение молекулы.

История появления термина

В начале двадцатого века Л. Полинглом была предложена теория геометрии молекул с ковалентной связью. В качестве основы для образования связи было взято перекрывание электронных облаков. Метод стали называть валентными связями. Как определять тип гибридизации атомов в соединениях? Автор теории предлагал учитывать смешивание гибридных орбиталей.

Определение

Для того чтобы понять, как определить тип гибридизации в соединениях, разберем, что обозначает этот термин.

Гибридизация представляет собой смешивание электронных орбиталей. Данный процесс сопровождается распределением в них энергии, изменением их формы. В зависимости от того, в каком количестве будут смешиваться s- и p-орбитали, тип гибридизации может быть различным. В органических соединениях атом углерода может существовать в состоянии sp, sp2, sp3. Есть и более сложные формы, в которых участвуют, помимо sp, d-орбитали.

Правила выявления в молекулах неорганических веществ

Выявить вариант гибридизации можно для соединений с ковалентной химической связью, имеющих тип АВп. А - основной атом, В - лиганд, п - число от двух и выше. В подобной ситуации в гибридизацию будут вступать только валентные орбитали главного атома.

Способы определения

Поговорим подробнее о том, как определить тип гибридизации. В химическом понимании данный термин предполагает изменение энергии и формы орбиталей. Наблюдается подобный процесс в тех случаях, когда для образования связи используют электроны, которые принадлежат различным типам.

Чтобы понять, как определить тип гибридизации, рассмотрим молекулу метана. Данное вещество является первым представителем гомологического ряда насыщенных (предельных) углеводородов. В пространстве молекула СН4 является тетраэдром. Единственный атом углерода образует с водородами связи, сходные по энергии и длине. Для того чтобы образовались такие гибридные облака, используются три р- и один эс-электрон.

Четыре облака смешиваются, и возникает четыре одинаковых (гибридных) вида, имеющих форму неправильной восьмерки. Называют такой тип гибридизации sp3. Все углеводороды, в составе которых только простые (одинарные) связи, характеризуются именно таким типом гибридизации атома углерода. Валентный угол составляет 109 градусов 28 минут.

Продолжим разговор о том, как определить тип гибридизации. Примеры ряда этилена дают представление о sp2-гибридизации. Например, в молекуле этилена из четырех в образовании химической связи используется только три. Оставшийся негибридный р-электрон уходит на образование двойной связи.

Ацетилен является простейшим представителем класса СпН2п-2. Особенностью этого класса углеводородов является наличие тройной связи. Из четырех валентных электронов углеродного атома только два меняют свою форму и энергию, становясь гибридными. Два оставшихся электрона принимают участие в образовании двух двойных связей, определяя ненасыщенный характер этого класса органических соединений.

Заключение

Рассматривая вопрос, касающийся для органических и для учитывают гибридизацию При этом происходит выравнивание их энергии и формы. Электрон, располагающийся вблизи ядра связанного атома, характеризуется совокупностью орбиталей, которые обладают одинаковым Информация о типе гибридизации дает возможность оценивать химические свойства вещества.

Гибридизация атомных орбиталей и геометрия молекул

Важной характеристикой молекулы, состоящей более чем из двух атомов, является ее геометрическая конфигурация. Она определяется взаимным расположением атомных орбиталей, участвующих в образовании химических связей.

Перекрывание электронных облаков возможно только при определенной взаимной ориентации электронных облаков; при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам.

Таблица 1 Гибридизация орбиталей и пространственная конфигурация молекул

Возбужденный атом бериллия имеет конфигурацию 2s 1 2p 1 , возбужденный атом бора - 2s 1 2p 2 и возбужденный атом углерода - 2s 1 2p 3 . Поэтому можно считать, что в образовании химических связей могут участвовать не одинаковые, а различные атомные орбитали. Например, в таких соединениях как BeCl 2 , BeCl 3 ,CCl 4 должны быть неравноценные по прочности и направлению связи, причем σ-связи из p-орбиталей должны быть более прочными, чем связи из s-орбиталей, т.к. для p-орбиталей имеются более благоприятные условия для перекрывания. Однако опыт показывает, что в молекулах, содержащих центральные атомы с различными валентными орбиталями (s, p, d), все связи равноценны. Объяснение этому дали Слейтер и Полинг. Они пришли к выводу, что различные орбитали, не сильно отличающиеся по энергиям, образуют соответствующее число гибридных орбиталей. Гибридные (смешанные) орбитали образуются из различных атомных орбиталей. Число гибридных орбиталей равно числу атомных орбиталей, участвующих в гибридизации. Гибридные орбитали одинаковы по форме электронного облака и по энергии. По сравнению с атомными орбиталями они более вытянуты в направлении образования химических связей и поэтому обусловливают лучшее перекрывание электронных облаков.

Гибридизация атомных орбиталей требует затрат энергии, поэтому гибридные орбитали в изолированном атоме неустойчивы и стремятся превратиться в чистые АО. При образовании химических связей гибридные орбитали стабилизируются. Вследствие более прочных связей, образованных гибридными орбиталями, из системы выделяется больше энергии, и поэтому система становится более стабильной.

sp–гибридизация имеет место, например, при образовании галогенидов Be, Zn, Co и Hg (II). В валентном состоянии все галогениды металлов содержат на соответствующем энергетическом уровне s и p-неспаренные электроны. При образовании молекулы одна s- и одна р-орбиталь образуют две гибридные sp-орбитали под углом 180 о.



Рис.3 sp-гибридные орбитали

Экспериментальные данные показывают, что все галогениды Be, Zn, Cd и Hg (II) линейны и обе связи имеют одинаковую длину.

sp 2 -гибридизация

В результате гибридизации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу. Такова, например, конфигурация молекулы BF 3:

Рис.4 sp 2 -гибридизация

sp 3 -гибридизация

sp 3 -гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех

р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.

Рис.5 sp 3 -гибридизация

Если все гибридные орбитали связаны с одинаковыми атомами, то связи ничем не отличаются друг от друга. В других случаях встречаются небольшие отклонения от стандартных валентных углов. Например, в молекуле воды H 2 O кислород - sp 3 -гибридный, находится в центре неправильного тетраэдра, в вершины которого "смотрят" два атома водорода и две неподеленные пары электронов (рис. 2). Форма молекулы угловая, если смотреть по центрам атомов. Валентный угол HОН составляет 105 о, что довольно близко к теоретическому значению 109 о.

Рис.6 sp 3 -гибридизация атомов кислорода и азота в молекулах а) H 2 O и б) NCl 3 .

Если бы не происходило гибридизации (“выравнивания” связей O-H), валентный угол HOH был бы равен 90°, потому что атомы водорода были бы присоединены к двум взаимно перпендикулярным р-орбиталям. В этом случае наш мир выглядел бы, вероятно, совершенно по-другому.

Теория гибридизации объясняет геометрию молекулы аммиака. В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о, соответствующие тетраэдру.

Рис.7 sp 3 - гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О-Н в угловой молекуле воды. В результате гибридизации 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру.

Рис.8 sp 3 -гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.

При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- . При этом молекула имеет конфигурацию октаэдра:

Рис. 9 d 2 sp 3 -гибридизация в ионе 4-

Представления о гибридизации дают возможность понять такие особенности строения молекул, которые не могут быть объяснены другим способом.

Гибридизация атомных орбиталей (АО) приводит к смещению электронного облака в направлении образования связи с другими атомами. В результате области перекрывания гибридных орбиталей оказываются больше, чем для чистых орбиталей и прочность связи увеличивается.

В процессе определения геометрической формы химической частицы важно учитывать, что пары валентных электронов основного атома, включая и те, которые не образуют химической связи, находятся на большом расстоянии друг от друга в пространстве.

Особенности термина

Рассматривая вопрос, касающийся ковалентной химической связи, часто применяют какое понятие, как гибридизация атомных орбиталей. Этот термин связан с выравниванием формы и энергии. Гибридизация атомных орбиталей связана с квантово-химическим процессом перестройки. Орбитали в сравнении с исходными атомами имеют иное строение. Суть гибридизации заключается в том, что тот электрон, который располагается рядом с ядром связанного атома, определяется не конкретной атомной орбиталью, а их совокупностью с равным главным квантовым числом. В основном данный процесс касается высших, близких по энергии атомных орбиталей, имеющих электроны.

Специфика процесса

Типы гибридизации атомов в молекулах зависят от того, как происходит ориентация новых орбиталей. По типу гибридизации можно определить геометрию иона либо молекулы, предположить особенности химических свойств.

Типы гибридизации

Такой тип гибридизации, как sp, представляет собой линейную структуру, угол между связями составляет 180 градусов. Примером молекулы с подобным вариантом гибридизации является BeCl 2 .

Следующий тип гибридизации - sp 2 . Молекулы характеризуются треугольной формой, угол между связями составляет 120 градусов. Типичным примером такого варианта гибридизации является BCl 3 .

Тип гибридизации sp 3 предполагает тетраэдрическое строение молекулы, типичным примером вещества с данным вариантом гибридизации является молекула метана CH 4 . Валентный угол в таком случае составляет 109 градусов 28 минут.

В гибридизации принимают непосредственное участие не только парные электроны, но и неразделенные пары электронов.

Гибридизация в молекуле воды

К примеру, в молекуле воды между атомом кислорода и атомами водорода существуют две ковалентные полярные связи. Кроме того, сам атом кислорода обладает двумя парами внешних электронов, которые не принимают участия в создании химической связи. Эти 4 электронные пары в пространстве занимают определенное место вокруг кислородного атома. Так как все они обладают одинаковым зарядом, в пространстве они отталкиваются, электронные облака находятся друг от друга на существенном расстоянии. Тип гибридизации атомов в данном веществе предполагает изменение формы атомных орбиталей, происходит их вытягивание и выстраивание к вершинам тетраэдра. В результате молекула воды приобретает угловую форму, между связями кислород-водород валентный угол составляет 104,5 o .

Чтобы предсказать тип гибридизации, можно воспользоваться донорно-акцепторным механизмом образования химической связи. В результате осуществляется перекрытие свободных орбиталей элемента с меньшей электроотрицательность, а также орбиталей элемента с большей электрической отрицательностью, на которой находится пара электронов. В процессе составления электронной конфигурации атома учитывается их степень окисления.

Правила выявления вида гибридизации

Для того чтобы определить тип гибридизации углерода, можно использовать определённые правила:

  • выявляют центральный атом, вычисляют количество σ-связей;
  • ставят в частице степени окисления атомов;
  • записывают электронную конфигурацию главного атома в требуемой степени окисления;
  • составляют схему распределения по орбиталям валентных электронов, спаривая электроны;
  • выделяют орбитали, которые принимают непосредственно участие в образовании связи, находят неспаренные электроны (при недостаточном для гибридизации количестве валентных орбиталей применяют орбитали следующего энергетического уровня).

Геометрия молекулы определяется типом гибридизации. На нее не влияет присутствие пи-связей. В случае дополнительного связывания возможно изменение валентного угла, причина состоит во взаимном отталкивании электронов, образующих кратную связь. Так, в молекуле оксида азота (4) при sp 2 -гибридизации происходит возрастание валентного угла со 120 градусов до 134 градусов.

Гибридизация в молекуле аммиака

Неразделенная пара электронов оказывает влияние на результирующий показатель дипольного момента всей молекулы. В аммиаке тетраэдрическое строение вместе с неразделенной парой электронов. Ионность связи азот-водород и азот-фтор имеют показатели 15 и 19 процентов, длины определены в 101 и 137 пм соответственно. Таким образом, в молекуле фторида азота должен быть больший дипольный момент, но результаты эксперимента свидетельствуют об обратном.

Гибридизация в органических соединениях

Для каждого класса углеводородов характерен свой тип гибридизации. Так, при образовании молекул класса алканов (предельных углеводородов) все четыре электрона атома углерода образуют гибридные орбитали. При их перекрывании образуется 4 гибридных облака, вытраиваемых к вершинам тетраэдра. Далее их вершины перекрываются с негибридными s-орбиталями водорода, образуя простую связь. Для насыщенных углеводородов характерна sp 3 -гибридизация.

У ненасыщенных алкенов (их типичным представителем является этилен) в гибридизации принимают участие только три электронных орбитали - s и 2 p, три гибридных орбитали образуют в пространстве форму треугольника. Негибридные p-орбитали перекрываются, создавая в молекуле кратную связь. Этот класс органических углеводородов характеризуется sp 2 -гибридным состоянием углеродного атома.

Алкины отличаются от предыдущего класса углеводородов тем, что в процессе гибридизации участвуют всего два вида орбиталей: s и p. Оставшиеся у каждого атома углерода два негибридных p-электрона перекрываются в двух направлениях, образуя две кратные связи. Данный класс углеводородов характеризуется sp-гибридным состоянием углеродного атома.

Заключение

Благодаря определению вида гибридизации в молекуле можно объяснить строение разных неорганических и органических веществ, предсказать возможные химические свойства конкретного вещества.

Многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

Энциклопедичный YouTube

    1 / 3

    Гибридизация электронных орбиталей

    Цитология. Лекция 46. Гибридизация орбиталей

    Гибридные орбитали sp3

    Субтитры

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода . В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи - Найхолма, первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состояло в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-Гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуются две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра центрального атома. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются не поделёнными парами электронов.

sp 2 -Гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуются три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -Гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp 3 -гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp 3 -гибридных орбиталей направлены к вершинам тетраэдра , тогда как ядро центрального атома расположено в центре описанной сферы этого тетраэдра. Угол между любыми двумя осями приближённо равен 109°28" , что соответствует наименьшей энергии отталкивания электронов. Также sp 3 -орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов. Такое состояние характерно для атомов углерода в насыщенных углеводородах и соответственно в алкильных радикалах и их производных.

Гибридизация и геометрия молекул

Представление о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизации Число
гибридных орбиталей
Геометрия Структура Примеры
sp 2 Линейная

BeF 2 , CO 2 , NO 2 +

sp 2 3 Треугольная

BF 3 , NO 3 - , CO 3 2-

sp 3 4 Тетраэдрическая

CH 4 , ClO 4 - , SO 4 2- , NH 4 +

dsp 2 4 Плоскоквадратная

Модель атома углерода

Валентные электроны атома углерода располагаются на одной 2s-орбитали и двух 2р-орбиталях. 2р-Орбитали расположены под углом 90° друг к другу, а 2s-орбиталь имеет сферическую симметрию. Таким образом, расположение атомных орбиталей углерода в пространстве не объясняет возникновения в органических соединениях валентных углов 109,5°, 120° и 180°.

Чтобы разрешить это противоречие, было введено понятие гибридизации атомных орбиталей. Для понимания природы трех вариантов расположения связей атома углерода понадобились представления о трех типах гибридизации.

Возникновением концепции гибридизации мы обязаны Лайнусу Полингу, много сделавшему для развития теории химической связи.

Концепция гибридизации объясняет, каким образом атом углерода видоизменяет свои орбитали при образовании соединений. Ниже мы будем рассматривать этот процесс трансформации орбиталей постадийно. При этом надо иметь в виду, что расчленение процесса гибридизации на стадии или этапы есть, на самом деле, не более чем мысленный прием, позволяющий более логично и доступно изложить концепцию. Тем не менее заключения о пространственной ориентации связей углеродного атома, к которым мы в итоге придем, полностью соответствуют реальному положению дел.

Электронная конфигурация атома углерода в основном и возбужденном состоянии

На рисунке слева показана электронная конфигурация атома углерода. Нас интересует только судьба валентных электронов. В результате первого шага, который называют возбуждением или промотированием , один из двух 2s-электронов перемещается на свободную 2р-орбиталь. На втором этапе происходит собственно процесс гибридизации, который несколько условно можно представить себе как смешение одной s- и трех р-орбиталей и образование из них четырех новых одинаковых орбиталей, каждая из которых на одну четверть сохраняет свойства s-орбитали и на три четверти - свойства р-орбиталей. Эти новые орбитали получили название sp 3 -гибридных . Здесь надстрочный индекс 3 обозначает не число электронов, занимающих орбитали, а число р-орбиталей, принявших участие в гибридизации. Гибридные орбитали направлены к вершинам тетраэдра, в центре которого находится атом углерода. На каждой sp 3 -гибридной орбитали находится по одному электрону. Эти электроны и участвуют на третьем этапе в образовании связей с четырьмя атомами водорода, образуя валентные углы 109,5°.

sp3 — гибридизация. Молекула метана.

Образование плоских молекул с валентными углами 120° показано на рисунке ниже. Здесь, как и в случае sp 3 -гибридизации, первый шаг - возбуждение. На втором этапе в гибридизации участвуют одна 2s- и две 2р — орбитали, образуя три s р 2 -гибридных орбитали, расположенных в одной плоскости под углом 120° друг к другу.

Образование трех sр2-гибридных орбиталей

Одна p-рорбиталь остается негибридизованной и располагается перпендикулярно плоскости sр 2 –гибридных орбиталей. Затем (третий шаг) две sр 2 -гибридные орбитали двух углеродных атомов объединяют электроны, образуя ковалентную связь. Такая связь, образующаяся в результате перекрывания двух атомных орбиталей вдоль линии, соединяющей ядра атома, называется σ -связью .

Образование сигма — и пи-связей в молекуле этилена

Четвертый этап - образование второй связи между двумя углеродными атомами. Связь образуется в результате перекрывания обращенных друг к другу краев негибридизованных 2р-орбиталей и называется π-связью . Новая молекулярная орбиталь представляет собой совокупность двух занятых электронами π-связи областей - над и под σ-связью. Обе связи (σ и π) вместе составляют двойную связь между атомами углерода. И наконец, последний, пятый шаг - образование связей между атомами углерода и водорода с помощью электронов четырех оставшихся sр 2 -гибридных орбиталей.

Двойная связь в молекуле этилена

Третий, последний тип гибридизации, показан на примере простейшей молекулы, содержащей тройную связь,- молекулы ацетилена. Первый шаг - возбуждение атома, такой же, как раньше. На втором этапе происходит гибридизация одной 2s- и одной 2р-орбиталей с образованием двух s р-гибридных орбиталей, которые располагаются под углом 180°. И остаются не измененными две 2р-орбитали, необходимые для образования двух π-связей.

Образование двух sр-гибридных орбиталей

Следующий шаг - образование σ-связи между двумя sр-гибридизованными углеродными атомами, затем образуются две π-связи. Одна σ-связь и две π-связи между двумя атомами углерода вместе составляют тройную связь . И наконец, образуются связи с двумя атомами водорода. Молекула ацетилена имеет линейное строение, все четыре атома лежат на одной прямой.

Мы показали, каким образом три основных в органической химии типа геометрии молекул возникают в результате различных трансформаций атомных орбиталей углерода.

Можно предложить два способа определения типа гибридизации различных атомов в молекуле.

Способ 1 . Наиболее общий способ, пригодный для любых молекул. Основан на зависимости валентного угла от гибридизации:

а) валентные углы 109,5°, 107° и 105° свидетельствуют об sр 3 -гибридизации;

б) валентный угол около 120° -sр 2 -гибридизация;

в) валентный угол 180°-sp-гибридизация.

Способ 2 . Пригоден для большинства органических молекул. Поскольку тип связи (простая, двойная, тройная) связан с геометрией, можно по характеру связей данного атома определить тип его гибридизации:

а) все связи простые – sр 3 -гибридизация;

б) одна двойная связь – sр 2 -гибридизация;

в) одна тройная связь — sp-гибридизация.

Гибридизация — это мысленная операция превращения обычных (энергетически наиболее выгодных) атомных орбиталей в новые орбитали, геометрия которых соответствует экспериментально определенной геометрии молекул.