Такого измерения в том что. Измерение. Виды измерений. Единицы и системы измерения

Задачей физического эксперимента является установление и изучение связей между различными физическими величинами. При этом в процессе эксперимента часто бывает необходимо измерять эти физические величины. Измерить физическую величину – это значит сравнить её с идентичной физической величиной, принятой за эталон.

Измерением называют экспериментальное определение значения физической величины с помощью средств измерений. К средствам измерения относятся: 1) меры (гири, линейки, мерные стаканы и т.п.); 2) измерительные приборы, имеющие шкалу или цифровое табло (секундомеры, амперметры, вольтметры и т.п.); 3) измерительно-вычислительные комплексы, включающие измерительные приборы и вычислительную технику.

Чтобы измерить физическую величину, необходимо: 1) установить единицу измерения этой величины (выбрать эталон); 2) иметь проградуированные в требуемых единицах с необходимой точностью средства измерения; 3) выбрать наиболее целесообразную методику измерений; 4) провести с помощью имеющихся средств измерения экспериментальное сравнение измеряемой величины с выбранным эталоном; 5) дать оценку допущенной при измерениях погрешности.

В зависимости от способа получения результата измерения делятся на прямые и косвенные . Прямые измерения осуществляются с помощью средств измерений, которыми непосредственно определяется исследуемая величина (например, измерение длины с помощью линейки, веса тела с помощью весов, времени с помощью секундомера). Однако не всегда прямые измерения осуществимы, удобны или имеют необходимую точность и надёжность. В этих случаях используют косвенные измерения, при которых искомое значение величины находится по известной зависимости между этой величиной и величинами, значения которых могут быть найдены в прямых измерениях. Например, объём можно высчитать по измеренным линейным размерам объекта, массу тела – по известной плотности и объёму и т.д. Таким образом, значение какой-либо величины может быть получено как при прямых измерениях, так и с помощью косвенных измерений. Так, скажем, величину сопротивления провода можно определить впрямую прибором – омметром, а можно и высчитать по измеренным величине тока, протекающего через проводник, и величине падения напряжения на нём. Выбор способа измерений физической величины для каждого конкретного случая решается отдельно с учётом удобства, быстроты получения результата, необходимой точности и надёжности.

Каждый физический эксперимент состоит из подготовки исследуемого объекта и средств измерений, наблюдения за ходом эксперимента и показаниями приборов, записи отсчётов и результатов измерений.

Последовательность размещения приборов и их связь друг с другом должна быть такой, чтобы обеспечить максимальную точность и удобство проведения эксперимента. При этом правильная градуировка приборов, установка их нулевых значений на шкале или цифровом табло прибора имеет первостепенное значение для получения точного результата измерений. Работа на неисправных приборах не допускается! О неисправности приборов следует немедленно сообщить преподавателю или лаборанту! Перед включением приборов необходимо удостовериться в правильности их соединения и получить разрешение на их включение у преподавателя.

Наблюдения за показаниями приборов следует проводить так, чтобы шкала или табло прибора были хорошо видны экспериментатору под нужным углом (часто для ликвидации таких ошибок измерений в приборах вводится зеркальная шкала: стрелка прибора и её отражение при измерении должны быть совмещены).

Форма записи экспериментальных результатов должна быть чёткой и компактной. Для этого специально разрабатываются таблицы, приведённые в методических указаниях к каждой лабораторной работе и именно в эти таблицы, скопированные студентами на бланк работы, и следует производить запись результатов с учётом единиц измерений и цены деления прибора. При этом, если заранее не задаётся необходимая точность результата, то надо стараться записать результат измерения с наибольшей возможной точностью, которую даёт прибор (т.е. записывать максимально возможное число значащих цифр). Для сокращения числа нулей в полученных значениях измеряемой величины (тех нулей, которые не являются значащими цифрами), удобно для всей строки или столбца таблицы указывать десятичный множитель 10 n (например, для того чтобы не писать лишние нули в значениях плотности тел, измеренных в кг/м 3 с точностью до двух значащих цифр, для всей строки таблицы, в которую заносятся плотности тел, перед единицей измерения ставится множитель 10 3: так для плотности воды в соответствующей клеточке таблицы вместо 1000 будет стоять 1,0). Отметим, однако, что не следует при измерениях, во что бы то ни стало, добиваться большей точности, чем это необходимо в поставленной задаче. Например, если требуется знать длину досок, приготовленных для производства тары, то не требуется проводить измерения с точностью, скажем, до микрона. Или, если при проведении косвенных измерений, значение какой-либо из измеряемых величин ограничено некоторой точностью (выраженной в определённом количестве значащих цифр), то не имеет смысла стараться измерять другие величины с много большей точностью, чем эта. Так, если плотность воды известна с точностью до двух значащих цифр, то, если потом потребуется находить массу воды в стакане, следует измерять ёмкость стакана (а это приблизительно 200 см 3) только с точностью до двух-трёх значащих цифр, то есть не большей, чем 1 см 3 .

Графики функций строят на миллиметровой бумаге, причём разметка осей координат выбирается удобной по масштабу и состоит из равноотстоящих и не слишком частых отметок. Не обязательно, чтобы на осях был отмечен ноль как начало координат: следует использовать именно интервал полученных экспериментальных значений. Масштаб по осям должен соответствовать погрешностям измерений. При этом желательно добиваться того, чтобы экспериментальная кривая располагалась в центральной части графика. На осях указываются обозначения физических величин и их единицы измерений. Для больших или малых значений величин N следует откладывать их по осям без множителя 10 n , а у соответствующей оси сделать обозначение N10 - n . На графике обязательно должны быть отмечены экспериментальные точки (если кривых несколько – можно для экспериментальных точек использовать разные обозначения: крестики, кружочки, треугольники и т.д., а кривые проводить разными по цвету или виду линиями: штриховыми, штрихпунктирными и т.д.). График подписывают, определяя содержание графика и объясняя, при каких условиях получены соответствующие зависимости.

Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.

Существует 4 основных вида измерений:

1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .

2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.

3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.

4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.

Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.

9. Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.

Если сравнить плоский лист бумаги и коробку, то мы увидим, что лист бумаги имеет длину и ширину, но не имеет глубины. Коробка же имеет длину, ширину и глубину.

Привычный для нас мир состоит из трёх измерений, однако давайте представим себе существование в двухмерном пространстве. В таком случае всё будет иметь вид рисунков на листе бумаги. Объекты смогут двигаться в любом направлении по поверхности этой бумаги, но подняться или опуститься на поверхность этой самой бумаги будет невозможно.

Представим себе квадрат, нарисованный в двухмерном пространстве - никакой объект не сможет выбраться за пределы квадрата, если только в нём нет отверстия, либо дырки. Перемещение под и над квадратом будет невозможным.

Что такое четвертое измерение

Другое дело в мире трёхмерном - нарисовав вокруг любого объекта квадрат, ничего не стоит затем этому самому объекту перешагнуть через него или подлезть. А теперь представим, что объект помещён внутрь куба или, к примеру, в комнату с потолком, полом и четырьмя плотными стенами. Никакой объект не сможет выбраться из комнаты, при условии, что в ней нет никаких отверстий.

Конечно же, всё это достаточно ясно и понятно. Также понятно и то, что практически все явления можно объяснить с позиции трёхмерного мира. Например, просто и понятно, почему жидкость может быть помещена в кувшин или почему собака может жить в будке.

Стоит теперь рассмотреть паранормальные явления - материализацию и дематериализацию. Известный экстрасенс, Чарльз Бейли мог материализовать сотни предметов в железной клетке в присутствии многочисленных, скептически настроенных свидетелей. Вполне возможно, предметы проходили между прутьями железной клетки, и это абсолютно необъяснимо с точки зрения трёхмерного мира.

Чтобы объяснить подобные явления, была выдвинута гипотеза, что существует четвёртое измерение пространства, недоступное при обычных обстоятельствах. Однако время от времени объекты получают возможность входить и выходить из четвёртого измерения.

Трансцендентная физика

Существует особая работа под названием “Трансцендентная физика”, посвящённая исследованию концепции четвёртого измерения и написанная Иоганном Карлом Фридрихом Зеллнером. В своём труде автор взял в качестве примера явления, создаваемые экстрасенсом Генри Слейдом. Тому удавалось заставлять некоторый объект совсем исчезнуть, а затем сделать так, чтобы этот самый объект появился где-нибудь в другом месте. Вдобавок, он мог материализовать два сплошных кольца вокруг ножки стола.

Через некоторое время Слейд был посажен в тюрьму за мошенничество, и это нанесло непоправимый урон репутации доктора Зеллнера. Тем не менее, сегодня это кажется несущественным, поскольку Зеллнер смог предложить миру тщательно оформленную теорию. К тому же под вопросом остаётся мошенничество Слейда.

Выдержка из “Трансцендентной физики”:

“Среди доказательств нет ничего более убедительного и существенного, чем перенос материальных тел из замкнутого пространства. Хотя наша трёхмерная интуиция не может допустить, чтобы в замкнутом пространстве открылся нематериальный выход, четырёхмерное пространство предоставляет такую возможность. Таким образом, перенос тела в этом направлении может быть осуществлён без воздействия на трёхмерные материальные стены. Так как у нас, трёхмерных существ, отсутствует так называемая интуиция четырёхмерного пространства, мы можем лишь сформировать его концепцию путём аналогии из низшей области пространства. Представьте на поверхности двухмерную фигуру: с каждой стороны начерчена линия, а внутри помещающийся объект. Движением только по поверхности объект не сможет выбраться за пределы этого двумерного замкнутого пространства, если только в линии не будет обрыва”.

Физика является экспериментальной наукой. Ее законы базируются на фактах, установленных опытным путем. Однако, только экспериментальных методов физических исследований недостаточно, чтобы получить полное представление об изучаемых физикой явлениях.

Современная физика широко использует теоретические методы физических исследований, которые предусматривают анализ данных, полученных в результате экспериментов, формулировку законов природы, объяснение конкретных явлений на основе этих законов, а главное - предсказания и теоретическое обоснование (с широким использованием математических методов) новых явлений.

Теоретические исследования проводятся не с конкретным физическим телом, а с его идеализированным аналогом - физической моделью, которая имеет небольшое количество основных свойств исследуемого тела. Например, в ходе изучения некоторых видов механического движения используют модель физического тела - материальную точку.

Эта модель применяется, если размеры тела не являются существенными для теоретического описания его движения, то есть в модели «материальная точка» учитывают только массу тела, а форму тела и его размеры во внимание не берут.

Как измерить физическую величину

Определение 1

Физическая величина - это характеристика, которая является общей для многих материальных объектов или явлений в качественном отношении, но может приобретать индивидуальное значение для каждого из них.

Измерение физических величин называют последовательность экспериментальных операций для нахождения физической величины, характеризующей объект или явление. Измерить - значит сравнить измеряемую величину с другой, однородной с ней величиной, принятой за эталон.

Завершается измерения определением степени приближения найденного значение к истинному или к истинно среднему. Истинным средним характеризуются величины, которые носят статистический характер, например, средний рост человека, средняя энергия молекул газа и тому подобное. Такие параметры, как масса тела или его объем, характеризуются истинным значением. В этом случае можно говорить о степени приближения найденного среднего значения физической величины к ее истинному значению.

Измерения могут быть как прямыми, когда искомую величину находят непосредственно по опытным данным, так и косвенным, когда окончательный ответ на вопрос находят через известные зависимости между физической величиной. Нас интересует и величины, которые можно получить экспериментально с помощью прямых измерений.

Путь, масса, время, сила, напряжение, плотность, давление, температура, освещенность - это далеко не все примеры физических величин, с которыми многие познакомились в ходе изучения физики. Измерить физическую величину - это значит сравнить ее с однородной величиной, взятой за единицу.

Измерение бывают прямые и косвенные. В случае прямых измерений величину сравнивают с ее единицей (метр, секунда, килограмм, ампер и т.д.) с помощью измерительного прибора, проградуированный в соответствующих единицах.

Основными экспериментально измеряемыми величинами являются расстояние, время и масса. Их измеряют, например, с помощью рулетки, часов и весов (или весов) соответственно. Существуют также приборы для измерения сложных величин: для измерения скорости движения тел используют спидометры, для определение силы электрического тока - амперметры и т. д.

Основные типы погрешностей измерений

Несовершенство измерительных приборов и органов чувств человека, а часто - и природа самой измеряемой величины приводят к тому, что результат при любом измерении получают с определенной точностью, то есть эксперимент дает не истинное значение измеряемой величины, а довольно близкое.

Точность измерения определяется близостью этого результата к истинному значение измеряемой величины или к истинному среднего, количественной мерой точности измерения является погрешность. В общем указывают абсолютную погрешность измерения.

Основные типы погрешностей измерений включают в себя:

  1. Грубые ошибки (промахи), которые возникают в результате небрежности или невнимательности экспериментатора. Например, отсчет измеряемой величины случайно проведенный без необходимых приборов, неверно прочитана цифра на шкале и тому подобное. Этих погрешностей легко избежать.
  2. Случайные ошибки возникают по разным причинам, действие которых различны в каждом из опытов, они не могут быть предусмотрены заранее. Эти погрешности подчиняются статистическим закономерностям и высчитываются с помощью методов математической статистики.
  3. Систематические ошибки возникают в результате неправильного метода измерения, неисправности приборов и т.д. Один из видов систематических погрешностей – погрешности приборов, определяющих точность измерения приборов. При считывании результат измерений неизбежно округляется, учитывая цену деления и, соответственно, точность прибора. Этих видов ошибок невозможно избежать и они должны быть учтены наряду со случайными ошибками.

В предложенных методических указаниях приведены конечные формулы теории погрешностей, необходимые для математической обработки результатов измерений.

Площадь в системе СИ

Площадь, объем и скорость являются производными единицами, их размерности происходят от основных единиц измерения.

В расчетах используют также кратные единицы, в целую степень десятки превышают основную единицу измерения. К примеру: 1 км = 1000 м, 1 дм = 10 см (сантиметров), 1 м = 100 см, 1 кг = 1000 г. Или частные единицы, в целый степень десятки меньше установленной единицы измерения: 1 см = 0,01 м, 1 мм = 0,1 см.

С единицами времени несколько иначе: 1 мин. = 60 с, 1 ч. = 3600 с. Частных является лишь 1 мс (миллисекунда) = 0,001 с и 1 мкс (микросекунда) = 10-6с.

Рисунок 1. Список физических величин. Автор24 - интернет-биржа студенческих работ

Измерения и измерительные приборы

Измерения и измерительные приборы включает в себя:

  1. Измерительные приборы - устройства, с помощью которых измеряют физические величины.
  2. Скалярные физические величины - физические величины, которые задают только числовыми значениями.
  3. Физическая величина - физическое свойство материального объекта, физического явления, процесса, который может быть охарактеризовано количественно.
  4. Векторные физические величины - физические величины, характеризующие числовым значением и направлением. Значение векторной величины называют ее модулем.
  5. Длина - расстояние от точки до точки.
  6. Площадь - величина, определяющая размер поверхности, одна из основных свойств геометрических фигур.
  7. Объем - вместимость геометрического тела, или части пространства, ограниченной замкнутыми поверхностями.
  8. Перемещение тела - направленный отрезок, проведенный из начального положения тела в его конечное положение.
  9. Масса - физическая величина, являющаяся одной из основных характеристик тела, обычно обозначается латинской буквой m.
  10. Сила притяжения - сила, с которой Земля притягивает предметы.

экспериментальное сравнение искомой величины с эталонной единицей измерения. Измерения классифицируют в зависимости от природы измеряемой величины, характера ее изменений во времени, условий выполнения. Различают прямые измерения (например, длины чего-либо проградуированной линейкой) и косвенные (через измерение другой величины, функционально связанной с измеряемой величиной), статические и динамические, абсолютные и относительные. Важную роль при измерениях играет учет погрешностей, среди которых различают систематические и случайные.

Отличное определение

Неполное определение

ИЗМЕРЕНИЕ

процедура присвоения символов наблюдаемым объектам в соответствии с некоторым правилом. Символы могут быть просто метками, представляющими классы или категории объектов в популяции, или числами, характеризующими степень выраженности у объекта измеряемого свойства. Символы-метки могут также представлять собой числа, но при этом не обязательно нести в себе характерную "числовую" информацию. Целью И. является получение формальной модели, исследование которой могло бы, в определенном смысле, заменить исследование самого объекта. Как всякое построение, И. приводят к потере части информации об объекте и/или ее искажению, иногда значительному. Потеря и искажение информации приводит к возникновению ошибок И., величина которых зависит от точности измерительного инструмента, условий, при которых производится И., квалификации наблюдателя. Различают случайные и систематические ошибки И. При исследовании отдельно взятого объекта ошибки обоих типов представляют одинаковую опасность. При статистическом обобщении информации о некоторой совокупности измеренных объектов случайные ошибки, в известной степени, взаимно "погашаются", в то время как систематические ошибки могут привести к значительному смещению результатов. Алгоритм присвоения символа объекту называется измерительной шкалой. Как всякая модель, измерительные шкалы должны правильно отражать изучаемые характеристики объекта и, следовательно, иметь те же свойства, что и измеряемые показатели. Различают четыре основных типа измерительных шкал, получившие следующие названия: шкала наименований, шкала порядка, интервальная шкала и шкала отношений. Шкала наименований или номинальная шкала используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку - к ним нельзя прилагать суждения типа "больше - меньше", "лучше - хуже", и т.п. Примерами номинальных шкал являются: пол и национальность, специальность по образованию, марка сигарет, предпочитаемый цвет. Единственным отношением, определенным на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам - различными. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определенного качества или его соответствие некоторому требованию. Шкалы порядка позволяют не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака: об объектах, отнесенных к одному из классов, известно но только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос, на сколько (во сколько раз) это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Примерами шкал порядка могут служить уровень образования, военные и академические звания, тип поселения (большой - средний - малый город - село), некоторые естественно-научные шкалы (твердость минералов, сила шторма). Так, можно сказать, что 6-балльный шторм заведомо сильнее, чем 4-балльный, но нельзя определить на сколько он сильнее; выпускник университета имеет более высокий образовательный уровень, чем выпускник средней школы, но разница в уровне образования не поддается непосредственному И. Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значении признака точному И. не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) оценки, исходя из определенного числа баллов. К таким шкалам относятся, например, школьные оценки, для которых считается вполне допустимым рассчитывать, например, средний балл по аттестату зрелости. Строго говоря, подобные шкалы являются частным случаем шкалы порядка, так как нельзя определить, на сколько знания "отличника" больше, чем знания "троечника", но в силу некоторых теоретических соображений с ними часто обращаются, как со шкалами более высокого ранга - шкалами интервалов. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда признак заведомо не поддается объективному И. (например, красота или степень неприязни), или когда порядок объектов более важен, чем точная величина различий между ними (места, занятые в спортивных соревнованиях). В таких случаях эксперту иногда предлагают проранжировать по определенному критерию некий список объектов, качеств, мотивов и т.п. В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных, в отличие от количественных шкал интервалов и отношений. Шкалы интервалов и отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определенный порядок между объектами или их классами, но и наличие некоторой единицы И., позволяющей определять, на сколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами. Основное различие между этими двумя шкалами состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договоренностями. Примерами шкалы интервалов являются календарное время, температурные шкалы Цельсия и Фаренгейта. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям, и интервалы между баллами шкалы имеют одинаковую длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту: рост и вес, возраст, расстояние, сила тока, время (длительность промежутка между двумя событиями), температура по Кельвину (абсолютный нуль). Шкала отношений является единственной шкалой, на которой определено отношение отношения, то есть разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого. Количественные шкалы делятся на дискретные и непрерывные. Дискретные показатели измеряются в результате счета: число детей в семье, количество решенных задач, и т.п. Непрерывные шкалы предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств, могло бы быть измерено с любой необходимой степенью точности. Результаты И. непрерывных показателей довольно часто выражаются целыми числами (например, шкала IQ для И. интеллекта), но это связано не с природой самих показателей, а с характером измерительных процедур. Различают первичные и вторичные И. Первичные получаются в результате непосредственного И.: длина и ширина прямоугольника, число родившихся и умерших за год, ответ на вопрос теста, оценка на экзамене. Вторые являются результатом некоторых манипуляций с первичными И., обычно с помощью неких логико-математических конструкций: площадь прямоугольника, демографические коэффициенты смертности, рождаемости и естественного прироста, результаты тестирования, зачисление или незачисление в институт по результатам вступительных экзаменов. Для проведения И. в естественных и точных науках, в быту применяются специальные измерительные инструменты, которые во многих случаях представляют собой довольно сложные приборы. Качество И. определяется точностью, чувствительностью и надежностью инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту (эталону). Чувствительность инструмента определяется величиной единицы И., например, в зависимости от природы объекта, расстояние может измеряться в микронах, сантиметрах или километрах. Надежностью называется способность инструмента к воспроизведению результатов И. в пределах чувствительности шкалы. В гуманитарных и общественных науках (за исключением экономики и демографии) большинство показателей не поддаются непосредственному И. с помощью традиционных технических средств. Вместо них применяются всевозможные анкеты, тесты, стандартизированные интервью и т.п., получившие общее название измерительного инструментария. Кроме очевидных проблем точности, чувствительности и надежности, для гуманитарного инструментария существует также достаточно острая проблема валидности - способности измерять именно то свойство личности, которое предполагается его автором.