Для системы комплемента характерно следующее. Система комплемента: общее представление. Основные функции и эффекты комплемента

Комплемент – система белков сыворотки крови, принимающая участие в регуляции воспалительных процессов, активации фагоцитоза и разрушающем (литическом) действии на клеточные мембраны.

В систему комплемента входит около двух десятков белков, их содержание составляет ~ 5 % от всех белков плазмы крови, т. е. концентрация в крови 3 – 4 г/л. Белки комплемента обозначают символом ʼʼСʼʼ и цифрой, соответствующей хронологии их открытия, продукты расщепления компонентов комплемента – маленькой латинской буквой (С3b, C5a и др.). В наибольшем количестве в крови содержится компонент С3, который выполняет центральную роль в активации комплемента.

Для этой системы характерен быстрый, многократно усиленный ответ на антигеннный сигнал за счёт каскадного процесса. При этом продукт одной реакции является катализатором последующей.

В отсутствие антигена компоненты комплемента находятся в неактивном состоянии. Существует два пути активации комплемента˸ без участия антител – альтернативный, и с участием антител – классический. Активацию комплемента по альтернативному пути вызывают компоненты микробных клеток, по классическому – комплексы антиген – антитело. Общим для обоих путей является образование фермента С3-конвертазы, который расщепляет компонент С3 на фрагменты С3а и С3b. Меньший фрагмент С3а принимает участие в развитии воспалительного процесса и хемотаксиса. Больший фрагмент С3b, связываясь с С3-конвертазой, образует С5-ковертазу – фермент, катализирующий расщепление С5 на фрагменты С5а и С5b. Высвобождающийся фрагмент С5b остается фиксированным на мембране и последовательно присоединяет С6, С7, С8 и С9, благодаря чему образуется мембраноатакующий комплекс (МАК), который лизирует клетку-мишень за счёт формирования трансмембранного канала. По этому каналу внутрь клетки поступают ионы Na + и вода, клетка набухает и лопается, т. е. лизирует. Среди других эффектов системы комплемента необходимо отметить следующие˸

- развитие воспалительной реакции и хемотаксис. Компоненты комплемента С3а и С5а могут привлекать к месту воспаления иммунокомпетентные клетки, например фагоциты, которые атакуют бактерии и пожирают их.

- Опсонизация (облегчение распознавания) микроорганизмов. Фрагменты С3b связываются с поверхностью бактерий, благодаря чему создается метка для узнавания фагоцитами, имеющими рецепторы к этому компоненту комплемента.

Рис. 13. Активация белков системы комплемента

Активность системы комплемента контролируется ингибиторами плазмы крови, блокирующими избыточную реакцию.

Фагоцитоз (ʼʼпоеданиеʼʼ клетками) – первая реакция иммунной системы на внедрение чужеродного антигена. Механизм фагоцитоза включает 8 последовательных стадий (рис. 14)˸

1. Хемотаксис – направленное перемещение фагоцитирующих клеток к объекту по градиенту концентрации хемотаксических соединений.

Рис. 14. Стадии фагоцитоза

2. Адгезия - распознавание и прикрепление чужеродного объекта к поверхности фагоцита. Процесс адгезии усиливают опсонины (комплемент С3b, антитела), обволакивающие объекты фагоцитоза. В этом случае связывание происходит с участием фагоцитарных рецепторов для С3b комлемента и /или Fc антитела.

26.1. Общее понятие
Комплемент – сложный белковый комплекс сыворотки крови.
А. Система комплемента состоит из 30 белков (компонентов, или фракций, системы комплемента).
Б. Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента.
1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его.
2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.
В. Фракции системы комплемента обозначаются по-разному.
1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.
2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.
Г. Значение комплемента для макроорганизма велико и разнообразно (подробнее – см. раздел 26.6).
1. Часть активных фракций системы комплемента являются протеазами.
2. Некоторые – связываются с комплексом антиген-антитело (иммунным комплексом).
3. Другие – активируют тучные клетки и, связанные с ними сосудистые реакции воспаления.
4. И, наконец, часть фракций комплемента осуществляет перфорацию оболочек бактериальных клеток.

26.2. Пути активации комплемента
Существуют три пути активации комплемента: классический, лектиновый и альтернативный.
А. Классический путь активации комплемента является основным. Участие в этом пути активации комплемента – главная функция антител.

Рис 26.2-2. Схема классического пути активации комплемента

1. Активацию комплемента по классическому пути запускает иммунный комплекс: комплекс антигена с иммуноглобулином (класса G – первых трех подклассов – или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.
2. Классический путь активации комплемента осуществляется следующим образом (рис 26.2-1).
а. Сначала активируется фракция С1: она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).
б. С1-эстераза расщепляет фракцию С4.
в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток (но не с собственными эукариотическими клетками макроорганизма) с здесь присоединяет к себе фракцию С2.
г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b.
д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути.
е. С3-конвертаза расщепляет фракцию С3, нарабатываю большие количества активной фракции С3b.
ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b).
з. С5-конвертаза расщепляет фракцию С5.
и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6.
к. Комплекс С5bС6 присоединяет фракцию С7.
л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки.
м. К этому комплексу присоединяется белок С8.
н. Будучи вместе со всем комплексом в фосфолипидный бислой мембраны микробной клетки, белок С8 катализирует полимеризацию 10 – 16 молекул белка С9. Данный полимер формирует в мембране микробной клетки неспадающую пору диаметром около 10 нм (рис 26.2-2)., что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).


Рис. 26.2-2. Схема образования МАК (слева) и результат активации комплемента – формирование поры в фосфолипидном бислое микробной мембраны, приводящей к осмотическому лизису микробной клетки (справа)


Рис 26.2-3. Схема лектинового пути активации комплемента

Б. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы). Активизирующаяся в результате этого процесса МСЛ-ассоциированная сериновая протеаза действует аналогично С1-эстеразе классического пути, по которому, собственно, и развиваются дальнейшие события, заканчивающиеся формированием МАК (рис. 26.2-3).
В. Альтернативный путь активации комплемента (рис. 26.2-4) начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.


Рис. 26.2-4. Схема альтернативного пути активации комплемента

1. Дальнейшие события развиваются следующим образом.
а. С3b связывает фактор В (который структурно и функционально гомологичен фактору С2), образуя комплекс С3bВ.
б. В связанном с С3b виде фактор В выступает в качестве сусбтрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb. Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути.
в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).
г. То, что происходит дальше, аналогично классическому пути активации комплемента.
1. Нарабатывается много С3b и образуется комплекс С3bВbС3b, являющийся С5-конвертазой.
2. Активация С5 дает начало образованию мембранатакующего комплекса (см. разделы 26.2.А.2.и – 26.2.А.2.н).
2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.
Г. Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно, еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс (см. рис. 26.2-5), разные составляющие которого могут просто проявляться в разной степени.

26.3. Анафилотоксины
Активные фракции комплемента С3а и С5а называются анафилотоксинами, так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия (см. ниже). Наиболее сильным анафилотоксином является С5а.
А. Анафилотоксины действуют на разные клетки и ткани макроорганизма.
1. Действие их на тучные клетки вызывает дегрануляцию последних.
2. Анафилотоксины действуют также на гладкие мышцы, вызывая их сокращение.
3. Действуют они и на стенку сосуда: вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.
Б. Корме того, анафилотоксины являются иммуномодуляторами, т.е. они выступают в роли регуляторов иммунного ответа.
1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).
2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).


26.2-4. Общая схема активации комплемента


26.2-5. Схема, иллюстрирующая взаимосвязь путей активации комплемента

26.4. Рецепторы для компонентов комплемента
Фракции комплемента могут воздействовать на клетки макроорганизма лишь в том случае, если на последних существуют соответствующие рецепторы.
А. Фагоциты имеют рецептор для С3b. Этот рецептор обуславливает большую активности фагоцитов по отношению к опсонизированным микробами (а именно, к тем из них, на поверхности которых наличествует фракции С3b).
Б. Эритроциты обладают специфическими рецепторами для фракций С3b и С4b. Этими рецепторами эритроциты связывают соответствующие фракции комплемента в составе циркулирующих иммунных комплексов (ЦИК) и транспортируют эти комплексы к макрофагам селезенки и печени, которые, их уничтожают, осуществляя тем самым клиренс (т.е. очищение) крови от ЦИК.
В. На тучных клетках локализованы рецепторы к фракции С5а, через которые этот анафилатоксин активирует эти клетки и вызывает их дегрануляцию.
Г. Таким же рецептором обладают макрофаги, благодаря чему фракция С5а активирует и эти клетки.

26.5. Регуляция системы комплемента
В норме, в отсутствие во внутренней среде макроорганизма патогена, уровень спонтанной активности системы комплемента невысок. Каскадный механизм активации комплемента «запускается» активаторами, а регуляция его работы по типу «обратной связи» – ингибиторами, без которых каждый эпизод активации заканчивался бы полным истощением всей системы.
А. Активаторами системы комплемента являются молекулярные комплексы, располагающиеся на поверхности микроорганизма, и запускающие процесс активации комплемента по тому или иному пути. О них уже упоминалось выше (см. раздел 26.2).
1. Активаторами классического пути активации комплемента выступают два комплекса.
а. Иммунный комплекс (комплекс антиген-антитело).
б. Комплекс антигена с С-реактивным белком.
2. Активатором лектинового пути активации комплемента выступает комплекс нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (а именно – с остатками маннозы).
3. Активаторами альтернативного пути активации комплемента выступают два комплекса.
а. Комплекс (в результате ковалентного связывания) активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.
б. Агрегированные на поверхности микроба иммуноглобулины классов А и Е.
Б. Ингибиторы системы комплемента локализуются в сыворотке крови или на мембране клеток.
1. В сыворотке крови локализуются пять белков – ингибиторов системы комплемента.
а. С1-ингибитор (С1inh) инактивирует активную фракцию С1qrs (т.е. С1-эстеразу).
б. С4-связывающий протеин (C4BP) делает фактор С4b доступным для деградации фактором I.
в. Фактор Н – делает фактор С3b доступным для деградации фактором I.
г. Фактор I расщепляет С3b (в комплексе с фактором Н) и С4b (в комплексе с С4ВР).
д. Белок S связывается с комплексом С5bС6С7 и предотвращает дальнейшее образование мембранатакующего комплекса.
2. На клетках млекопитающих (и, соответственно человека) локализуются три белка – ингибитора системы комплемента.
а. DAF (decay-accelerating factor = фактор, ускоряющий распад) инактивирует С4bС2b (т.к. вместо С2 связывается с С4b).
б. МСР (мембранный кофактор протеолиза) делает фактор С3b доступным для деградации фактором I.
в. Протектин (обозначаемый также как молекула CD59) инактивирует белки мембранатакующего комплекса (препятствует С-опосредованному лизису собственных клеток)

26.6. Функции системы комплемента
Система комплемента играет очень важную роль в защите макроорганизма от патогенов.
А. Система комплемента участвует в инактивации микроорганизмов, в т.ч. опосредует действие на микробы антител.
Б. Активные фракции системы комплемента активируют фагоцитоз.
В. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции.

26.7. Определение активности системы комплемента
Для определения активности комплемента в современных иммунологических лабораториях используют реакцию гемолиза и иммуноферментный анализ (ИФА), пришедший на смену реакции радиальной иммунодиффузии по Манчини.
А. Реакция гемолиза используется для определения титра комплемента и для измерения общей активности системы комплемента.
1. Титр комплемента определяется как максимальное разведение сыворотки крови, вызывающее лизис эритроцитов барана, нагруженных антиэритроцитарными антителами (так называемой гемсистемы).
2. Под общей активностью системы комплемента понимают количество комплемента, обеспечивающее лизис 50% эритроцитов гемсистемы (обозначается как СН50).
Б. Иммуноферментный анализ используется для определения концентрации в сыворотке крови отдельных компонентов системы комплемента (C1q, C1s, C2, C3, C4, C5, C6, C7, C8, C9, пропердина, фактора В, С1-ингибитора). Раньше концентрацию наиболее важных в функциональном отношении фракций системы комплемента (чаще – С3 и С4) определяли с помощью реакции иммунодиффузии по Манчини, но в современных лабораториях, оснащенных ИФА-анализаторами, с этой целью используют иммуноферментный анализ, значительно расширивший возможности оценки функционального состояния у пациента его системы комплемента.

Система комплемента, состоящая примерно из 30 белков, как циркулирующих, так и экспрессированных на мембране, является важной эффекторной ветвью как врожденного, так и опосредованного антителами приобретенного иммунного ответов. Термин «комлемент» появился в связи с тем, что этот чувствительный к повышению температуры материал сыворотки крови был обнаружен по свойству «дополнять» способность антител уничтожать бактерии. Известно, что комплемент играет главную роль в защите от многих инфекционных микроорганизмов.

Наиболее важными составляющими его защитной функции являются: 1) выработка опсонинов - молекул, увеличивающих способность макрофагов и нейтрофилов к фагоцитозу; 2) выработка анафилатоксинов - пептидов, индуцирующих местные и системные воспалительные реакции; 3) непосредственный киллинг микроорганизмов.

Известны и другие важные функции комплемента, такие как усиление антигенспецифических иммунных ответов и поддержание гомеостаза (стабильности внутри организма) путем удаления иммунных комплексов и мертвых или умирающих клеток. Мы знаем также, что нарушение контроля над активацией комплемента может привести к повреждению клеток и тканей организма.

Компоненты комплемента синтезируются в печени, а также клетками, участвующими в воспалительной реакции. Концентрация всех белков комплемента в циркулирующей крови составляет примерно 3 мг/мл. (Для сравнения: концентрация IgG в крови составляет примерно 12 мг/мл) Концентрации некоторых компонентов комплемента высоки (например, около 1 мг/мл для С3), в то время как другие компоненты (такие как фактор D и С2) присутствуют в следовых количествах.

Пути активации комплемента

Начальные этапы активации комплемента заключаются в последовательной каскадной активации одного за другим его компонентов. На этой стадии активация одного компонента индуцирует действие фермента, которое приводит к активации следующего по очереди компонента. Поскольку одна активная молекула фермента способна расщеплять множество молекул субстрата, этот каскад реакций усиливает относительно слабый начальный сигнал. Эти каскадные свойства системы комплемента аналогичны наблюдаемым в других сывороточных каскадах, направленных на образование сгустка и выработку кининов, сосудистых медиаторов воспаления.

После активации отдельные компоненты расщепляются на фрагменты, обозначаемые строчными буквами. Меньший из расщепленных фрагментов обычно обозначается буквой «а», больший - «b». Исторически сложилось, однако, что больший из расщепленных фрагментов С2 обычно относят к С2а, а меньший - к С2b. (Однако в некоторых текстах и статьях фрагменты компонентов комплемента С2 обозначаются обратным способом.) Дальнейшие фрагменты расщепления также обозначаются малыми буквами, например C3d.

Известны три пути активации комплемента: классический, лектиновый и альтернативный.

Начало каждого из путей активации характеризуется собственными компонентами и процессами распознавания, однако на более поздних стадиях во всех трех случаях используются одни и те же компоненты. Свойства каждого пути активации и веществ, их активирующих, обсуждаются далее.

Классический путь

Классический путь активации так называется потому, что он был определен первым. Белковые компоненты классического пути обозначаются С1, С2, С9. (Номера расставлены в том порядке, в котором компоненты были открыты, а не в том, в котором они активируются.) Комплексы антиген - антитело являются основными активаторами классического пути. Таким образом, последний является главным эффекторным путем активации гуморального адаптивного иммунного ответа.

Другими активаторами являются некоторые вирусы, погибшие клетки и внутриклеточные мембраны (например, митохондрий), агрегаты иммуноглобулинов и β-амилоид, обнаруживаемый при болезни Альцгеймера в бляшках. С-реактивный белок является белком острой фазы - компонентом воспалительной реакции; он прикрепляется к полисахариду фосфорилхолину, экспрессированному на поверхности многих бактерий (например, Streptococcus pneumoniae), и тоже активирует классический путь.

Классический путь инициируется, когда С1 прикрепляется к антителу в комплексе антиген - антитело, например антителу, связанному с антигеном, экспрессированным на поверхности бактерии (рис. 13.1). Компонент С1 представляет собой комплекс из трех различных белков: Clq (содержащего шесть одинаковых субкомпонентов), связанного с двумя молекулами (причем каждой по две) - Clr и Cls. При активации Cl его глобулярные участки - субкомпоненты Clq - связываются с Clq-специфичным участком на Fc-фрагментах или одного IgM, или двух близко расположенных молекул IgG, связанных с антигеном (связывание IgG показано на рис. 13.1).

Таким образом, антитела IgM и IgG являются эффективными активаторами комплемента. Иммуноглобулины человека, обладающие способностью связываться с Cl и активировать его, в порядке уменьшения этой способности располагаются: IgM > > IgG3 > IgG 1 » IgG2. Иммуноглобулины IgG4, IgD, IgA и IgE не взаимодействуют с Clq не закрепляют и не активируют его, т.е. не активируют комплемент по классическому пути.

После связывания С1 с комплексом антиген-антитело Cls приобретает ферментативную активность. Эта активная форма известна как Cls-эстераза. Она расщепляет следующий компонент классического пути - С4 - на две части: С4а и С4b. Меньшая часть - С4а - остается в растворенном состоянии, а С4b ковалентно связывается с поверхностью бактерии или другой активирующей субстанцией.

Часть С4b, прикрепленная к поверхности клетки, затем связывает С2, который расщепляется Cls. При расщеплении С2 получают фрагмент С2b, который остается в растворенном состоянии, и С2а. В свою очередь С2а прикрепляется к С4b на поверхности клетки с образованием комплекса С4b2а. Этот комплекс называется С3-конвертазой классического пути, поскольку, как мы увидим позднее, этот фермент расщепляет следующий компонент - С3.

Лектиновый путь

Лектиновый путь активируется концевыми остатками маннозы в белках и полисахаридах, находящихся на поверхности бактерии. Эти остатки не обнаруживаются на поверхности клеток млекопитающих, поэтому лектиновый путь может рассматриваться в качестве средства распознавания своего и чужого. Поскольку этот путь активации не требует присутствия антител, он является частью системы врожденной иммунной защиты.

На рис. 13.1 показано, как бактериальные маннозные остатки связываются с циркулирующим комплексом маннозосвязывающего лектина (МСЛ; по структуре схожий с Clq классического пути) и двумя ассоциированными протеазами, называемыми маннозассоциированными сериновыми протеазами (МАСП-1 и -2) . Это связывание активирует МАСП-1 для последующего расщепления компонентов классического пути комплемента - С4 и С2 с формированием С4b2а, С3-конвертазы классического пути на поверхности бактерий. А МАСП-2 обладает способностью напрямую расщеплять С3. Таким образом, лектиновый путь после фазы активации С3 аналогичен классическому.

Альтернативный путь

Альтернативный путь активации комплемента запускается почти любой чужеродной субстанцией. К наиболее изученным веществам относятся липополисахариды (ЛПС, также известные как эндотоксины клеточной стенки грамотрицательных бактерий), клеточные стенки некоторых дрожжей и белок, находящийся в яде кобры (фактор яда кобры). Некоторые агенты, активирующие классический путь, - вирусы, агрегаты иммуноглобулинов и мертвые клетки, запускают также и альтернативный путь.

Активация происходит в отсутствие специфических антител. Таким образом, альтернативный путь активации комплемента является эффекторной ветвью системы врожденной иммунной защиты. Некоторые компоненты альтернативного пути характерны только для него (сывороточные факторы В и D и пропердин, известный также как фактор Р), в то время как другие (С3, С3b, С5, С6, С7, С8 и С9) являются общими с классическим путем.

Компонент С3b появляется в крови в небольших количествах после спонтанного расщепления реактивной тиоловой группы в С3. Этот «предсу-ществующий» С3b способен связываться с гидроксильными группами белков и углеводов, экспрессированных на клеточных поверхностях (см. рис. 13.1). Накопление С3b на поверхности клетки инициирует альтернативный путь.

Оно может происходить как на чужеродной, так и на собственной клетке организма; таким образом, с точки зрения альтернативного пути он всегда запущен. Однако, как указано более детально далее, собственные клетки организма регулируют течение реакций альтернативного пути, в то время как чужеродные не обладают такими регуляторными способностями и не могут предотвратить развитие последующих событий альтернативного пути.

Рис. 13.1. Запуск классического, лектинового и альтернативного путей. Демонстрация активации каждого пути и формирования С3-конвертазы

На следующей стадии альтернативного пути сывороточный белок, фактор B, соединяется с С3b на поверхности клетки с формированием комплекса С3bВ. Затем фактор D расщепляет фактор В, который находится на поверхности клетки в комплексе С3bВ, в результате чего образуется фрагмент Ва, который высвобождается в окружающую жидкость, и Вb, остающийся связанным с С3b Этот С3bВb является С3-конвертазой альтернативного пути, которая расщепляет С3 на С3а и С3b.

Обычно С3bВb быстро растворяется, но может стабилизироваться при соединении с пропердином (см. рис. 13.1). В результате стабилизированный пропердином С3bВb способен связываться и расщеплять большое количество С3 за очень короткое время. Накопление на клеточной поверхности этих быстро образованных в большом количестве С3b приводит к почти «взрывному» запуску альтернативного пути. Таким образом, связывание пропердина с С3bВb создает петлю усиления альтернативного пути. Cпособность пропердина активировать петлю усиления контролируется противоположным действием регуляторных белков. Следовательно, активация альтернативного пути не происходит постоянно.

Активация С3 и С5

Расщепление С3 является основной фазой для всех трех путей активации. На рис. 13.2 показано, что С3-конвертазы при классическом и альтернативном путях (С4b2а и С3bВb соответственно) расщепляют С3 на два фрагмента. Более мелкий С3а является растворимым белком анафилатоксином: он активирует клетки, участвующие в реакции воспаления. Больший фрагмент, С3b, продолжает процесс активации каскада комплемента, связываясь с клеточными поверхностями вокруг места активации. Как показано далее, С3b также участвует в защите организма, воспалении и иммунной регуляции.


Рис. 13.2. Расщепление компонента С3 С3-конвертазой и компонента С5 С5-конвертазой при классическом и лектиновом (наверху) и альтернативном (внизу) путях. Во всех случаях С3 расщепляется на С3b, который откладывается на клеточной поверхности, и СЗа, высвобождаемый в жидкую среду. Таким же образом С5 расщепляется на С5b, который откладывается на клеточной поверхности, и С5а, высвобождаемый в жидкую среду

Связывание С3b с С3-конвертазами как при классическом, так и альтернативном путях инициирует связывание и расщепление следующего компонента - С5 (см. рис. 13.2). По этой причине С3-конвертазы, связанные с С3b, относятся к С5-конвертазам (С4b2а3b при классическом пути; С3bВb3b при альтернативном). При расщеплении С5 образуются два фрагмента. Фрагмент С5а высвобождается в растворимой форме и является активным анафилатоксином. Фрагмент С5b связывается с клеточной поверхностью и формирует ядро для связи с терминальными компонентами комплемента.

Терминальный путь

Терминальные компоненты каскада комплемента - С5b, С6, С7, С8 и С9 - являются общими для всех путей активации. Они связываются друг с другом и формируют мембраноатакующий комплекс (МАК), который вызывает лизис клетки (рис. 13.3).


Рис. 13.3 Формирование мембраноатакующего комплекса. Компоненты комплемента поздней фазы - С5b-С9 - последовательно соединяются и формируют на поверхности клетки комплекс. Многочисленные С9-компоненты прикрепляются к этому комплексу и полимеризуются с образованием поли-С9, создавая канал, который пронизывает клеточную мембрану

Первой фазой формирования МАК является прикрепление С6 к С5b на поверхности клетки. Затем С7 связывается с С5b и С6 и проникает в наружную мембрану клетки. Последующее связывание С8 с С5b67 приводит к образованию комплекса, глубже проникающего в мембрану клетки. На мембране клетки C5b-С8 действует как рецептор для С9 - молекулы типа перфорина, который связывается с С8.

Дополнительные молекулы С9 взаимодействуют в комплексе с молекулой С9, образуя полимеризованные С9 (поли-С9). Эти поли-С9 формируют трансмембранный канал, нарушающий осмотическое равновесие в клетке: через него проникают ионы и поступает вода. Клетка набухает, мембрана становится проницаемой для макромолекул, которые затем покидают клетку. В результате происходит лизис клетки.

Р.Койко, Д.Саншайн, Э.Бенджамини

Организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде , работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против некоторых микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом . Термин «комплемент» ввёл Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввёл в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы , которые служат для распознавания антигенов . Эти рецепторы мы сейчас называем «антителами » (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определённым антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешён в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путём протеолиза . Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путём расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс ещё больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путём. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С3-конвертазы необходимо образование комплекса С4bC2a. Этот комплекс образуется при расщеплении С2 и С4 С1-комплексом. С1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей «заинтересованности» фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.

Фактор С3е, образующийся при расщеплении фактора С3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза .

Классический путь запускается активацией комплекса С1 (он включает одну молекулу С1q и по две молекулы С1r и С1s). Комплекс С1 связывается с помощью С1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с -участком антител. Для инициации этого пути достаточно единственной молекулы IgM , активация молекулами IgG менее эффективна и требует больше молекул IgG.

С1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С1q, и вызывает активацию двух молекул сериновых протеаз С1r. Они расщепляют С1s (тоже сериновую протеазу). Потом комплекс С1 связывается с С4 и С2 и затем расщепляет их, образуя С2а и С4b. С4b и С2а связываются друг с другом на поверхности патогена, и образуют С3-конвертазу классического пути, С4b2а. Появление С3-конвертазы приводит к расщеплению С3 на С3а и С3b. С3b образует вместе с С2а и С4b С5-конвертазу классического пути. С5 расщепляется на C5a и C5b. C5b остается на мембране и соединяется с комплексом C4b2a3b. Потом соединяются С6, С7, С8 и С9, которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.

Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbBb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС3bBb активирует С3, в результате образуется С5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе СЗbBb В заменяется Н-фактором и под воздействием дезактивирующего соединения (Н) превращается в С3bi. Когда микробы попадают в организм, комплекс СЗbBb начинает накапливаться на мембране, катализируя реакцию ращепления С3 на С3b и С3а, значительно увеличивая концентрацию С3b. К комплексу пропердин+С3bВb присоединяется еще одна молекула С3b. Образовавшийся комплекс расщепляет С5 на C5a и C5b. C5b остается на мембрае. Происходит дальнейшая сборка МАК с поочередным присоединением факторов С6, С7, С8 и С9. После соединения С9 с С8 происходит полимеризация С9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается.

Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С1, С2, С4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды (являются митогенами), вирусные частицы, опухолевые клетки.

Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.

В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются определенным образом c ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.

Система комплемента может быть очень опасной для тканей хозяина, поэтому её активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.

Система комплемента играет большую роль во многих болезнях, связанных с иммунитетом.

При болезнях иммунных комплексов комплемент провоцирует воспаление главным образом двумя путями:

Уже в первые часы после заражения геморрагической лихорадкой Эбола система комплемента блокируется

КОМПЛЕМЕНТ (лат. complementum дополнение) - полимолекулярная система сывороточных белков, один из важнейших факторов естественного иммунитета. Функционирует в крови человека, холоднокровных и теплокровных животных. Содержится в лимфе и тканевых жидкостях. Включаясь в состав иммунных комплексов, К. осуществляет лизис сенсибилизированных антителами клеточных антигенов, обусловливает реакцию иммунного прилипания (см.), участвует в опсонизации бактерий, вирусов и корпускулярных антигенов, ускоряя их фагоцитоз, участвует в развитии воспаления.

К. был впервые описан под названием «алексин» в конце 19 в. как неспецифический термолабильный фактор, определяющий бактерицидные свойства свежей сыворотки крови (Г. Бухнер, 1889). Термин «комплемент» введен П. Эрлихом (1900), который считал, что бактерицидный фактор дополняет цитолитическое действие антител.

Известно не менее 18 белков, составляющих систему К. В их число входят 9 компонентов К., 8 из которых являются индивидуальными белками, а один представляет собой комплекс: 4 белка системы пропердина, 1 ингибитор фермента и 2 фермента инактиватора.

Согласно номенклатуре, принятой ВОЗ, система К. обозначена символом С, ее индивидуальные компоненты - цифрами (С1, С2...С9), фрагменты компонентов К.- строчными буквами (напр., СЗа). Наличие энзиматической активности во фрагменте отмечают чертой над его символом, а наличие центра связывания с мембраной клеток - звездочкой около его символа [Остин (К. F. Austen) с соавт., 1968].

Компоненты К. циркулируют в крови в виде предшественников, не соединяясь со свободными антителами или антигенами. Описаны два биол, механизма активации (связывания) системы К.- классический и так наз. альтернативный, или пропердиновый [Мюллер-Эберхард (H. J. Muller-Eberhard), 1975; Фогт (W. Vogt), 1974].

Классический механизм активации К. осуществляется с участием IgG-и IgM-антител, входящих в состав иммунных комплексов, или неспецифически агрегированных иммуноглобулинов этих классов. При соединении с антигенами или в результате неспецифической агрегации в молекулах указанных иммуноглобулинов формируются центры, связывающие С1 - первый компонент системы К. (А. Я. Кульберг, 1975). Фиксированный на иммуноглобулине С1 инициирует цепь реакций, в которые последовательно вступают остальные компоненты системы К.

С1 представляет собой комплекс трех субкомпонентов (C1q, C1rr и C1s), образующийся в присутствии ионов кальция; C1q - коллагеноподобный белок с мол. весом (массой) 400 000, состоящий из шести нековалентно связанных идентичных субъединиц. Каждая субъединица содержит распознающий центр для связывания с молекулой иммуноглобулина. Присоединение C1q к иммуноглобулину сопровождается внутримолекулярной перестройкой C1q и активацией связанного с ним профермента Clr, действующего на C1s-проэстеразу. Образующаяся C1s-эстераза (C1s) воздействует на находящиеся в жидкой фазе второй (С2) и четвертый (С4) компоненты К.

Молекула С4 (мол. вес 208 000) построена из трех пептидных цепей - альфа, бета и гамма, соединенных дисульфидными связями. C1s отщепляет от альфа-цепи пептид С4а, мол. вес к-рого 8000, а в оставшемся C4b-фрагменте молекулы возникает центр связывания с мембраной клетки, сенсибилизированной антителами. При воздействии C1s на С2, мол. вес к-рого 117 000, образуются два фрагмента - С2b (мол. вес 37 000) и С2а (мол. вес 80 000). В последнем формируется центр связывания с С4b. Образовавшийся на клеточной мембране комплекс С42 способен расщеплять СЗ; поэтому он назван СЗ-конвертазой.

Молекула СЗ (мол. вес 180 000) построена из двух пептидных цепей - альфа и бета. В результате отщепления C3-конвертазой от альфа-цепи пептида СЗа с мол. весом 9000 в СЗb-фрагменте молекулы образуется центр связывания с мембраной клетки и на мембране формируется С423-комплекс с пептидазной активностью в отношении С5 (С5-конвертаза).

После протеолитического расщепления С5 начинается сборка мембраноатакующей единицы из так наз. концевых компонентов системы К. Молекула С5 построена аналогично СЗ из двух пептидных цепей а и р, мол. вес которых соответственно 110 000 и 70 000. С5-конвертаза отщепляет от альфа-цепи пептид С5а с мол. весом 16 500. Образующийся С5b-фрагмент обладает способностью сорбировать последовательно по одной молекуле С6 и С7. Комплекс С567 сорбирует одну молекулу С8 и шесть молекул С9. В момент образования комплекс С5-9 атакует мембрану клетки, вызывая ее разрушение. Цитолитическая активность комплекса определяется С8 и значительно усиливается С9.

Наряду с цитолитическими компонентами при активации системы К. образуются физиологически активные пептиды СЗа и С5а, названные анафилатоксинами; они вызывают выделение гистамина тучными клетками. сокращение гладкой мускулатуры и повышают проницаемость сосудов, а также служат хемотаксическими факторами для полиморфонуклеарных клеток. Направленную миграцию полиморфонуклеарных клеток в месте активации К. вызывает также тримолекулярный комплекс С567 [Уорд (P. Ward), 1975]. Еще одним биологически активным пептидом, возникающим при активации системы К., является СЗb. При связывании с клеточной мембраной он приобретает второй стабильный связывающий центр в отношении рецепторов, расположенных на поверхности ряда клеток (макрофагов, тромбоцитов, эритроцитов). Этот процесс, названный иммунным прилипанием, усиливает фагоцитоз нагруженных К. клеток и корпускулярных частиц [Радди (S. Ruddy), 1974].

К. принимает участие также в механизме неспецифической устойчивости к инфекциям. В этом случае система К. активируется без участия антител полисахаридами или липополисахаридами, входящими в состав клеточных стенок бактерий, дрожжей, растений, или агрегированным IgA. Связывание К. происходит по альтернативному пути, начиная с CЗ, минуя стадии активации С1, C4 и C2. Показано, что в формировании CЗ- и C5-конвертаз альтернативного пути принимают участие белок сыворотки пропердин, CЗ-активатор конвертазы и ряд его предшественников. При активации К. по альтернативному пути, как и по классическому, образуется цитолитический комплекс C5-9, а также физиологически активные пептиды CЗа и С5а. Вероятно, этот механизм лежит в основе неспецифической элиминации из организма вирусов и измененных эритроцитов [Пиллемер (L. Pillemer), 1954, 1955].

Все указанные функции продуктов реакции компонентов К. направлены на разрушение и скорейшее удаление из организма инф. или чужеродных агентов. Они определяют значение системы К. как защитного фактора организма.

Помимо защитной функции, система К. может способствовать повреждению собственных тканей организма при ряде заболеваний с аутоиммунным компонентом (гломерулонефриты, системная красная волчанка, артериит, миокардит, эндокардит). В этом случае активация системы К. осуществляется как антителами, направленными против тканей, так и растворимыми или фиксированными в тканях иммунными комплексами. Образующиеся комплексы С423 и С5-9 компонентов К. фиксируются при этом как на сенсибилизированных, так и на не сенсибилизированных антителами клетках, вызывая разрушение их мембран. Важная роль в аутоиммунном процессе принадлежит также СЗа- и С5а-пептидам и С567-комплексу [Купер (N. R. Cooper), 1974; Ханзиккер (L. G. Hunsicker), 1974; Мак-Класки (R. Мс Cluskey), 1975].

О содержании К. судят наиболее часто по его гемолитической активности в отношении эритроцитов барана, сенсибилизированных кроличьим гемолизином. Титр К. выражают в 100 или 50% гемолитических единицах (СН100или СН50), т. е. минимальным количеством К., к-рое при выбранных стандартных условиях опыта лизирует соответственно 100 или 50% оптимально сенсибилизированных эритроцитов. Содержание К. может быть оценено также по его цитолитическому действию в системе лимфоциты - антилимфоцитарная сыворотка [Терасаки (Р. I. Terasaki), 1964]. К., не обладающий литической активностью, напр. К. лошади, быка, мыши, может быть определен в реакции агглютинации нагруженных К. сенсибилизированных эритроцитов с белком бычьей сыворотки - конглютинином (см. Конглютинация).

Индивидуальные компоненты К. титруют в гемолитическом тесте, используя для этого специальные реагенты, которые представляют собой препараты свежей сыворотки морской свинки, лишенные только титруемого компонента, а остальные компоненты содержащие в избытке. В качестве субстратов для титрования могут быть использованы также соответствующие промежуточные продукты гемолиза. Широкое применение нашли иммунохим, методы титрования с использованием анти-сывороток к чистым компонентам К.

Содержание К. в сыворотках животных различных видов, по данным гемолитического титрования, сильно варьирует. Наиболее высокий его титр, достигающий 200 СН50 на 1 мл, определен у морских свинок. В1 мл сыворотки человека содержится в среднем 70, а кролика 20 СН50 [Одран (R. Audran), 1959, 1960]. Однако титры К. в гемолитическом тесте не всегда соответствуют его истинному содержанию. Так, К. некоторых видов не лизирует сенсибилизированные бараньи эритроциты, хотя связывается с ними. Гемолитическая активность К. разных видов неодинакова при испытании в различных гемолитических системах [Бойд (W. С. Boyd), 1969].

Биол, свойства К. различных видов в значительной степени определяются содержанием в них индивидуальных компонентов. Видовые различия особенно выражены по содержанию С2 и C4. Эти компоненты полностью отсутствуют или содержатся в очень низких титрах в сыворотках лошади, быка, мыши, К. которых не обладает литической активностью. Для сывороток всех видов характерно высокое содержание С1. Содержание компонентов К. в сыворотке человека определено в весовых единицах.

Индивидуальные колебания уровня и состава К. у здоровых людей в возрасте 8-35 лет незначительны и не зависят от группы крови и резус-фактора. Обычно у женщин содержится на 10% меньше К., чем у мужчин, а у новорожденных и беременных женщин его содержание снижено в среднем на 30% [Гюмбретье (J. Gumbreitier) с соавт., 1960, 1961]. Отмечена тенденция к повышению уровня К. в возрасте между 35 и 60 годами.

Содержание К. в сыворотках больных зависит от характера заболевания. При большинстве острых инфекций гнойной этиологии, а также при стафилококковой бактериемии в начальный период наблюдается повышение титров К. Предполагают, что оно связано с активацией клеток ретикулоэндотелиальной системы, в частности макрофагов, синтезирующих С2, С4, С5. В период элиминации антигенов с участием антител титры К. снижаются и достигают нормы при выздоровлении. При ряде заболеваний, поражающих клетки паренхимы печени, напр, циррозе, гепатите, хрон, холецистите, нарушается синтез СЗ-, С6-, С9- и C1-ингибитора, что приводит к снижению общего уровня К. Как правило, уровень К. снижается при аллергических состояниях, аутоиммунных заболеваниях и болезнях иммунных комплексов за счет связывания К. циркулирующими в крови и связанными в тканях иммунными комплексами. Описаны случаи дефицита по отдельным компонентам К., сопровождающегося различными патол, состояниями.

Система К. активна в организме и в свежевыделенных сыворотках. К. инактивируется в течение 2-4 дней при хранении сывороток в холодильнике (t° 5°), а в результате прогревания сывороток при t° 56° - в течение 20 мин. Описана инактивация К. под действием различных физ. факторов - солнечного света, ультрафиолетового излучения, встряхивания, при действии хим. агентов - слабых р-ров кислот, щелочей, органических растворителей, протеолитических ферментов (Л. С. Резникова, 1967). Активность К. длительное время сохраняется в лиофильно высушенных сыворотках, при добавлении к свежим сывороткам сернокислого натрия (5%) и борной к-ты (4%), в сыворотках, хранящихся при температуре -40° и ниже.

Способность К. включаться в состав иммунных комплексов используют для обнаружения антител и антигенов (см. Антиген - антитело реакция , Реакция связывания комплемента). Однако надо иметь в виду, что многие антисыворотки и некоторые антигены связывают К. неспецифически. Явление это, названное антикомплементарным действием, выражается в снижении гемолитической активности К. Оно может быть обусловлено примесью в титруемых препаратах агрегированных глобулинов, липополисахаридов или протеолитических ферментов, а также бактериальными загрязнениями препаратов (Бойд, 1969). Повышенная способность антител некоторых индивидуумов внутри одного вида к неспецифической фиксации К. называется девиабилитетом, а антитела, обладающие этим свойством,- девиабильными.

Исследование процесса активации К., выяснение биол, свойств продуктов активации компонентов К., уровня К. в норме и при различных заболеваниях позволяет понять его защитную функцию и его роль в повреждении тканей. Эти знания необходимы, в частности, для разработки научно обоснованных методов предупреждения и лечения болезней, обусловленных активацией системы К.

Определение титров К. при различных заболеваниях в динамике имеет практическое значение, т. к. является показателем иммунол, состояния организма, эффективности леч. мероприятий и имеет прогностическое значение.

Библиография: Бойд У. Основы иммунологии, пер. с англ., с. 346, М., 1969; Воспаление, иммунитет и гиперчувствительность, под ред. Г. 3. Мовэта, пер. с англ., с. 422, М., 1975, библиогр.; Кульберг А. Я. Иммуноглобулины как биологические регуляторы, с. 106, М., 1975, библиогр.; КэботЕ. иМейер М, Экспериментальная иммунохимия, пер. с англ., с. 140, М., 1968, библиогр.; P e з н и к о-в а Л. С. Комплемент и его значение в иммунологических реакциях, М., 1967, библиогр.; A u s t e n К. F. a. o. Nomenclature of complement, Bull. Wld Hlth Org., v. 39, p. 935, 1968; Col ten H. R. Biosynthesis of complement, Advanc. Immunol., v. 22, p. 67, 1976, bibliogr.; Comprehensive immunology, ed. by N. K. Day a. R. A. Good, v. 2, N. Y., 1977; Muller-Eberhard H. J. Complement, Ann Rev. Biochem., v. 44, p. 697, 1975, bibliogr.; Yogt W. Activation, activities and pharmacologically active products of complement, Pharmacol. Rev., v. 26, p. 125, 1974, bibliogr.

И. А. Тарханова.