Адроны. Элементарные частицы. Барионы и мезоны. Классификация и свойства. Окружающая материя и ее структура

Адроны адро́ны

элементарные частицы, участвующие в сильном взаимодействии (барионы и мезоны, включая все резонансы).

АДРОНЫ

Энциклопедический словарь . 2009 .

Смотреть что такое "адроны" в других словарях:

    Современная энциклопедия

    - (от греч. hadros большой, сильный), класс элем, ч ц, участвующих в сильном взаимодействии. К А. относятся все барионы и мезоны, включая резонансы. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров.… … Физическая энциклопедия

    Адроны - (от греческого hadros большой, сильный), общее название элементарных частиц, участвующих в сильных взаимодействиях (смотри Взаимодействия фундаментальные). Адронами являются протоны, нейтроны, мезоны и др. Адроны состоят из кварков. Термин введен … Иллюстрированный энциклопедический словарь

    Элементарные частицы, участвующие в сильном взаимодействии (барионы и мезоны, включая все резонансы) … Большой Энциклопедический словарь

    АДРОНЫ - обширный класс «тяжелых» элементарных (см.), участвующих во всех взаимодействиях, в т. ч. и в сильном (см.). А. сложные частицы вещества, которые напоминают ядра атомов, где вместо протонов и нейтронов содержатся (см.). К А. относятся (см.),… … Большая политехническая энциклопедия

    - (гр. adros сильный) общее название амментарных частиц (барионов, включая все резонансы, и мезонов), подверженных сильному взаимодействию (это взаимодействие ответственно за устойчивость атомных ядер). Новый словарь иностранных слов. by EdwART,… … Словарь иностранных слов русского языка

    адроны - hadronai statusas T sritis chemija apibrėžtis Stipriąja sąveika pasižyminčių elementariųjų dalelių klasė. atitikmenys: angl. hadrons rus. адроны … Chemijos terminų aiškinamasis žodynas

    Общее наименование для элементарных частиц, участвующих в сильных взаимодействиях (См. Сильные взаимодействия). В класс А. входят протон, нейтрон, гипероны, мезоны, а также все резонансные частицы (см. Элементарные частицы) … Большая советская энциклопедия

    - (от греч. hadros большой, сильный) класс элементарных частиц, участвующих в сильном взаимодействии, а также в слабом взаимодействии и в электромагнитном взаимодействии. К А. относят все барионы и мезоны, включая резанонсы, и соответствующие им… … Большой энциклопедический политехнический словарь

    Элементарные частицы, участвующие в сильном взаимодействии, к рое приводит к установлению прочной связи между нуклонами в ядрах (радиус взаимодействия ок. 10 13 см). К адронам относятся барионы и мезоны, включая резонансы … Естествознание. Энциклопедический словарь

Книги

  • Комплект таблиц. Физика. Физика высоких энергий (12 таблиц) , . Учебный альбом из 12 листов. Артикул - 5-8675-012. Состав и размеры ядра. Энергия связи нуклонов в ядре. Естественная радиоактивность. Закон радиоактивного распада. Цепнаяядерная реакция.…
  • Теоретическая физика. Том IV. Квантовая электродинамика , В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский. Во второе издание внесены добавления: операторный метод вычисления сечения тормозного излучения, вычисление вероятности рождения пар фотоном и вероятности распада фотона в магнитном поле,…
адронный коллайдер, адронного коллайдера
Адро́ны (от др.-греч. ἁδρός «крупный», «массивный»; термин предложен советским физиком Л. Б. Окунем в 1962 году, при переходе от модели Сакаты сильно взаимодействующих частиц к кварковой теории) - класс элементарных частиц, подверженных сильному взаимодействию.

Адроны обладают сохраняющимися в процессах сильного взаимодействия квантовыми числами (странностью, очарованием, красотой и др.)

Процесс формирования адронов из цветных объектов - кварков и глюонов называется адронизация.

Адроны делятся на две основные группы в соответствии с их кварковым составом:

  • Барионы - состоят из трёх кварков трёх цветов, образуя так называемую бесцветную комбинацию. Именно из барионов построена подавляющая часть наблюдаемого нами вещества - это нуклоны, составляющие ядро атома и представленные протоном и нейтроном. К барионам относятся также многочисленные гипероны - более тяжёлые и нестабильные частицы, получаемые на ускорителях элементарных частиц.
  • Мезоны - состоят из одного кварка и одного антикварка. К мезонам относятся пионы (π-мезоны) и каоны (K-мезоны) и многие более тяжёлые мезоны.
Краткий обзор различных семейств элементарных и составных частиц, и теории, описывающие их взаимодействия. Фермионы - слева, бозоны - справа. (изображение интерактивно)

В последнее время были обнаружены так называемые экзотические адроны , которые также являются сильновзаимодействующими частицами, но которые не укладываются в рамки кварк-антикварковой или трёхкварковой классификации адронов. Некоторые адроны пока только подозреваются в экзотичности. Экзотические адроны делятся на:

  • экзотические барионы, в частности пентакварки, минимальный кварковый состав которых - 4 кварка и 1 антикварк.
  • экзотические мезоны - в частности адронные молекулы, глюболы и гибридные мезоны.
  • 1 Барионы (фермионы)
  • 2 Мезоны (бозоны)
  • 3 История
  • 4 См. также
  • 5 Примечания
  • 6 Литература
  • 7 Ссылки

Барионы (фермионы)

Комбинация трёх u, d или s-кварков с общим спином 3/2 формирует так называемый барионный декуплет. См. более подробный список барионов.

Обычные барионы (фермионы) содержат каждый три валентных кварка или три валентных антикварка.

  • Нуклоны - фермионные составляющие обычного атомного ядра:
    • протоны;
    • нейтроны.
  • Гипероны, такие, как Λ-, Σ-, Ξ- и Ω-частицы, содержат один или больше s-кварков, быстро распадаются и тяжелее нуклонов. Хотя обычно в атомном ядре гиперонов нет (в нём содержится лишь примесь виртуальных гиперонов), существуют связанные системы одного или более гиперонов с нуклонами, называемые гиперядрами.
  • Также были обнаружены очарованные и прелестные барионы.
  • Пентакварки состоят из пяти валентных кварков (точнее, четырёх кварков и одного антикварка).

Недавно были найдены признаки существования экзотических барионов, содержащих пять валентных кварков; однако были сообщения и об отрицательных результатах. Вопрос их существования остаётся открытым.

См. также дибарионы.

Мезоны (бозоны)

Мезоны с нулевым спином формируют нонет. См. более подробный список мезонов.

Обычные мезоны содержат валентный кварк и валентный антикварк. их число входят пион, каон, J/ψ-мезон и многие другие типы мезонов. моделях ядерных сил взаимодействие между нуклонами переносится мезонами.

Могут существовать также экзотические мезоны (их существование всё ещё под вопросом):

  • Тетракварки состоят из двух валентных кварков и двух валентных антикварков.
  • Глюболы - связанные состояния глюонов без валентных кварков.
  • Гибриды состоят из одной или более кварк-антикварковых пар и одного или более реальных глюонов.

Мезоны с нулевым спином формируют нонет.

История

В начале русскоязычные физики называли класс «гадрон».

См. также

  • Классификация элементарных частиц
  • Большой адронный коллайдер

Примечания

  1. Okun, L. B. (1962). "The Theory of Weak Interaction". Proceedings of 1962 International Conference on High-Energy Physics at CERN, p. 845.
  2. 1 2 3 Классификация адронов. Элементы.ру. Проверено 2 июня 2014. Архивировано из первоисточника 3 марта 2014.
  3. Гипотеза кварковых звезд Д. Д. Иваненко, Д. Ф. Курдгелаидзе Физический факультет Московского университета 17 июля 1965 (Астрофизика 1965, 1, 479-482)

Литература

  • Jean Letessier, Johann Rafelski, T. Ericson, P. Y. Landshoff. Hadrons and Quark-Gluon Plasma. - Cambridge University Press, 2002. - 415 p. - ISBN 9780511037276.

Ссылки

  • Адроны в Физической энциклопедии
п·о·р Частицы в физике (Список частиц · Список квазичастиц · Список барионов · Список мезонов)
Элементарные
частицы
Бозоны Калибровочные бозоны (γ · g · W± · Z0) Бозоны Хиггса (H0)
Гипотетические
Другие G · A0 · Дилатон · J · X · Y · W’ · Z’ · Стерильное нейтрино · Ду́хи · Хамелеон · Лептокварк · Преон · Планковская частица · Максимон
Составные
частицы Соединения
элементарных и/или
составных частиц Гипотетические Другие
классификации
частиц Квазичастицы Дроплетон · Солитон Давыдова · Экситон · Биэкситон · Магнон · Фонон · Плазмон · Поляритон · Полярон · Примесон · Ротон · Биротон · Дырка · Электрон · Куперовская пара · Орбитон · Трион · Фазон · Флуктуон · Энион · Холон и спинон

адронен колайдер, адрони, адронная терапия, адронний колайдер, адронного коллайдера, адронный, адронный колайдер, адронный коллайдер, адроны, адроный колайдер

В отличие от горстки известных лептонов адронов существует буквально сотни. Одно лишь это наводит на мысль, что адроны – не элементарные частицы, а построены из более мелких составляющих. Все адроны участвуют в сильном, слабом и гравитационном взаимодействиях, но встречаются в двух разновидностях – электрически заряженные и нейтральные. Среди адронов наиболее известны и широко распространены нейтрон и протон. Остальные адроны короткоживущие и распадаются либо менее чем за одну миллионную секунды за счет слабого взаимодействия, либо гораздо быстрее (за время порядка 10-23 с) – за счет сильного взаимодействия.

В 50-х годах физиков крайне озадачили численность и разнообразие адронов. Но мало-помалу частицы удалось классифицировать по трем важным характеристикам: массе, заряду и спину. Постепенно стали появляться признаки порядка и выстраиваться четкая картина. Появились намеки на то, что за кажущимся хаосом данных скрываются симметрии. Решающий шаг в раскрытии тайны адронов был сделан в 1963 г., когда Марри Гелл– Манн и Джордж Цвейг из Калифорнийского технологического института предложили теорию кварков.


Рис. 10 Адроны построены из кварков. Протон (вверху) состоит из двух u-кварков и одного d-кварка. Более легкий пион (внизу) – это мезон, состоящий из одного u-кварка и одного d-антикварка. Другие адроны представляют собой всевозможные комбинации кварков.

Основная идея этой теории очень проста. Все адроны построены из более мелких частиц, называемых кварками. Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами кварк-антикварк. Из трех кварков состоят сравнительно тяжелые частицыбарионы, что означает “тяжелые частицы”. Наиболее известны из барионов нейтрон и протон. Более легкие пары кварк-антикварк образуют частицы, получившие название мезоны - “промежуточные частицы”. Выбор такого наименования объясняется тем, что первые обнаруженные мезоны занимали по массе промежуточное положение между электронами и протонами. Чтобы учесть все известные тогда адроны, Гелл-Манн и Цвейг ввели три различных типа (“аромата”) кварков, получивших довольно причудливые названия: и (от up - верхний), d (от down - нижний) и s (от strange – странный). Допуская возможность различных комбинаций ароматов, можно объяснить существование большого числа адронов. Например, протон состоит из двух и- и одного d-кварков (рис, 10), а нейтрон – из двух d-кварков и одного u-кварка.

Чтобы предложенная Гелл-Манном и Цвейгом теория оказалась действенной, необходимо предположить, что кварки несут дробный электрический заряд. Иначе говоря, они обладают зарядом, величина которого составляет либо 1/3, либо 2/3 фундаментальной единицы – заряда электрона. Комбинация из двух и трех кварков может иметь суммарный заряд, равный нулю или единице. Все кварки имеют спин 1/2. поэтому они относятся к фермионам. Массы кварков не установлены столь точно, как массы других частиц, поскольку энергия связи их в адроне сравнима с массами самих кварков. Однако известно, что s-кварк тяжелее и- и d-кварков.

Внутри адронов кварки могут находиться в возбужденных состояниях, во многом сходных с возбужденными состояниями атома, но со значительно большими энергиями. Избыток энергии, заключенный в возбужденном адроне, настолько увеличивает его массу, что до создания теории кварков физики ошибочно принимали возбужденные адроны за совершенно иные частицы. Ныне установлено, что многие из казавшихся различными адронов в действительности представляют собой лишь возбужденные состояния одного и того же фундаментального набора кварков.

Как уже говорилось в гл. 5, кварки скрепляются между собой сильным взаимодействием. Но они участвуют и в слабом взаимодействии. Слабое взаимодействие может изменять аромат кварка. Именно так происходит распад нейтрона. Один из d-кварков в нейтроне превращается в u-кварк, а избыток заряда уносит рождающийся одновременно электрон. Аналогичным образом, изменяя аромат, слабое взаимодействие приводит к распаду и других адронов.

Существование s-кварков необходимо для построения так называемых “странных” частиц – тяжелых адронов, открытых в начале 50-х годов. Необычное поведение этих частиц, подсказавшее их название, состояло в том, что они не могли распадаться за счет сильного взаимодействия, хотя как сами, так и продукты их распада представляли собой адроны. Физики ломали голову над тем, почему, если и материнские, и дочерние частицы принадлежат к семейству адронов, сильное взаимодействие не вызывает их распада. По какой-то причине эти адроны “предпочитали” гораздо менее интенсивное слабое взаимодействие. Почему? Теория кварков естественным образом решила эту загадку. Сильное взаимодействие не может изменять аромат кварков – на это способно только слабое взаимодействие. А без изменения аромата, сопровождающегося превращением s-кварка в и- или d-кварк, распад невозможен.

В табл. 2 представлены различные возможные комбинации кварков с тремя ароматами и указаны их названия (обычно просто греческая буква). Многочисленные возбужденные состояния не приведены. То обстоятельство, что из различных комбинаций трех основных частиц можно получить все известные адроны, символизировало главный триумф теории кварков. Но несмотря на этот успех, лишь через несколько лет удалось получить прямые физические доказательства существования кварков.

Эти доказательства были получены в 1969 г. в серии исторических экспериментов, проведенных на большом линейном ускорителе в Станфорде (Калифорния, США) – СЛАКе. Станфордские экспериментаторы рассуждали просто. Если в протоне действительно существуют кварки, то можно наблюдать столкновения с этими частицами внутри протона. Необходим лишь субъядерный “снаряд”, который можно было бы направить прямо в недра протона. Использовать для этой цели другой адрон бесполезно, так как он имеет такие же размеры, как и протон. Идеальным снарядом мог бы стать лептон, например электрон. Так как электрон не участвует в сильном взаимодействии, он не “увязнет” в среде, которую образуют кварки. Вместе с тем электрон может почувствовать присутствие кварков благодаря наличию у них электрического заряда.

Таблица 2




Трем ароматам кварков, u, d и s, соответствуют заряды +2/3, -1/3 и -1/3; они комбинируются по три, образуя восемь барионов, приведенных в таблице. Пары кварк– антикварк образуют мезоны. (Некоторые комбинации, такие, как sss опущены.)


В станфордском эксперименте трехкилометровый ускоритель по существу выполнял роль гигантского электронного “микроскопа”, который позволил получить изображение внутренности протона. Обычный электронный микроскоп дает возможность различать детали размером менее одной миллионной сантиметра. Протон же в несколько десятков миллионов раз меньше, и его можно “прощупать” только электронами, разогнанными до энергии 2.1010 эВ. Во времена станфордских экспериментов лишь немногие физики придерживались упрощенной теории кварков. Большинство ученых ожидало, что электроны будут отклоняться электрическими зарядами протонов, но при этом считалось, что заряд равномерно распределен внутри протона. Если бы это было действительно так, то происходило бы в основном слабое рассеяние электронов, т.е. при прохождении через протоны электроны не претерпевали бы сильных отклонений. Эксперимент показал, что картина рассеяния резко отличается от предполагаемой. Все происходило так, как если бы некоторые электроны налетали на крохотные твердые вкрапления и отскакивали от них под самыми невероятными углами. Теперь мы знаем, что такими твердыми вкраплениями внутри протонов являются кварки.

В 1974 г. упрощенному варианту теории кварков, которая к тому времени получила признание среди теоретиков, был нанесен чувствительный удар. С интервалом в несколько дней две группы американских физиков – одна в Станфорде во главе с Бартоном Рихтером, другая в Брукхейвенской национальной лаборатории под руководством Сэмюэла Тинга – объявили об открытии независимо друг от друга нового адрона, который получил название пси-частицы. Само по себе открытие нового адрона вряд ли было бы особо достопримечательным, если бы не одно обстоятельство: дело в том, что в схеме, предлагаемой теорией кварков, не было места ни для одной новой частицы. Все возможные комбинации из и-, d– и s-кварков и их антикварков были уже “израсходованы”. Из чего же состоит пси-частица?

Проблему удалось решить, обратившись к идее, которая уже некоторое время носилась в воздухе: должен существовать четвертый аромат, который до того никому не доводилось наблюдать. Новый аромат уже имел свое название – charm (очарование), или с. Было высказано предположение, что пси-частица – это мезон, состоящий из с-кварка и с-антикварка (с), т.е. cc. Так как антикварки являются носителями антиаромата, очарование у пси-частицы нейтрализуется, и поэтому экспериментального подтверждения существования нового аромата (очарования) пришлось ждать до тех пор, пока не удалось обнаружить мезоны, в состав которых очарованные кварки входили в паре с анти-кваркамп других ароматов. Ныне известна целая вереница очарованных частиц. Все они очень тяжелые, так что очарованный кварк оказался тяжелее странного кварка.

Описанная выше ситуация повторилась в 1977 г., когда на сцену вышел так называемый ипсилон-мезон (ИПСИЛОН). На этот раз без особых колебаний был введен пятый аромат, получивший название b-кварк (от bottom – дно, а чаще beauty – красота, или прелесть). Ипсилон-мезон представляет собой пару кварк– антикварк, состоящую из b-кварков, и поэтому он обладает скрытой красотой; но, как и в предыдущем случае, другая комбинация кварков позволила в конечном счете обнаружить “красоту”.

Об относительных массах кварков можно судить хотя бы по тому, что легчайший из мезонов, пион, состоит из пар и- и d-кварков с антикварками. Пси-мезон примерно в 27 раз, а ипсилон-мезон не менее чем в 75 раз тяжелее пиона.

Постепенное расширение списка известных ароматов происходило параллельно увеличению числа лептонов; поэтому возник очевидный вопрос, будет ли когда-нибудь конец. Кварки были введены для того, чтобы упростить описание всего многообразия адронов, но и сейчас есть ощущение, что список частиц снова растет слишком быстро.

Со времен Демокрита основополагающая идея атомизма заключается в признании того, что в достаточно малых масштабах должны существовать подлинно элементарные частицы, из комбинаций которых состоит окружающее нас вещество. Атомистика привлекательна тем, что неделимые (по определению) фундаментальные частицы должны существовать в весьма ограниченном числе. Разнообразие природы обусловлено большим числом не составных частей, а их комбинаций. Когда обнаружилось, что существует множество различных атомных ядер, исчезла надежда, что то, что мы сегодня называем атомами, соответствует представлению древних греков об элементарных частицах вещества. И хотя по традиции мы продолжаем говорить о различных химических “элементах”, известно, что атомы вовсе не элементарны, а состоят из протонов, нейтронов и электронов. И коль скоро число кварков оказывается слишком большим, возникает искушение предположить, что и они представляют собой сложные системы, состоящие из более мелких частиц.

Хотя по указанной причине и существует некоторая неудовлетворенность кварковой схемой, большинство физиков считает кварки подлинно элементарными частицами – точечными, неделимыми и не обладающими внутренней структурой. В этом отношении они напоминают пептоны, и уже давно предполагается, что между этими двумя различными, но сходными по своей структуре семействами должна существовать глубокая взаимосвязь. Основания для подобной точки зрения возникают из сравнения свойств лептонов и кварков (табл. 3). Лептоны можно сгруппировать попарно, сопоставив каждому заряженному лептону соответствующее нейтрино. Кварки также можно сгруппировать попарно. Табл. 3 составлена таким образом, что по структуре каждая клетка повторяет расположенную непосредственно перед ней. Например, во второй клетке мюон представлен как “тяжелый электрон”, а очарованный и странный кварки – как тяжелые варианты и- и d-кварков. Из следующей клетки видно, что тау-лептон является еще более тяжелым “электроном”, а b-кварк – тяжеловесной разновидностью d-кварка. Для полной аналогии необходимы еще одно (тау-лептониое) нейтрино и.шестой аромат кварков, уже получивший название истинного (truth, t). В период работы над этой книгой экспериментальные данные в пользу существования t-кварков не были еще достаточно убедительными, и некоторые физики сомневались в том, что t-кварки вообще существуют.

Таблица 3



Лептоны и кварки естественно объединяются в пары. как показано в таблице. Окружающий нас мир состоит из четырех первых частиц. Но следующие группы, по-видимому, повторяют верхнюю и состоят, кроне нейтрино, из крайне нестабильных частиц.


Могут ли существовать четвертая, пятая и т.д. пары, содержащие еще более тяжелые частицы? Если да, то следующее поколение ускорителей, вероятно, даст физикам возможность обнаружить такие частицы. Однако высказывается любопытное соображение, из которого следует, что иных пар, кроме трех названных, не существует. Это соображение основано на числе типов нейтрино. Мы вскоре узнаем, что в момент Большого взрыва, ознаменовавшего возникновение Вселенной, происходило интенсивное рождение нейтрино. Своеобразная демократия гарантирует каждому виду частиц одинаковую с остальными долю энергии; поэтому, чем больше различных типов нейтрино, тем больше энергии содержится в море нейтрино, заполняющем космическое пространство. Вычисления показывают, что если существует более трех разновидностей нейтрино, то гравитация, создаваемая всеми ими, оказывала бы сильное возмущающее действие на ядерные процессы, протекавшие в первые несколько минут жизни Вселенной. Следовательно, из этих косвенных соображений следует весьма правдоподобный вывод о том, что тремя парами, показанными в табл. 3, исчерпываются все кварки и лептоны, которые существуют в природе.

Интересно отметить, что все обычное вещество во Вселенной состоит лишь из двух легчайших лептонов (электрона и электронного нейтрино) и двух легчайших кварков (и и d). Если бы все остальные лептоны и кварки внезапно прекратили свое существование, то в окружающем нас мире, по-видимому, очень мало что изменилось бы.

Возможно, более тяжелые кварки и лептоны играют роль своего рода дублеров легчайших кварков и лептонов. Все они нестабильны и быстро распадаются на частицы, расположенные в верхней клетке. Например, тау-лептон и мюон распадаются на электроны, в то время как странные, очарованные и красивые частицы довольно быстро распадаются либо на нейтроны или протоны (в случае барионов), либо на лептоны (в случае мезонов). Возникает вопрос: для чего существуют все эти частицы второго и третьего поколений? Зачем они понадобились природе?

ἁδρός «крупный; массивный») - класс составных частиц , подверженных сильному взаимодействию . Термин предложен советским физиком Л. Б. Окунем в 1962 году , при переходе от модели Сакаты сильно взаимодействующих частиц к кварковой теории . Для элементарных частиц, не участвующих в сильных взаимодействиях, Л. Б. Окунь тогда же предложил название аденоны .

Адроны обладают сохраняющимися в процессах сильного взаимодействия квантовыми числами : странностью , очарованием , красотой и др.

Адроны делятся на две основные группы в соответствии с их кварковым составом:

В последнее время были обнаружены так называемые экзотические адроны , которые также являются сильновзаимодействующими частицами, но которые не укладываются в рамки кварк-антикварковой или трёхкварковой классификации адронов. Некоторые адроны пока только подозреваются в экзотичности. Экзотические адроны делятся на:

  • экзотические барионы, в частности пентакварки , минимальный кварковый состав которых - 4 кварка и 1 антикварк.
  • экзотические мезоны - в частности адронные молекулы, глюболы и гибридные мезоны.

Барионы (фермионы)

См. более подробный список барионов .

Обычные барионы (фермионы) содержат каждый три валентных кварка или три валентных антикварка.

  • Нуклоны - фермионные составляющие обычного атомного ядра:
  • Гипероны , такие, как Λ-, Σ-, Ξ- и Ω-частицы, содержат один или больше s-кварков , быстро распадаются и тяжелее нуклонов. Хотя обычно в атомном ядре гиперонов нет (в нём содержится лишь примесь виртуальных гиперонов), существуют связанные системы одного или более гиперонов с нуклонами, называемые гиперядрами .
  • Также были обнаружены очарованные и прелестные барионы.
  • Пентакварки состоят из пяти валентных кварков (точнее, четырёх кварков и одного антикварка).

Недавно были найдены признаки существования экзотических барионов, содержащих пять валентных кварков; однако были сообщения и об отрицательных результатах. Вопрос их существования остаётся открытым.

См. также дибарионы.

Мезоны (бозоны)

См. более подробный список мезонов .

Обычные мезоны содержат валентный кварк и валентный антикварк. В их число входят пион , каон , J/ψ -мезон и многие другие типы мезонов. В моделях ядерных сил взаимодействие между нуклонами переносится мезонами.

Могут существовать также экзотические мезоны (их существование всё ещё под вопросом):

  • Тетракварки состоят из двух валентных кварков и двух валентных антикварков.

Исследования на больших ускорителях сильно расширили наши представления об элементарных частицах. Прежде всего это касается самого многочисленного семейства частиц - адронов, г. е. частиц, участвующих в сильных взаимодействиях. В настоящее время известно несколько сотен таких адронов - барионов (частиц с барионным зарядом ), антибарионов () и мезонов, у которых барионный заряд равен нулю. Большинство этих частиц распадается на другие адроны из-за сильных взаимодействий. Они имеют малые времена жизни, характерные для ядерных процессов (, см. § 234). Столь короткие временные интервалы не могут быть измерены непосредственно и определяются из косвенных данных. Однако есть адроны и с временами жизни . Распады этих долгоживущих (по ядерным масштабам) частиц обусловлены слабыми взаимодействиями.

Пока элементарных частиц было известно немного, они считались «кирпичиками» мироздания: из них строилось все многообразие атомов. Теперь же число элементарных частиц превышает число химических элементов, и само понятие «элементарная частица» для адронов явно утратило свое первоначальное значение.

В физике элементарных частиц нет сейчас законченной теории, которая позволила бы объяснить все основные явления, выявить главнейшие закономерности и достигнуть той же степени понимания, которая существует в классической механике или электродинамике, В подобной ситуации особое значение приобретают попытки феноменологического анализа и классификации физических явлений, основанные на определенных законах сохранения. Эти законы позволяют ориентироваться в том, какие процессы могут, а какие не могут происходить в природе.

Вспомним, например, закон сохранения барионного заряда, о котором говорилось в предыдущей главе. Согласно этому закону в любых процессах разность между числом барионов и антибарионов не изменяется. Для математического выражения этого закона мы приписали барионам значение барионного заряда , антибарионам - значение , а для всех других частиц положили барионный заряд равный нулю. Тогда сохранение числа барионов и означает сохранение барионного заряда.

Для суждения о возможности той или иной реакции необходимо прежде всего проверить, сохраняются ли в этой реакции электрический и барионный заряды. Рассмотрим, например, процесс

Исходные частицы имеют суммарный барионный заряд . Для частиц в конечном состоянии . Другими словами, барионный заряд в начальном и конечном состоянии один и тот же (), и реакция может идти. Легко проверить, что эта реакция разрешена и законом сохранения электрического заряда (электрический заряд протона +1, а антипротона -1). Однако реакция

, (239.2)

хотя в ней также сохраняется электрический заряд, оказывается запрещенной из-за несохранения барионного заряда (). О других законах сохранения мы будем говорить ниже.

Установление закономерностей внутреннего строения элементарных частиц является одной из важнейших проблем современной физики. Для решения этой проблемы имеет большое значение создание четкой систематики частиц, в известном смысле напоминающей периодическую таблицу.

Первый шаг в этом направлении был сделан, когда удалось выяснить, что адроны группируются в очень близкие по своим свойствам небольшие семейства частиц, отдельные члены которых различаются между собой в основном своими электромагнитными свойствами - зарядами, магнитными моментами. Примерами таких семейств являются уже известные нам нуклоны (протоны, нейтроны) или -мезоны (). Однако число изотопических семейств также очень велико - превышает сотню. Эти семейства в свою очередь объединяются в более обширные и сложные группы. Частицы, входящие в подобные группы, обнаруживают между собой заметное сходство, хотя и не являются столь «близкими родственниками», как члены одного изотопического семейства. В основе таких объединений лежит определенная близость или какая-то закономерная связь между основными параметрами, характеризующими частицы. Эти параметры называют обычно квантовыми числами элементарных частиц.

Квантовыми числами адронов прежде всего являются их массы, электрические заряды, спины, магнитные моменты, времена жизни, значения барионного заряда. Однако это далеко не все. Барионные и электрические заряды - это не единственные «заряды», характеризующие сильновзаимодействующие частицы. Было установлено экспериментально, что в ряде реакций некоторые адроны рождаются целыми группами - из двух или даже нескольких частиц. Здесь наблюдается определенное сходство с процессами образования барионов и антибарионов, которые, как мы видели выше, никогда не рождаются поодиночке. Закономерности, связанные с парным образованием барионов и антибарионов, вместе с данными по стабильности нуклонов как раз и показали, что барионы характеризуются сохраняющимся квантовым числом - барионны.м зарядом. Но рождение групп новых частиц уже нельзя объяснить, пользуясь только законами сохранения электрического и барионного зарядов. Опыты показали, что существуют процессы, при которых протон переходит в другой барион (так что барионный заряд сохраняется), но при этом обязательно образуются и новые типы мезонов. Все это заставило предположить, что у некоторых адронов существуют новые специфические квантовые числа, новые «заряды», которые до известной степени напоминают барионный заряд и могут иметь дискретные положительные, пулевые и отрицательные значения. Эти новые заряды получили общее название ароматов. Отдельные ароматы получили наименования странность, очарование, прелесть и т. д.

Некоторые такие названия носят исторический характер. Так, в 50-х годах, когда были открыты первые необычные частицы, их свойства казались очень загадочными в свете существовавших тогда представлений. Отсюда возникло название странные частицы. Когда же загадки были объяснены введением нового квантового числа, то этот новый «заряд» и получил название странность. В целом же обилие экзотических наименований в физике элементарных частиц (кварк, аромат, странность, очарование и т. д.) отражает пристрастие физиков, работающих в этой области, к ярким, запоминающимся и образным выражениям, которые звучат загадочно и красиво на всех языках и вместе с тем напоминают нам о том, что природа соответствующих объектов еще не понята до конца и, возможно, таит в себе много неожиданного.

Общие характеристики некоторых сильновзаимодействующих частиц приведены в табл. 13, которая в дальнейшем будет обсуждаться более подробно. В этой таблице, однако, содержится очень малая часть всех известных адронов - только сравнительно долгоживущие частицы, распадающиеся благодаря слабым взаимодействиям (или под действием электромагнитных сил). Большинство адронов, как уже говорилось выше, распадаются из-за сильных взаимодействий, и их времена жизни лежат в области с. Важно подчеркнуть, что эти короткоживущие адроны принципиально ничем не отличаются от долгоживущих частиц.

Мы ограничились в табл. 13 одними долгоживущими частицами, так как, если попытаться включить в нее все известные адроны, то таблица превратится в целую брошюру.

Огромное число обнаруженных адронов я определенная их группировка по разным классам и семействам более или менее близких но свойствам объектов заставляет усомниться в элементарном характере этих частиц. Наиболее естественное объяснение группирования адронов в семейства, представления о природе и структуре этих семейств, а также объяснения многих других свойств адронной материи были получены в кварковой модели строения адронов.

Таблица 13. Некоторые адроны




Примечание. Электрические заряды частиц приводятся в единицах элементарного заряда. Пока открыто только несколько очарованных и прелестных частиц, хотя теория предсказывает существование очень большого числа таких адронов, как долгоживущих, таки короткоживущих.

Основные положения этой модели могут быть сформулированы следующим образом.

1. Адроны нельзя рассматривать как элементарные частицы в подлинном смысле этого слова. Они имеют сложную внутреннюю структуру и, наподобие атомных ядер, являются связанными системами из истинно-элементарных или фундаментальных частиц. Фундаментальные структурные элементы, входящие в состав адронов, получили название кварков.

2. Систематика адронов (т. е, изучение состава и свойств «родственных семейств», в которые группируются адроны) позволила установить, что все известные барионы состоят из трех кварков (), антибарионы - из трех антикварков (а все мезоны - из кварка и антикварка (). Оказалось, что кварки должны обладать очень необычными свойствами. Так как барионпый заряд у барионов (у антибарионов ), то из кварковой структуры барионов следует, что барионный заряд кварков дробный: . Электрический заряд кварков тоже должен быть дробным (если за единицу принять элементарный заряд): или ( или ). Только в этих предположениях можно объяснить квантовые числа и свойства всех адронов.

3. Существуют не менее 6 типов кварков, каждый из которых является носителем определенного нового квантового числа - адронного аромата. Эти кварки получили следующие названия:

Кварк (странный кварк) носитель аромата странности

Кварк (очарованный кварк) носитель аромата очарования

Кварк (прелестный кварк) носитель аромата прелести

Кварк (истинный кварк) носитель аромата истинности

Подчеркнем, что каждый кварк песет только один аромат. Все остальные ароматы у него отсутствуют, г. е. соответствующие квантовые числа равны нулю. Антикварки отличаются от кварков противоположными значениями всех зарядов. Так, например, -кварк характеризуется электрическим зарядом , барионным зарядом , значением странности , остальные ароматы у него отсутствуют, т. е. . Для антикварка ; ; . Значения квантовых чисел кварков приведены в табл. 14.

4. Сильные и электромагнитные взаимодействия не могут изменить индивидуальность кварков, т. е. они не меняют значения кварковых ароматов. Другими словами, в этих взаимодействиях имеют место законы сохранения ароматов (аналогичные закону сохранения барионного заряда). В процессах, обусловленных сильными и электромагнитными взаимодействиями, может происходить либо просто перегруппировка кварков, либо образование (уничтожение) кварк-антикварковых пар с определенными ароматами, либо и то и другое вместе.

5. Слабые взаимодействия играют в природе уникальную роль - они меняют индивидуальность кварков и могут переводить кварк с одним ароматом в кварк с другим ароматом. Таким образом, хотя ароматы несколько напоминают барионный заряд, между ними все же существует очень важное различие. Барионный заряд сохраняется во всех пока нам известных процессах, в то время как ароматы обладают гораздо меньшей «устойчивостью» и сохраняются только в сильных и электромагнитных взаимодействиях.

Поиски кварков с такими яркими и необычными свойствами в свободном состоянии проводились в большом количестве экспериментов и отличались значительным разнообразием и изобретательностью. В частности, один из самых чувствительных экспериментов такого типа был проведен на Серпуховском ускорителе вскоре после его запуска. Другой очень красивый опыт, в котором искались частицы с дробными зарядами в окружающем нас веществе, представлял собой значительно усовершенствованный вариант опыта Милликена по определению элементарного заряда (§ 197) и был выполнен физиками МГУ. Однако ни в одном из этих и других многочисленных экспериментов кварки найти не удалось.

Вместе с тем исследования свойств адронов все более и более убедительно показывали, что адроны действительно имеют сложную структуру и состоят из кварков. Об этом свидетельствовали опыты, в которых изучалось пространственное распределение электрического заряда и магнитного момента и было обнаружено внутреннее движение кварков в адронах. Удалось даже косвенным образом измерить электрические заряды кварков в адронах и убедиться, что они действительно являются дробными и соответствуют сделанным выше предположениям. Целый ряд соотношений между вероятностями образования или распада сильновзаимодействующих частиц и многие другие данные также свидетельствуют о справедливости кварковой модели. С помощью этой модели было предсказано существование ряда новых частиц с вполне определенными свойствами, и такие предсказания блестяще подтвердились на опыте. Весь этот богатый экспериментальный материал убедил ученых в том, что кварки действительно являются физической реальностью.

Как же можно объяснить, что они проявляются внутри адронов и не наблюдаются в свободном виде? Однозначного ответа на этот вопрос пока нет. Установлено, однако, что кварки связываются между собой особыми силами, которые обусловлены обменом частицами-глюонами, также не наблюдаемыми в свободном состоянии. Эти силы «склеивают» кварки в адронах и носят, по-видимому, такой удивительный характер, что ни при каких соударениях не позволяют кваркам вылететь из адронов.

Таблица 14. Истинно-элементарные частицы

Название семейства

I поколение фундаментальных частиц

II поколение фундаментальных частиц

III поколение фундаментальных частиц

Электрический заряд

Примечание

У всех кварков барионный заряд , лептонные заряды равны нулю. Кварки имеют спин . У каждого типа кварков имеется соответствующий антикварк. Отличающийся знаками всех зарядов и ароматов. Кварки удерживаются внутри адронов и в свободном виде не наблюдаются.

Электронные лептоны

мюонные лепоны

тау-лептоны

У всех лептонов барионный заряд и кварковые ароматы равны нулю. Лептоны не участвуют в сильных взаимодействиях. Их спины . У каждого типа лептона есть антилептон. Отличающийся от лептона знаком всех зарядов. Вопрос о массе нейтрино пока еще не выяснен, и сейчас можно только указать полученные экспериментально верхние границы для этих масс

Электроны

Лептонны

Электронные нейтрино

Мюонный нейтрино

Тау-нейтрино Глюоны; их спин 1 и -спин для любых частиц может быть либо целым, либо полуцелым - в этом его замечательная особенность.

Адроны могут «развалиться» с образованием многих других адронов, т. е. в процессе соударения может родиться много кварк-антикварковых пар, которые связываются затем в составные частицы. Однако свободные кварки из начального адрона никогда не вылетают. Ситуация здесь несколько напоминает опыты с постоянными магнитами: растягивая их, мы разламываем магниты, и при этом образуются новые магнитные диполи, а не одиночные магнитные полюсы.

Проблема невылетания кварков и глюонов из адронов, которая получила специальное название конфайнмент (т. е. тюремное заключение), является одной из самых фундаментальных проблем физики элементарных частиц, и она еще ждет своего окончательного решения.