R квадрат в регрессии показывает. Вычисление линейной регрессии. Использование возможностей табличного процессора «Эксель»

При изучении сложных явлений необходимо учитывать более двух случайных факторов. Правильное представление о природе связи между этими факторами можно получить только в том случае, если подвергнуть исследованию сразу все рассматриваемые случайные факторы. Совместное изучение трех и более случайных факторов позволит исследователю установить более или менее обоснованные предположения о причинных зависимостях между изучаемыми явлениями. Простой формой множественной связи является ли­нейная зависимость между тремя признаками. Случайные факторы обозначаются как X 1 , X 2 и X 3 . Парный коэффициенты корреляции между X 1 и X 2 обозначается как r 12 , соответственно между X 1 и X 3 - r 12 , между X 2 и X 3 - r 23 . В качестве меры тесноты линей­ной связи трех признаков используют множественные ко­эф-фициенты корреляции, обозначаемые R 1 ּ 23 , R 2 ּ 13 , R 3 ּ 12 и частные коэффициенты корреляции, обозначаемые r 12.3 , r 13.2 , r 23.1 .

Множественный коэффициент корреляции R 1.23 трех факторов - это показатель тесноты линейной свя­зи между одним из факторов (индекс перед точкой) и совокупностью двух других факторов (индексы после точ­ки).

Значения коэффициента R всегда находятся в преде­лах от 0 до 1. При приближении R к единице степень линейной связи трех признаков увеличивается.

Между коэффициентом множественной корреляции, например R 2 ּ 13 , и двумя коэффициентами парной корреляции r 12 и r 23 существует соот­ношение: каждый из парных коэффициентов не может превы­шать по абсолютной величине R 2 ּ 13 .

Формулы для вычисления множественных коэффициентов корреляции при известных значениях коэффициен­тов парной корреляции r 12 , r 13 и r 23 имеют вид:

Квадрат коэффициента множественной корреляции R 2 назы­вается коэффициентом множественной детерминации. Он пока­зывает долю вариации зависимой переменной под воздействием изучаемых факторов.

Значимость множественной корреляции оценивается по F -критерию:

n – объем выборки; k – число факторов. В нашем случае k = 3.

нулевая гипотеза о равенстве множественного коэффициента корреляции в совокупности нулю (h o :r =0)принимается, если f ф <f t , и отвергается, если
f ф ³ f т.

теоретическое значение f -критерия определяется для v 1 = k - 1 и v 2 = n - k степеней свободы и принятого уровня значимости a (при­ложение 1).

Пример вычисления коэффициента множественной корреляции . При изучении взаимосвязи между факторами были получены коэффициенты парной корреляции (n =15): r 12 ==0,6; г 13 = 0,3; r 23 = - 0,2.

Необходимо выяснить зависимость признака X 2 от признака X 1 и X 3 , т. е. рассчитать коэффициент множественной кор­реляции:

Табличное значение F -критерия при n 1 = 2 и n 2 = 15 – 3 = 12 степенях свободы при a = 0,05 F 0,05 = 3,89 и при a = 0,01 F 0,01 = 6,93.

Таким образом, взаимосвязь между признаками R 2.13 = 0,74 значима на
1%-ном уровне значимости F ф > F 0,01 .

Судя по коэффициенту множественной детерминации R 2 = (0,74) 2 = 0,55, вариация признака X 2 на 55% связана с действием изучаемых факторов, а 45% вариации (1-R 2) не может быть объяснено влиянием этих переменных.

Частная линейная корреляция

Частный коэффициент корреляции - это показа­тель, измеряющий степень сопряженности двух признаков.

Математическая статистика позволяет установить корреля­цию между двумя признаками при постоянном значении третье­го, не ставя специального эксперимента, а используя парные ко­эффициенты корреляции r 12 , r 13 , r 23 .

Частные коэффициенты корреляции рассчитывают по формулам:

Цифры перед точкой указывают, между ка­кими признаками изучается зависимость, а цифра после точки - влияние какого признака исключается (элиминируется). Ошиб­ку и критерий значимости частной корреляции определяют по тем же формулам, что и парной корреляции:

.

Теоретическое значение t- критерия определяется для v = n – 2 степеней свободы и принятого уровня значимости a (при­ложение 1).

Нулевая гипотеза о равенстве частного коэффициента корреляции в совокупности нулю (H o : r = 0)принимается, если t ф < t т, и отвергается, если
t ф ³ t т.

Частные коэф­фициенты могут принимать значения, заключенные между -1 и+1. Частные коэффициенты детерминации находят путем возве­дения в квадрат частных коэффициентов корреляции:

D 12.3 = r 2 12ּ3 ; d 13.2 = r 2 13ּ2 ; d 23ּ1 = r 2 23ּ1 .

Определение степени частного воздействия отдельных факторов на результативный признак при исключении (элимини­ровании) связи его с другими признаками, искажающими эту корреляцию, часто представляет большой интерес. Иногда бывает, что при постоянном значении элиминируемого признака нельзя подметить его статистического влияния на изменчивость других признаков. Чтобы уяснить технику расчета частного коэффици­ента корреляции, рассмотрим пример. Имеются три параметра X , Y и Z . Для объема выборки n = 180 определены парные коэффициенты корреляции

r xy = 0,799; r xz = 0,57; r yz = 0,507.

Определим частные ко­эффициенты корреляции:

Частный коэффициент корреляции между параметром X и Y Z (r хуּz = 0,720) показывает, что лишь незначительная часть взаимосвязи этих признаков в общей корреляции (r xy = 0,799) обусловлена влиянием третьего признака (Z ). Аналогичное заключение необходимо сделать и в отношении частного коэффициента корреляции между параметром X и параметром Z с постоянным значением параметраY (r х z ּу = 0,318 и r xz = 0,57). Напротив, частный коэффициент корреляции между параметрами Y и Z с постоянным значением параметра X r yz ּx = 0,105 значительно от­личается от общего коэффициента корреляции r у z = 0,507. Из это­го видно, что если подобрать объекты с одинаковым значением параметра X , то связь между признаками Y и Z у них будет очень слабой, так как значительная часть в этой взаимосвязи обуслов­лена варьированием параметра X .

При некоторых обстоятельствах частный коэффициент корре­ляции может оказаться противоположным по знаку парному.

Например, при изучении взаимосвязи между признаками X, У и Z - были получены парные коэффициенты корреляции (при n = 100): r ху = 0,6; r х z = 0,9;
r у z = 0,4.

Частные коэффициенты корреляции при исключении влияния третьего признака:

Из примера видно, что значения парного коэффициента и частного коэффициента корреляции разнятся в знаке.

Метод частной корреляции дает возможность вычислить частный коэффициент корреляции второго порядка. Этот коэф­фициент указывает на взаимосвязь между первым и вторым признаком при постоянном значении третьего и четвертого. Оп­ределение частного коэффициента второго порядка ведут на ос­нове частных коэффициентов первого порядка по формуле:

где r 12 . 4 , r 13 ּ4 , r 23 ּ4 - частные коэффициенты, значение кото­рых определяют по формуле частного коэффициента, используя коэффициенты парной корреляции r 12 , r 13 , r 14 , r 23 , r 24 , r 34 .

Множественный коэффициент корреляции характеризует тесноту линейной связи между одной переменной и совокупностью других рассматриваемых переменных.
Особое значение имеет расчет множественного коэффициента корреляции результативного признака y с факторными x 1 , x 2 ,…, x m , формула для определения которого в общем случае имеет вид

где ∆ r – определитель корреляционной матрицы; ∆ 11 – алгебраическое дополнение элемента r yy корреляционной матрицы.
Если рассматриваются лишь два факторных признака, то для вычисления множественного коэффициента корреляции можно использовать следующую формулу:

Построение множественного коэффициента корреляции целесообразно только в том случае, когда частные коэффициенты корреляции оказались значимыми, и связь между результативным признаком и факторами, включенными в модель, действительно существует.

Коэффициент детерминации

Общая формула: R 2 = RSS/TSS=1-ESS/TSS
где RSS - объясненная сумма квадратов отклонений, ESS - необъясненная (остаточная) сумма квадратов отклонений, TSS - общая сумма квадратов отклонений (TSS=RSS+ESS)

,
где r ij - парные коэффициенты корреляции между регрессорами x i и x j , a r i 0 - парные коэффициенты корреляции между регрессором x i и y ;
- скорректированный (нормированный) коэффициент детерминации.

Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации ; он показывает, какая доля дисперсии результативного признака y объясняется влиянием факторных признаков x 1 , x 2 , …,x m . Заметим, что формула для вычисления коэффициента детерминации через соотношение остаточной и общей дисперсии результативного признака даст тот же результат.
Множественный коэффициент корреляции и коэффициент детерминации изменяются в пределах от 0 до 1. Чем ближе к 1, тем связь сильнее и, соответственно, тем точнее уравнение регрессии, построенное в дальнейшем, будет описывать зависимость y от x 1 , x 2 , …,x m . Если значение множественного коэффициента корреляции невелико (меньше 0,3), это означает, что выбранный набор факторных признаков в недостаточной мере описывает вариацию результативного признака либо связь между факторными и результативной переменными является нелинейной.

Рассчитывается множественный коэффициент корреляции с помощью калькулятора . Значимость множественного коэффициента корреляции и коэффициента детерминации проверяется с помощью критерия Фишера .

Какое из приведенных чисел может быть значением коэффициента множественной детерминации:
а) 0,4 ;
б) -1;
в) -2,7;
г) 2,7.

Множественный линейный коэффициент корреляции равен 0.75 . Какой процент вариации зависимой переменной у учтен в модели и обусловлен влиянием факторов х 1 и х 2 .
а) 56,2 (R 2 =0.75 2 =0.5625);

Регрессионный анализ — это статистический метод исследования, позволяющий показать зависимость того или иного параметра от одной либо нескольких независимых переменных. В докомпьютерную эру его применение было достаточно затруднительно, особенно если речь шла о больших объемах данных. Сегодня, узнав как построить регрессию в Excel, можно решать сложные статистические задачи буквально за пару минут. Ниже представлены конкретные примеры из области экономики.

Виды регрессии

Само это понятие было введено в математику в 1886 году. Регрессия бывает:

  • линейной;
  • параболической;
  • степенной;
  • экспоненциальной;
  • гиперболической;
  • показательной;
  • логарифмической.

Пример 1

Рассмотрим задачу определения зависимости количества уволившихся членов коллектива от средней зарплаты на 6 промышленных предприятиях.

Задача. На шести предприятиях проанализировали среднемесячную заработную плату и количество сотрудников, которые уволились по собственному желанию. В табличной форме имеем:

Количество уволившихся

Зарплата

30000 рублей

35000 рублей

40000 рублей

45000 рублей

50000 рублей

55000 рублей

60000 рублей

Для задачи определения зависимости количества уволившихся работников от средней зарплаты на 6 предприятиях модель регрессии имеет вид уравнения Y = а 0 + а 1 x 1 +…+а k x k , где х i — влияющие переменные, a i — коэффициенты регрессии, a k — число факторов.

Для данной задачи Y — это показатель уволившихся сотрудников, а влияющий фактор — зарплата, которую обозначаем X.

Использование возможностей табличного процессора «Эксель»

Анализу регрессии в Excel должно предшествовать применение к имеющимся табличным данным встроенных функций. Однако для этих целей лучше воспользоваться очень полезной надстройкой «Пакет анализа». Для его активации нужно:

  • с вкладки «Файл» перейти в раздел «Параметры»;
  • в открывшемся окне выбрать строку «Надстройки»;
  • щелкнуть по кнопке «Перейти», расположенной внизу, справа от строки «Управление»;
  • поставить галочку рядом с названием «Пакет анализа» и подтвердить свои действия, нажав «Ок».

Если все сделано правильно, в правой части вкладки «Данные», расположенном над рабочим листом «Эксель», появится нужная кнопка.

в Excel

Теперь, когда под рукой есть все необходимые виртуальные инструменты для осуществления эконометрических расчетов, можем приступить к решению нашей задачи. Для этого:

  • щелкаем по кнопке «Анализ данных»;
  • в открывшемся окне нажимаем на кнопку «Регрессия»;
  • в появившуюся вкладку вводим диапазон значений для Y (количество уволившихся работников) и для X (их зарплаты);
  • подтверждаем свои действия нажатием кнопки «Ok».

В результате программа автоматически заполнит новый лист табличного процессора данными анализа регрессии. Обратите внимание! В Excel есть возможность самостоятельно задать место, которое вы предпочитаете для этой цели. Например, это может быть тот же лист, где находятся значения Y и X, или даже новая книга, специально предназначенная для хранения подобных данных.

Анализ результатов регрессии для R-квадрата

В Excel данные полученные в ходе обработки данных рассматриваемого примера имеют вид:

Прежде всего, следует обратить внимание на значение R-квадрата. Он представляет собой коэффициент детерминации. В данном примере R-квадрат = 0,755 (75,5%), т. е. расчетные параметры модели объясняют зависимость между рассматриваемыми параметрами на 75,5 %. Чем выше значение коэффициента детерминации, тем выбранная модель считается более применимой для конкретной задачи. Считается, что она корректно описывает реальную ситуацию при значении R-квадрата выше 0,8. Если R-квадрата<0,5, то такой анализа регрессии в Excel нельзя считать резонным.

Анализ коэффициентов

Число 64,1428 показывает, каким будет значение Y, если все переменные xi в рассматриваемой нами модели обнулятся. Иными словами можно утверждать, что на значение анализируемого параметра оказывают влияние и другие факторы, не описанные в конкретной модели.

Следующий коэффициент -0,16285, расположенный в ячейке B18, показывает весомость влияния переменной Х на Y. Это значит, что среднемесячная зарплата сотрудников в пределах рассматриваемой модели влияет на число уволившихся с весом -0,16285, т. е. степень ее влияния совсем небольшая. Знак «-» указывает на то, что коэффициент имеет отрицательное значение. Это очевидно, так как всем известно, что чем больше зарплата на предприятии, тем меньше людей выражают желание расторгнуть трудовой договор или увольняется.

Множественная регрессия

Под таким термином понимается уравнение связи с несколькими независимыми переменными вида:

y=f(x 1 +x 2 +…x m) + ε, где y — это результативный признак (зависимая переменная), а x 1 , x 2 , …x m — это признаки-факторы (независимые переменные).

Оценка параметров

Для множественной регрессии (МР) ее осуществляют, используя метод наименьших квадратов (МНК). Для линейных уравнений вида Y = a + b 1 x 1 +…+b m x m + ε строим систему нормальных уравнений (см. ниже)

Чтобы понять принцип метода, рассмотрим двухфакторный случай. Тогда имеем ситуацию, описываемую формулой

Отсюда получаем:

где σ — это дисперсия соответствующего признака, отраженного в индексе.

МНК применим к уравнению МР в стандартизируемом масштабе. В таком случае получаем уравнение:

в котором t y , t x 1, … t xm — стандартизируемые переменные, для которых средние значения равны 0; β i — стандартизированные коэффициенты регрессии, а среднеквадратическое отклонение — 1.

Обратите внимание, что все β i в данном случае заданы, как нормируемые и централизируемые, поэтому их сравнение между собой считается корректным и допустимым. Кроме того, принято осуществлять отсев факторов, отбрасывая те из них, у которых наименьшие значения βi.

Задача с использованием уравнения линейной регрессии

Предположим, имеется таблица динамики цены конкретного товара N в течение последних 8 месяцев. Необходимо принять решение о целесообразности приобретения его партии по цене 1850 руб./т.

номер месяца

название месяца

цена товара N

1750 рублей за тонну

1755 рублей за тонну

1767 рублей за тонну

1760 рублей за тонну

1770 рублей за тонну

1790 рублей за тонну

1810 рублей за тонну

1840 рублей за тонну

Для решения этой задачи в табличном процессоре «Эксель» требуется задействовать уже известный по представленному выше примеру инструмент «Анализ данных». Далее выбирают раздел «Регрессия» и задают параметры. Нужно помнить, что в поле «Входной интервал Y» должен вводиться диапазон значений для зависимой переменной (в данном случае цены на товар в конкретные месяцы года), а в «Входной интервал X» — для независимой (номер месяца). Подтверждаем действия нажатием «Ok». На новом листе (если так было указано) получаем данные для регрессии.

Строим по ним линейное уравнение вида y=ax+b, где в качестве параметров a и b выступают коэффициенты строки с наименованием номера месяца и коэффициенты и строки «Y-пересечение» из листа с результатами регрессионного анализа. Таким образом, линейное уравнение регрессии (УР) для задачи 3 записывается в виде:

Цена на товар N = 11,714* номер месяца + 1727,54.

или в алгебраических обозначениях

y = 11,714 x + 1727,54

Анализ результатов

Чтобы решить, адекватно ли полученное уравнения линейной регрессии, используются коэффициенты множественной корреляции (КМК) и детерминации, а также критерий Фишера и критерий Стьюдента. В таблице «Эксель» с результатами регрессии они выступают под названиями множественный R, R-квадрат, F-статистика и t-статистика соответственно.

КМК R дает возможность оценить тесноту вероятностной связи между независимой и зависимой переменными. Ее высокое значение свидетельствует о достаточно сильной связи между переменными «Номер месяца» и «Цена товара N в рублях за 1 тонну». Однако, характер этой связи остается неизвестным.

Квадрат коэффициента детерминации R 2 (RI) представляет собой числовую характеристику доли общего разброса и показывает, разброс какой части экспериментальных данных, т.е. значений зависимой переменной соответствует уравнению линейной регрессии. В рассматриваемой задаче эта величина равна 84,8%, т. е. статистические данные с высокой степенью точности описываются полученным УР.

F-статистика, называемая также критерием Фишера, используется для оценки значимости линейной зависимости, опровергая или подтверждая гипотезу о ее существовании.

(критерий Стьюдента) помогает оценивать значимость коэффициента при неизвестной либо свободного члена линейной зависимости. Если значение t-критерия > t кр, то гипотеза о незначимости свободного члена линейного уравнения отвергается.

В рассматриваемой задаче для свободного члена посредством инструментов «Эксель» было получено, что t=169,20903, а p=2,89Е-12, т. е. имеем нулевую вероятность того, что будет отвергнута верная гипотеза о незначимости свободного члена. Для коэффициента при неизвестной t=5,79405, а p=0,001158. Иными словами вероятность того, что будет отвергнута верная гипотеза о незначимости коэффициента при неизвестной, равна 0,12%.

Таким образом, можно утверждать, что полученное уравнение линейной регрессии адекватно.

Задача о целесообразности покупки пакета акций

Множественная регрессия в Excel выполняется с использованием все того же инструмента «Анализ данных». Рассмотрим конкретную прикладную задачу.

Руководство компания «NNN» должно принять решение о целесообразности покупки 20 % пакета акций АО «MMM». Стоимость пакета (СП) составляет 70 млн американских долларов. Специалистами «NNN» собраны данные об аналогичных сделках. Было принято решение оценивать стоимость пакета акций по таким параметрам, выраженным в миллионах американских долларов, как:

  • кредиторская задолженность (VK);
  • объем годового оборота (VO);
  • дебиторская задолженность (VD);
  • стоимость основных фондов (СОФ).

Кроме того, используется параметр задолженность предприятия по зарплате (V3 П) в тысячах американских долларов.

Решение средствами табличного процессора Excel

Прежде всего, необходимо составить таблицу исходных данных. Она имеет следующий вид:

  • вызывают окно «Анализ данных»;
  • выбирают раздел «Регрессия»;
  • в окошко «Входной интервал Y» вводят диапазон значений зависимых переменных из столбца G;
  • щелкают по иконке с красной стрелкой справа от окна «Входной интервал X» и выделяют на листе диапазон всех значений из столбцов B,C, D, F.

Отмечают пункт «Новый рабочий лист» и нажимают «Ok».

Получают анализ регрессии для данной задачи.

Изучение результатов и выводы

«Собираем» из округленных данных, представленных выше на листе табличного процессора Excel, уравнение регрессии:

СП = 0,103*СОФ + 0,541*VO - 0,031*VK +0,405*VD +0,691*VZP - 265,844.

В более привычном математическом виде его можно записать, как:

y = 0,103*x1 + 0,541*x2 - 0,031*x3 +0,405*x4 +0,691*x5 - 265,844

Данные для АО «MMM» представлены в таблице:

Подставив их в уравнение регрессии, получают цифру в 64,72 млн американских долларов. Это значит, что акции АО «MMM» не стоит приобретать, так как их стоимость в 70 млн американских долларов достаточно завышена.

Как видим, использование табличного процессора «Эксель» и уравнения регрессии позволило принять обоснованное решение относительно целесообразности вполне конкретной сделки.

Теперь вы знаете, что такое регрессия. Примеры в Excel, рассмотренные выше, помогут вам в решение практических задач из области эконометрики.

В регрессионной статистике указываются множественный коэффициент корреляции (Множественный R) и детерминации (R-квадрат) между Y и массивом факторных признаков (что совпадает с полученными ранее значениями в корреляционном анализе)

Средняя часть таблицы (Дисперсионный анализ) необходима для проверки значимости уравнения регрессии.

Нижняя часть таблицы – точ

ечные оценки bi генеральных коэффициентов регрессии вi, проверка их значимости и интервальная оценка.

Оценка вектора коэффициентов b (столбец Коэффициенты ):

Тогда оценка уравнения регрессии имеет вид:

Необходимо проверить значимость уравнения регрессии и полученных коэффициентов регрессии.

Проверим на уровне б=0,05 значимость уравнения регрессии, т.е. гипотезу H0: в1=в2=в3=…=вk=0. Для этого рассчитывается наблюдаемое значение F-статистики:

Excel выдаёт это в результатах дисперсионного анализа :

QR=527,4296; Qост=1109,8673 =>

В столбце F указывается значение F набл .

По таблицам F-распределения или с помощью встроенной статистической функции F РАСПОБР для уровня значимости б=0,05 и числа степеней свободы числителя н1=k=4 и знаменателя н2=n-k-1=45 находим критическое значение F-статистики, равное

Fкр = 2,578739184

Так как наблюдаемое значение F-статистики превосходит ее критическое значение 8,1957 > 2,7587, то гипотеза о равенстве вектора коэффициентов отвергается с вероятностью ошибки, равной 0,05. Следовательно, хотя бы один элемент вектора в=(в1,в2,в3,в4)T значимо отличается от нуля.

Проверим значимость отдельных коэффициентов уравнения регрессии, т.е. гипотезу .

Проверку значимости регрессионных коэффициентов проводят на основе t-статистики для уровня значимости .

Наблюдаемые значения t-статистик указаны в таблице результатов в столбце t -статистика .

Коэффициенты (bi)

t-статистика (tнабл)

Y-пересечение

Переменная X5

Переменная X7

Переменная X10

Переменная X15

Их необходимо сравнить с критическим значением tкр, найденным для уровня значимости б=0,05 и числа степеней свободы н=n – k - 1.

Для этого используем встроенную статистическую функцию Excel СТЬЮДРАСПОБР, введя в предложенное меню вероятность б=0,05 и число степеней свободы н= n–k-1=50-4-1=45. (Можно найти значения tкр по таблицам математической статистики.

Получаем tкр= 2,014103359.

Для наблюдаемое значение t-статистики меньше критического по модулю 2,0141>|-0,0872|, 2,0141>|0,2630|, 2,0141>|0,7300|, 2,0141>|-1,6629|.

Следовательно, гипотеза о равенстве нулю этих коэффициентов не отвергается с вероятностью ошибки, равной 0,05, т.е. соответствующие коэффициенты незначимы.

Для наблюдаемое значение t-статистики больше критического значения по модулю |3,7658|>2,0141, следовательно, гипотеза H0 отвергается, т.е. - значим.

Значимость регрессионных коэффициентов проверяют и следующие столбцы результирующей таблицы:

Столбец p -значение показывает значимость параметров модели граничным 5%-ым уровнем, т.е. если p≤0,05, то соответствующий коэффициент считается значимым, если p>0,05, то незначимым.

И последние столбцы – нижние 95% и верхние 95% и нижние 98% и верхние 98% - это интервальные оценки регрессионных коэффициентов с заданными уровнями надёжности для г=0,95 (выдаётся всегда) и г=0,98 (выдаётся при установке соответствующей дополнительной надёжности).

Если нижние и верхние границы имеют одинаковый знак (ноль не входит в доверительный интервал), то соответствующий коэффициент регрессии считается значимым, в противном случае – незначимым

Как видно из таблицы, для коэффициента в3 p-значение p=0,0005<0,05 и доверительные интервалы не включают ноль, т.е. по всем проверочным критериям этот коэффициент является значимым.

Согласно алгоритму пошагового регрессионного анализа с исключением незначимых регрессоров, на следующем этапе необходимо исключить из рассмотрения переменную, имеющую незначимый коэффициент регрессии.

В случае, когда при оценке регрессии выявлено несколько незначимых коэффициентов, первым из уравнения регрессии исключается регрессор, для которого t-статистика () минимальна по модулю. По этому принципу на следующем этапе необходимо исключить переменную Х5 , имеющую незначимый коэффициент регрессии в2

II ЭТАП РЕГРЕССИОННОГО АНАЛИЗА.

В модель включены факторные признаки X7, X10, X15, исключён X5.

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

(число степеней свободы н)

(сумма квадратов отклонений Q)

(средний квадрат MS=SS/н)

(Fнабл= MSR/MSост)

Значимость F

Регрессия

Коэффи-циенты

Стандартная ошибка

t-ста-тистика

P-Значение

Верхние 95% (вimax)

Нижние 98% (вimin)

Y-пересечение

Переменная X7

Переменная X10

Переменная X15


  1. Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности, - и -коэффициентов.
Для оценки качества выбранной множественной модели (6) , аналогично п.1.4 данной задачи, используем коэффициент детерминации R - квадрат, среднюю относительную ошибку аппроксимации и F -критерий Фишера.

Коэффициент детерминации R -квадрат возьмем из итогов «Регрессии» (таблица «Регрессионная статистика» для модели (6)).

Следовательно, вариация (изменение) цены квартиры Y на 76,77% объясняется по данному уравнению вариацией города области Х 1 , числа комнат в квартире Х 2 и жилой площади Х 4 .

Используем исходные данные Y i и найденные инструментом «Регрессия» остатки (таблица «Вывод остатка» для модели (6)). Рассчитаем относительные погрешности и найдем среднее значение
.

ВЫВОД ОСТАТКА


Наблюдение

Предсказанное Y

Остатки

Отн. погрешность

1

45,95089273

-7,95089273

20,92340192

2

86,10296493

-23,90296493

38,42920407

3

94,84442678

30,15557322

24,12445858

4

84,17648426

-23,07648426

37,76838667

5

40,2537216

26,7462784

39,91981851

6

68,70572376

24,29427624

26,12287768

7

143,7464899

-25,7464899

21,81905923

8

106,0907598

25,90924022

19,62821228

9

135,357993

-42,85799303

46,33296544

10

114,4792566

-9,47925665

9,027863476

11

41,48765602

0,512343975

1,219866607

12

103,2329236

21,76707636

17,41366109

13

130,3567798

39,64322022

23,3195413

14

35,41901876

2,580981242

6,7920559

15

155,4129693

-24,91296925

19,0903979

16

84,32108188

0,678918123

0,798727204

17

98,0552279

-0,055227902

0,056355002

18

144,2104618

-16,21046182

12,66442329

19

122,8677535

-37,86775351

44,55029825

20

100,0221225

59,97787748

37,48617343

21

53,27196558

6,728034423

11,21339071

22

35,06605378

5,933946225

14,47303957

23

114,4792566

-24,47925665

27,19917406

24

113,1343153

-30,13431529

36,30640396

25

40,43190991

4,568090093

10,15131132

26

39,34427892

-0,344278918

0,882766457

27

144,4794501

-57,57945009

66,25943623

28

56,4827667

-16,4827667

41,20691675

29

95,38240332

-15,38240332

19,22800415

30

228,6988826

-1,698882564

0,748406416

31

222,8067278

12,19327221

5,188626473

32

38,81483144

1,185168555

2,962921389

33

48,36325811

18,63674189

27,81603267

34

126,6080021

-3,608002113

2,933335051

35

84,85052935

15,14947065

15,14947065

36

116,7991162

-11,79911625

11,23725357

37

84,17648426

-13,87648426

19,73895342

38

113,9412801

-31,94128011

38,95278062

39

215,494184

64,50581599

23,03779142

40

141,7795953

58,22040472

29,11020236

Среднее

101,2375

22,51770962

По столбцу относительных погрешностей найдем среднее значение =22.51% (с помощью функции СРЗНАЧ).

Сравнение показывает, что 22.51%>7%. Следовательно, точность модели неудовлетворительная.

С помощью F – критерия Фишера проверим значимость модели в целом. Для этого выпишем из итогов применения инструмента «Регрессия» (таблица «дисперсионный анализ» для модели (6)) F = 39,6702.

С помощью функции FРАСПОБР найдем значение F кр =3.252 для уровня значимости α = 5% , и чисел степеней свободы k 1 = 2 , k 2 = 37 .

F > F кр , следовательно, уравнение модели (6) является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенными в модель (6) факторными переменными Х 1 , Х 2 . и Х 4 .

Дополнительно с помощью t –критерия Стьюдента проверим значимость отдельных коэффициентов модели.

t –статистики для коэффициентов уравнения регрессии приведены в итогах инструмента «Регрессия». Получены следующие значения для выбранной модели (6) :


Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

-5,643572321

12,07285417

-0,46745966

0,642988

-30,1285

18,84131

-30,1285

18,84131

X4

2,591405557

0,461440597

5,61590284

2,27E-06

1,655561

3,52725

1,655561

3,52725

X1

6,85963077

9,185748512

0,74676884

0,460053

-11,7699

25,48919

-11,7699

25,48919

X2

-1,985156991

7,795346067

-0,25465925

0,800435

-17,7949

13,82454

-17,7949

13,82454

Критическое значение t кр найдено для уровня значимости α=5% и числа степеней свободы k =40–2–1=37 . t кр =2.026 (функция СТЬЮДРАСПОБР).

Для свободного коэффициента α =–5.643 определена статистика
, t кр , следовательно, свободный коэффициент не является значимым, его можно исключить из модели.

Для коэффициента регрессии β 1 =6.859 определена статистика
, β 1 не является значимым, его и фактор города области можно удалить из модели.

Для коэффициента регрессии β 2 =-1,985 определена статистика
, t кр , следовательно, коэффициент регрессии β 2 не является значимым, его и фактор числа комнат в квартире можно исключить из модели.

Для коэффициента регрессии β 4 =2.591 определена статистика
, >t кр, следовательно, коэффициент регрессии β 4 является значимым, его и фактор жилой площади квартиры можно сохранить в модели.

Выводы о значимости коэффициентов модели сделаны на уровне значимости α=5% . Рассматривая столбец «P-значение», отметим, что свободный коэффициент α можно считать значимым на уровне 0.64 = 64%; коэффициент регрессии β 1 – на уровне 0,46 = 46%; коэффициент регрессии β 2 – на уровне 0,8 = 80%; а коэффициент регрессии β 4 – на уровне 2,27E-06= 2,26691790951854E-06 = 0,0000002%.

При добавлении в уравнение новых факторных переменных автоматически увеличивается коэффициент детерминации R 2 и уменьшается средняя ошибка аппроксимации, хотя при этом не всегда улучшается качество модели. Поэтому для сравнения качества модели (3) и выбранной множественной модели (6) используем нормированные коэффициенты детерминации.

Таким образом, при добавлении в уравнение регрессии фактора «город области» Х 1 и фактора «число комнат в квартире» Х 2 качество модели ухудшилось, что говорит в пользу удаления факторов Х 1 и Х 2 из модели.

Проведем дальнейшие расчеты.

Средние коэффициенты эластичности в случае линейной модели определяются формулами
.

С помощью функции СРЗНАЧ найдем: S Y , при увеличении только фактора Х 4 на одно его стандартное отклонение – увеличивается на 0,914 S Y

Дельта-коэффициенты определяются формулами
.

Найдем коэффициенты парной корреляции с использованием инструмента «Корреляция» пакета «Анализ данных» в Excel.


Y

X1

X2

X4

Y

1

X1

-0,01126

1

X2

0,751061

-0,0341

1

X4

0,874012

-0,0798

0,868524

1

Коэффициент детерминации был определен ранее и равен 0.7677.

Вычислим дельта-коэффициенты:

;

Поскольку Δ 1 1 и Х 2 выбрана неудачно, и их нужно удалить из модели. Значит, по уравнению полученной линейной трехфакторной модели изменение результирующего фактора Y (цены квартиры) на 104% объясняется воздействием фактора Х 4 (жилой площадью квартиры), на 4% воздействием фактора Х 2 (число комнат), на 0,0859% воздействием фактора Х 1 (город области).