От чего зависит потенциал электрода. Электродный потенциал. Его измерение, стандартный электродный потенциал. Уравнение электродного потенциала

Каждая окислительно-восстано-вительная реакция слагается из полуреакций окисления и восстановления. Когда реакция протекает в гальваническом элементе или осуществляется путем электролиза, то каждая полуреакция протекает на соответствующем электроде; поэтому полуреакции называют также электродными процессами.

В § 98 было показано, что протекающей в гальваническом элементе окислительно-восстановительной реакции соответствует этого элемента Е, связанная с изменением энергии Гиббса реакции уравнением:

В соответствии с разделением окислительно-восстановительной реакции на две полуреакции, электродвижущие силы также принято представлять в виде разности двух величии, каждая из которых отвечает данной полуреакции. Эти величины называются электродными потенциалами.

Для медно-цинкового элемента реакция, протекающая при его работе

разбивается на полуреакции:

Соответственно этого элемента (Е) можно представить как разность электродных потенциалов , один из которых отвечает первой, а другой - второй из записанных полуреакций:

При этом изменение энергии Гиббса , которое отвечает модинамически обратимому восстановлению одного моля ионов меди, равно

а изменение энергии Гиббса отвечающее термодинамически обратимому окислению одного моля атомов цинка, равно

В общем случае любому электродному процессу

соответствует электродный потенциал и изменение энергии Гиббса , равное:

Здесь и - сокращения латинских слов, обозначающие восстановленную и окисленную формы веществ, участвующих в электродном процессе.

В дальнейшем, говоря об электродных процессах, мы будем записывать их уравнения в сторону восстановления (за исключением, конечно, тех случаев, когда речь будет идти именно об окислении).

В результате изучения потенциалов различных электродных процессов установлено, что их величины зависят от следующих трех факторов: 1) от природы веществ - участников электродного процесса, 2) от соотношения между концентрациями этих веществ и 3) от температуры системы. Эта зависимость выражается уравнением:

Здесь - стандартный электродный потенциал данного процесса - константа, физический смысл которой рассмотрен ниже; R - газовая постоянная; Т - абсолютная температура; z - число электронов, принимающих участие в процессе; F - постоянная Фарадея; и произведения концентраций веществ, участвующих в процессе в окисленной и в восстановленной формах.

Физический смысл величины становится ясным при рассмотрении случая, когда концентрации (активности) всех веществ, участвующих в данном электродном процессе, равны единице. При этом условии второе слагаемое правой части уравнения обращается в нуль и уравнение принимает вид:

Концентрации (активности), равные единице, называются стандартными концентрациями (активностями). Поэтому и потенциал, отвечающий этому случаю, называется стандартным потенциалом. Итак, стандартный электродный потенциал - это потенциал данного электродного процесса при концентрациях (точнее говоря, активностях) всех участвующих в нем веществ, равных единице.

Таким образом, в уравнении электродного потенциала первое слагаемое учитывает влияние на его величину природы веществ, а второе - их концентрации. Кроме того, оба члена изменяются с температурой.

Для обычной при электрохимических измерениях стандартной температуры (), при подстановке значений постоянных величин () уравнение принимает вид:

Для построения численной шкалы электродных потенциалов нужно потенциал какого-либо электродного процесса принять равным нулю. В качестве эталона для создания такой шкалы принят электродный процесс

Изменение энергии Гиббса, связанное с протеканием этой полуреакции при стандартных условиях, принимается равным нулю. В соответствии с этим и стандартный потенциал данного электродного процесса принят равным нулю. Все электродные потенциалы, приводимые в настоящей книге, а также в большинстве других современных изданий, выражены по этой, так называемой водородной шкале.

Приведенный выше электродный процесс осуществляется на водородном электроде. Последний представляет собой платиновую пластинку, электролитически покрытую губчатой платиной и погруженную в раствор кислоты, через который nponускается водород (рис. 84). Водород хорошо растворяется в платине; при этом молекулы водорода частично распадаются на атомы (пластина катализирует этот распад). На поверхности соприкосновения платины с раствором кислоты может протекать, окисление атомов или восстановление ионов водорода.

Рис. 84. водородный электрод.

Рис. 85. Цепь для измерения электродного потенциала: слева - электрод, потенциал которого нужно измерить;справа - каломельный электрод; в середине - соединительный сосуд.

Платина при этом практически не принимает участия в электродных реакциях и играет как бы роль губки, пропитанной атомарным водородом.

Потенциал водородного электрода воспроизводится с очень высокой точностью. Поэтому водородный электрод и принят в качестве эталона при создании шкалы электродных потенциалов.

Установим, какой вид принимает общее уравнение электродного потенциала для водородного электрода. В соответствии с уравнением электродного процесса (см. стр. 271) . Концентрация растворенного в платине водорода пропорциональна его парциальному давлению :

где k - постоянная при данной температуре величина. Включая ее в значение , получим:

Обычно парциальное давление водорода поддерживается равным нормальному атмосферному давлению, которое условно принимается за единицу. В этом случае последний член полученного уравнения обращается в нуль . Тогда

Поскольку стандартный потенциал рассматриваемого процесса, принят равным нулю, то

или, учитывая, что , окончательно получем:

Для определения потенциала того или иного электродного процесса нужно составить гальванический элемент из испытуемого и стандартного водородного электродов и измерить его э. д. с. Поскольку потенциал стандартного водородного электрода равен нулю, то измеренная э. д. с будет представлять собою потенциал данного электродного процесса.

Практически при измерениях потенциалов в качестве электрода сравнения пользуются не стандартным водородным, а другими электродами, более удобными в обращении, потенциалы которых по отношению к стандартному водородному электроду известны. При этом необходимо рассчитать э. д. с. элемента согласно уравнению:

Здесь Е - элемента; - известный потенциал электрода сравнения; - потенциал испытуемого электрода.

Решая уравнение относительно получаем:

В качестве электродов сравнения чаще всего применяют хлор-серебряный и каломельный электроды. Хлорсеребряный электрод - это серебряная проволочка, покрытая слоем и погруженная в раствор соляной кислоты или ее соли. При замкнутой цепи на нем протекает реакция:

Каломельный электрод представляет собой ртуть, покрытую взвесью каломели в растворе . Потенциалы этих электродов воспроизводятся с высокой точностью. На рис. 85 изображена цепь с каломельным электродом.

Для того чтобы найти значение электродного потенциала, необходимо измерить не напряжение работающего элемента, а именно его э. д. с. При измерениях э. д. с. сопротивление внешней цепи (т. е. измерительного устройства) очень велико. Реакция в элементе при этом практически не протекает. Таким образом, электродные потенциалы отвечают обратимому протеканию процессов или, что то же самое, состоянию электрохимического равновесия на электродах. Поэтому электродные потенциалы часто называют равновесными электродными потенциалами или просто равновесными потенциалами.

Рассмотрим теперь, какой вид принимает общее уравнение электродного потенциала в важнейших случаях.

1. Электродный процесс выражается уравнением

где М обозначает атомы какого-либо металла, - его -зарядные ионы.

К этому случаю относятся оба электрода медно-цинкового элемента и вообще любой металлический электрод в растворе соли этого же металла. Здесь окисленной формой металла являются его ионы, а восстановленной - атомы. Следовательно, , так как концентрация атомов в металле при постоянной температуре - величина постоянная. Включая значение этой постоянной в величину получим:

Например, для процесса

а для процесса

2, Электродный процесс выражается уравнением:

В этом случае и окисленная и восстановленная формы металла находятся в растворе концентрации -величины переменные. Поэтому

Например, для процесса :

В этом и в рассматриваемых ниже случаях электрод, на котором протекает электродный процесс, изготовляется из инертного материала. Чаще всего в качестве такого материала применяют платину.

Мы рассмотрели примеры, когда в электродных процессах принимали участие только ионы, состоящие из одного элемента. Однако часто окисляющееся или восстанавливающееся вещество состоит не из одного, а из двух или большего числа элементов. Чаще всего в составе окислителя содержится кислород; при этом в электродном процессе обычно принимают участие также вода и продукты ее диссоциации - ионы водорода (в кислой среде) или гидроксид-ионы (в щелочной среде). Рассмотрим, как будут выглядеть в таких случаях уравнения потенциалов электродных процессов.

3. Электродный процесс выражается уравнением:

Эта полуреакция (при протекании ее в сторону восстановления) играет очень большую роль при коррозии металлов (см. § 196). Кислород - самый распространенный окислитель, вызывающий коррозию металлов в водных средах.

В рассматриваемом электродном процессе в результате восстановления кислорода, протекающего с участием ионов водорода, образуется вода. Следовательно, , а . Концентрацию воды в разбавленных растворах можно считать постоянной. Концентрация кислорода в растворе пропорциональна его парциальному давлению над раствором . Выполнив необходимые преобразования и обозначив сумму постоянных величин через , получим:

Для рассматриваемого процесса ; следовательно

При парциальном давлении кислорода, равном нормальному атмосферному давлению (которое условно принимается равным единице), и последнее уравнение принимает вид

4. Для электродных процессов, записываемых более сложными уравнениями, в выражениях для потенциалов содержится большее число переменных концентраций. Рассмотрим, например, электродный процесс:

Эта полуреакция протекает (в сторону восстановления) при взаимодействии перманганата калия с большинством восстановителей в кислой среде.

Концентрации всех веществ, участвующих в рассматриваемом электродном процессе, кроме воды, - величины переменные. Для этого процесса . Уравнение электродного потенциала имеет вид:

Примеры 3 и 4 показывают, что в случае электрохимических процессов, протекающих с участием воды, концентрация ионов водорода входит в числитель логарифмического члена уравнения потенциала. Поэтому электродные потенциалы таких процессов зависят от раствора и имеют тем большую величину, чем кислее раствор.

Таблица 18. Электродные потенциалы в водных растворах при и при парциальном давлении газов, равном нормальному атмосферному давлению

Продолжение табл. 18

Как уже сказано, зависимость электродного потенциала от природы веществ - участников электродного процесса учитывается величиной . В связи с этим все электродные процессы принято располагать в ряд по величине их стандартных потенциалов. В табл. 18 уравнения важнейших электродных процессов и соответствующие электродные потенциалы приведены в порядке возрастания величин .

Положение той или иной электрохимической системы в этом ряду характеризует ее окислительно-восстановительную способность. Под электрохимической системой здесь подразумевается совокупность всех веществ - участников данного электродного процесса.

Окислительно-восстановительная способность представляет собою понятие, характеризующее именно электрохимическую систему, но часто говорят и об окислительно-восстановительной способности того или иного вещества (или иона). При этом следует, однако, иметь в виду, что многие вещества могут окисляться или восстанавливаться до различных продуктов. Например, перманганат калия может в зависимости от условий, прежде всего от раствора, восстанавливаться либо до иона , либо до , либо до иона

Соответствующие электродные процессы выражаются уравнениями:

Поскольку стандартные потенциалы этих трех электродных процессов различны (см. табл. 18), то различно и положение этих трех систем в ряду Таким образом, один и тот же окислитель может занимать в ряду стандартных потенциалов несколько мест.

Элементы, проявляющие в своих соединениях только одну степень окисленности, имеют простые окислительно-восстановительные характеристики и занимают в ряду стандартных потенциалов мало мест. К их числу относятся в основном металлы главных подгрупп I-III групп периодической системы. Много же мест в ряду занимают те элементы, которые образуют соединения различных степеней окисленности - неметаллы и многие металлы побочных подгрупп периодической системы.

Ряд стандартных электродных потенциалов позволяет решать вопрос о направлении самопроизвольного протекания окислительно-восстановительных реакций. Как и в общем случае любой химической реакции, определяющим фактором служит здесь знак изменения энергии Гиббса реакции. Если из двух электрохимических систем составить гальванический элемент, то при его работе электроны будут самопроизвольно переходить от отрицательного полюса элемента к положительному, т. е. от электрохимической системы с более низким значением электродного потенциала к системе с более высоким его значением. Но это означает, что первая из этих систем будет выступать в качестве восстановителя, а вторая- в качестве окислителя. Следовательно, в гальваническом элементе окислительно-восстановительная реакция может самопроизвольно протекать в таком направлении, при котором электрохимическая система с более высоким значением электродного потенциала выступает в качестве окислителя, т. е. восстанавливается. При непосредственном взаимодействии веществ возможное направление реакции будет, конечно, таким же, как и при ее осуществлении в гальваническом элементе.

Электрод и электродный потенциал

Процессы взаимного превращения химической и электрической форм энергии называются электрохимическими. Их можно разделить на две основные группы: 1) процессы превращения химической энергии в электрическую (гальванический элемент); 2) процессы превращения электрической энергии в химическую (электролиз).

Изучением электрохимических процессов занимается электрохимия.

К электрохимическим процессам относятся явления, возникающие на границе двух фаз с участием заряженных частиц (ионов и электронов), например, при погружении металлической пластинки в воду.

Для всех металлов характерно свойство в большей или меньшей степени растворяться в воде. При этом протекает взаимодействие поверхностных ион-атомов металла, находящихся в узлах решетки, с полярными молекулами воды. В результате в раствор переходят гидратированные катионы металла (окисление), оставляя в металле электроны. Пластина металла становится заряженной отрицательно, а приэлектродный слой раствора – положительно. На границе металл – раствор возникает двойной электрический слой, характеризующийся разностью потенциалов.)

При погружении металла в раствор его соли также возникает двойной электрический слой. В этом случае возможны два механизма его образования. Если концентрация ионов в растворе мала или металл достаточно активный, металлическая пластинка заряжается отрицательно. В том случае, когда концентрация катионов металла в растворе велика или металл малоактивный, металлическая пластинка заряжается положительно. Потенциалу металла приписывается тот знак, который возникает на его поверхности в двойном электрическом слое.

Система, состоящая из металла, опущенного в раствор собственной соли, называется окислительно-восстановительной или электродом и характеризующаяся определенным электродным потенциалом.

Водородный электрод.

Водородный электрод состоит из платиновой пластинки, покрытой платиновой чернью (электролитически осажденной платины). Электрод погружен в раствор кислоты с концентрацией ионов водорода 1 моль/л и омывается струей газообразного водорода под давлением 1 атм. при температуре 25 о С.



При насыщении платины водородом на поверхности металл – раствор устанавливается равновесие Н 2 D 2Н+ , которое характеризуется определенным скачком потенциала, величина потенциала которого условно принимается за нуль (при всех значениях температур).

Условно водородный электрод обозначают схемой 2Н+ | Н 2 , Pt, где вертикальная черта обозначает поверхность раздела фаз.

Уравнение Нернста для этого электрода имеет вид

Учитывая, что lg = – pH, получаем

Таким образом, потенциал водородного электрода принимает более отрицательное значение с увеличением давления водорода и рН.

Стандартные электродные потенциалы

Если металл опустить в раствор его соли с концентрацией по катиону 1 моль/л, то электродный потенциал будет постоянной величиной при данной температуре и давлении. Такой потенциал называется стандартным электродным потенциалом и обозначают ϕ 0 или Е 0 .

Абсолютное значение его определить невозможно. На практике измеряют разность потенциалов между электродным потенциалом исследуемой системы и потенциалом водородного электрода (электрод сравнения) в стандартных условиях. Таковыми обычно являются активность ионов, равная 1 моль/л, Р= 101,325 кПа и Т= 298К.

Определив стандартные электродные потенциалы металлических электродов, металлы располагают в порядке их возрастания и получают электрохимический ряд напряжений металлов , или, точнее, ряд стандартных электродных потенциалов

Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Ряд стандартных электродных потенциалов характеризует химические свойства металлов в водных растворах.

– чем меньше электродный потенциал металла (левее в ряду потенциалов) тем он химически активнее, тем легче окисляется и труднее восстанавливается из своих ионов;

– металлы, имеющие отрицательные электродные потенциалы (расположенные в ряду до водорода), вытесняют водород из разбавленных кислот, анионы которых не проявляют окислительные свойства, и при этом растворяются в них;

– каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые имеют более высокий электродный потенциал.

Величина электродного потенциала зависит от природы металла, концентрации его ионов в растворе, от температуры и рН среды. Данная зависимость выражается уравнением Нернста:

где R – универсальная газовая постоянная – 8,314Дж/моль∙град;

F – число Фарадея – 96500 Кл;

Т – температура, K;

n – число отданных или присоединённых электронов одной молекулы окислителя или восстановителя;

C ок, C вос – соответственно концентрация окисленной и восстановленной форм вещества;

E 0 ок/вос – стандартный потенциал окисленной и восстановленной формы вещества.

Преобразовав данное выражение: подставить значения R, F , Т (298 °К) и перевести натуральный логарифм в десятичный, получаем.

Зная величину E ок/вос, можно определить окислительно-восстановительную активность веществ:

– чем меньше окислительно-восстановительный потенциал, тем большей восстановительной активностью обладает вещество и легче теряет свои электроны;

– чем больше окислительно-восстановительный потенциал, тем выше окислительная активность вещества и легче принимает электроны.

Для стандартных электродных потенциалов действительно выражение

∆G о = – nE 0 F ,

где ∆Gо – изменение энергии Гиббса для электродной реакции Ме + m H 2 O = Ме n+ · m H 2 O + nē, протекающей в условиях, когда все реагирующие вещес тва находятся в стандартном состоянии при активности, равной единице; n – число электронов; F – число Фарадея.

Электродный потенциал. Водородная шкала потенциалов. Формула Нернста, ее термодинамический вывод. Стандартный электродный потенциал. Диффузионный потенциал.

Электродныйпотенциал

Одна из основных особенностей электрохимической системы состоит в пространственном разделении участников протекающей в ней реакции. Общая реакция распадается здесь на две частные реакции, каждая из которых совершается на отдельном электроде. В соответствии с этим ЭДС электрохимической системы также должна представлять собой сумму двух электродных потенциалов :Е=Е 1 + Е 2 .

Скачок потенциала на границе электрод – раствор (как и разность потенциалов между двумя точками, находящимися в различных фазах) экспериментально измерить невозможно. Величина такого скачка потенциала может быть рассчитана теоретически, но лишь в том случае, если точно известно строение границы раздела двух фаз. Структура границы между электродом и раствором изучена до сих пор недостаточно.

Экспериментально можно измерить лишь общее значение ЭДС цепи, то есть только сумму электродных потенциалов. Для устранения неопределённости величин Е необходимо ввести дополнительное условие - принять потенциал какого-либо электрода равным нулю и относить к нему значения потенциалов всех других электродов. В этом случае потенциалы электродов даются в некоторой условной шкале и их значения зависят от природы электрода, выбранного за основу шкалы.

Нернст предложил считать условным нулём потенциал водородного электрода при концентрации водородных ионов в растворе, равной 1, и давлении газообразного водорода 1 атм. Эта условная шкала потенциалов называется водородной шкалой . В настоящее время применяется главным образом условная водородная шкала , в которой при всех температурах за ноль выбран потенциал стандартного водородного электрода. Она отличается от первоначальной водородной шкалы Нернста тем, что в ней вместо единичных концентраций и давления выбраны единичная активность и летучесть. Это условие позволяет определять потенциалы электродов в водородной шкале при любых Т, однако при каждой Т потенциал водородного электрода может быть иным, то есть условный нуль не будет одним и тем же при разных Т.

Таким образом, электроднымпотенциаломэлектрода называется ЭДС элемента, составленного из этого электрода (справа) и стандартного водородного электрода (слева), например:

(+)Pt ï H 2 ç H + , aq çç Zn 2+ ç Zn( - )

ЭДС этого элемента (Е Zn 2+ ç Zn ) отрицательна (– 0,763 В при активности ионов цинка в растворе, равной 1; это и есть стандартный электродный потенциал цинка). Чтобы найти электродный потенциал меди, нужно составить элемент

( - )Pt ï H 2 ç H + , aq çç Cu 2+ ç Cu (+)

Здесь ЭДС цепи (Е Cu 2+ ç Cu ) положительна (+ 0,337 В при активности ионов меди, равной 1, - стандартный электродный потенциал меди).

Целесообразно в схеме полуэлемента записывать сочетание электрод + раствор иона в том порядке, который имеется в записи элемента, составленного из стандартного водородного электрода и данного; именно для записанного таким образом электрода следует приводить электродный потенциал с соответствующим знаком. При обратной записи следует изменить знак потенциала, например:

(1) Zn 2+ , aq ç Zn ;Е = - 0,763 B ,(2) Zn ç Zn 2+ , aq ;Е = + 0,763 B .

Только первый тип записи приводит к тем знакам величинЕ, которые соответствуют электродным потенциалам. Величины, соответствующие записи (2), не следует называть электродными потенциалами, но ими можно пользоваться при подсчете ЭДС цепи (для электродов, расположение которых в схеме цепи является обратным расположению их в сочетании с водородным электродом), например:

( - )Zn ç Zn 2+ , aq ç Cu 2+ , aq ç Cu (+)

0,763 В+ 0,337 В

Е=Е 1 + Е 2 =0,763 + 0,337 = 1,110 В.

Диффузионный потенциал, возникающий на границе растворов ZnSO 4 - CuSO 4 , усложняет расчет.

Диффузионныйпотенциал возникает на границе двух растворов, отличающихся друг от друга и качественно, и количественно. Причина его возникновения - неодинаковая подвижность ионов электролита и наличие градиента их концентрации.

На границе двух растворов имеется некоторый переходный слой, где состав меняется от раствора I до раствора II и от раствора II до раствора I ; в этом переходном слое локализуется диффузионный потенциал. Ионы, обладающие большей подвижностью, диффундируют в более разбавленный раствор с большей скоростью, и поверхность соприкосновения двух растворов заряжается знаком этих ионов со стороны более разбавленного раствора и обратным знаком - со стороны концентрированного. Образуется диффузный двойной электрический слой с соответствующим скачком потенциала. Возникающая разность потенциалов будет ускорять движение медленно движущегося иона и замедлять движение быстро движущегося, пока не наступит стационарное состояние, при котором скорости диффундирующих ионов сравняются. Дальнейшее взаимное удаление зарядов прекращается; установившаяся в пограничном слое разность потенциалов и носит название диффузионного потенциала.

Диффузионный потенциал - неравновесный. Точно его рассчитать в общем случае невозможно.

При измерениях невысокой точности можно существенно снизить диффузионный потенциал на границе двух растворов, включив между ними солевой мостик - концентрированный электролит (насыщенный KCl или NH 4 NO 3 ) с числами переноса ионов, близкими к 0,5. Резкое уменьшение диффузионного потенциала в этом случае связано с тем, что ионы концентрированного раствора проводят практически весь ток в зонах соприкосновения; один диффузионный потенциал заменяется при введении солевого мостика двумя потенциалами меньшей величины, часто противоположными по знаку. С этой же целью используется введение индифферентной соли во все растворы цепи.

Зависимость величины электродного потенциала от концентрации (активности) вещества в электролите может быть установлена методами термодинамики . На электродеМ n + ç Мс равновесным потенциаломЕпротекает электрохимическая реакция

М n + , aq + ne =М.

Это реакция дегидратации иона металла и включения его в кристаллическую решетку.

Для равновесного процесса при постоянных р и Т убыль изобарного потенциала равна максимальной полезной работе А ¢ - работе электрического тока:

А ¢ = - D G =n F Е.

При переходе 1 г-иона металла из раствора в электрод изменение изобарного потенциала равно разности химических потенциалов вещества в двух фазах: в растворе (m ¢ ) и в электроде (m ¢¢ ):

D G = m + ¢¢ - m + ¢ .

Прир ,Т = const в электроде неизменного состава (чистый металл)

m + ¢¢ = m + о =const ;

в растворе

m + ¢ = m + ¢ о +RT ln a + ,

m + ¢ о - химический потенциал иона в растворе в стандартном состоянии; эта величина при заданной температуре постоянна.

D G= m + o - m + ¢ o - RT ln a + ,

Е = - ( m + o - m + ¢ o ) / n F+ln a + .

Степень окисления.Типичные окислители и восстановители

Степень окисления - это условный заряд атома в молекуле, вычисленный

исходя из предположения, что молекула состоит из ионов

и в целом электронейтральна. Вещество, которое принимает электроны, называется окислителем,а вещество, которое отдает электроны, - восстановителем. Вещества, являющиеся окислителями во многих реакциях, представляют собой типичные (сильные) окислители. К ним относятся F 2 , Cl 2 , O 2 , KClO 3 , H 2 SO 4 , HNO 3 , KMnO 4 , MnO 2 , K 2 Cr 2 O 7 , PbO 2 и др. Типичными (сильными) восстановителями являются H 2 , C (графит ), Zn, Al, Ca, KI, HCl (конц.), H 2 S, CO и др.

Реакции окисления-восстановления. Метод электронного баланса. Молярные массы эквивалентов окислителей и востановителей

Число электронов, отдаваемых восстановителем, равно числу электронов, принимаемых окислителем, поэтому стехиометрические коэффициенты окислительно-восстановительных реакций определяют используя метод электронного баланса или метод электронно-ионного баланса.

Порядок составления уравнений окислительно-восстановительных

реакций (метод электронного баланса):

1. Написать формулы исходных веществ и продуктов реакций.

2. Определить элементы, которые меняют свою степень окисления.

3. Составить две полуреакции для окислителя и восстановителя и

определить число принятых и отданных электронов.

4. Найти наименьшее общее кратное между числом принятых и

отданных электронов и определить дополнительные множители к

обеим полуреакциям.

5. Умножить дополнительные множители на соответствующие

полуреакции и сложить их левые и правые части. Полученные коэффициенты

перенести в молекулярное уравнение.

6. Если окислитель или восстановитель расходуется на получение

других продуктов реакции, в которых степень их окисления не

меняется, то необходимо уточнить коэффициенты.

7. Уравнять число атомов водорода и кислорода.

Молярная масса эквивалентов окислителя равна молярной массе

окислителя, деленной на число электронов, принятых одной молекулой

окислителя. Молярная масса эквивалента восстановителя

равна молярной массе восстановителя, деленной на число электронов,

отданных одной молекулой восстановителя.

Направление протекания и константа равновесия окислително восстановительных реакций

Расчеты с применением уравнения Нернста, позволяющего найти константу равновесия ОВР, и закона действующих масс показывают, что реакции заведомо химически необратимы при Δφ о > 0,4.
В этом случае реакция всегда, т.е. при любых начальных условиях (о стандартных условиях теперь речь, разумеется, не идет), проходит в прямом направлении до конца.
Совершенно аналогичным образом, если Δφ о < – 0,4 В, реакция всегда протекает до конца, но в обратном направлении.
Изменять направление и полноту протекания таких реакций, т.е. управлять ими, при всем желании невозможно, в отличие от химически обратимых реакций, для которых < Δφ о < 0,4 В или –0,4 В < Δφ о < 0. В первом случае в стандартных условиях реакция всегда протекает в прямом направлении. Это означает, что в отсутствие продуктов реакции в начальный момент времени реакция тем более (т.е. тоже всегда) будет протекать в прямом направлении, но не до конца.
Более полному протеканию реакции способствуют избыток одного или нескольких реагентов и вывод из сферы реакции тем или иным способом ее продуктов. Часто удается добиться достаточно полного протекания таких реакций несмотря на их химическую обратимость. С другой стороны, обычно можно также создать условия, при которых такая реакция будет протекать в обратном направлении. Для этого надо создать высокие концентрации "реагентов" (до сих пор мы считали их продуктами реакции), начинать реакцию в отсутствии ее "продуктов" (т.е. реагентов, при прямом течении реакции) и стараться поддерживать по возможности низкую их концентрацию в ходе реакции.

электродный потенциал. Его измерение, стандартный электродный потенциал

Электро́дный потенциа́л - разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).

Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) - ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциалов между точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически.

Практическое значение имеют относительные электродные потенциалы, обычно называемые просто электродные потенциалы, представляющие собой разность электродных потенциалов рассматриваемого электрода и электрода сравнения - чаще всего нормального водородного электрода, электродный потенциал которого условно принимается равным нулю

В электрохимии стандартный электродный потенциал, обозначаемый E o , E 0 , или E O , является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей).

Чем больше стандартные восстановительные потенциалы, тем легче их можно восстановить, другими словами, тем более сильными окислителями они являются. И наоборот: большой отрицательный потенциал означает, что данная форма является сильным восстановителем.

5.ряд стандартых потенциаловметаллических электродов. Зависимость значения электродного потенциала …

Если электроды (на пример, металлические электроды 1-го рода) расположить в порядке возрастания потенциала, то мы получим таблицу, называемую рядом стандартных электродных потенциалов. Этот ряд часто называют рядом напряжений, однако этот термин устарел и его лучше не использовать. При помощи ряда стандартных электродных потенциалов можно характеризовать некоторые химические свойства металлов. Например, его применяют для выяснения, в какой последовательности восстанавливаются ионы металлов при электролизе, а также при описании других свойств металлов.
Чем меньше алгебраическая величина потенциала, тем выше вос­становительная способностьэтого металла и тем ниже окислительная способность его ионов.

Зависимость электродного потенциала от концентраций дает уравнение Нернста:

E= E o + lg

6.гальван. элем. , напряж ГЭ, совр. ГЭ

Гальваническими элементами (ГЭ) называются устройства, в которых

энергия окислительно-восстановительных реакций превращается

в электрическую энергию. Гальванический элемент состоит

из двух электродов (окислительно-восстановительных систем), соединенных

между собой металлическим проводником.

Напряжение ГЭ (е°) при стандартных условиях рассчитывается

по формуле

e = Ф катода – Ф анода

где ф°катода и ф ° а нонода - значения стандартных электродных потенциалов

катода и анода

7. Аккумуляторы (щелочные и кислотные)…

Аккумуляторы-источники Эл-кой энергии многократного действия. Они относятся к обратимым гальваническим Эл-там.Аккумуляторы –состоят из батарей (ЭДС 2,1ВТ-мах) . Акк.-бывают щелочные и кислотные.Как источники Эл-кой энергии они работают в режиме галв э-та.Для восстановления Акк-ра он работает в режиме зл-за т.е. зарядки. Качество Акк можно оценить по концентрации H2SO4. При зарядке выделяется H2 H2 соед-ся с O2 и получается гремучая смесь.

Коррозия..

Коррозией называется процесс самопроизвольного разрушения

металлов под действием агрессивных сред. Химическая коррозия представляет собой разрушение металлов

вследствие непосредственного их взаимодействия с сухими агрессивными

газами 02 , СО2, SO2, H2S, NH3, Н 2 0 (газовая коррозия) или

с агрессивными компонентами в жидких неэлектролитах, например

в нефтепродуктах (коррозия в неэлектролитах).

При контакте металла с водой, растворами электролитов, влажными

газами наблюдается электрохимическая коррозия - наиболее

распространенный вид коррозии металлов.

Показатели коррозии

Количественно скорость коррозии характеризуется следующими

показателями коррозии:

Весовой показатель

Объемный показатель

Глубинный показатель

Современная защита металлов от коррозии базируется на следующих методах:

1. повышение химического сопротивления конструкционных материалов,

2. изоляция поверхности металла от агрессивной среды,

3. понижение агрессивности производственной среды,

4. снижение коррозии наложением внешнего тока (электрохимическая защита).

10. Электролиз…

Электролиз - совокупность окислительно-восстановительных

процессов, протекающих при прохождении постоянного электрического

тока через расплавы или растворы электролитов.

При электролизе происходит превращение электрической энергии

в химическую. Ячейка для электролиза (электролизер) состоит

из двух электродов, погруженных в расплав или раствор электролита.

Электрод, на котором идет реакция восстановления (катод), подключен

к отрицательному полюсу внешнего источника постоянного

тока. Электрод, на котором протекает реакция окисления (анод),

подключен к положительному полюсу постоянного источника тока.

Количественная характеристика электролиза выражается двумя

законами Фарадея:

1. При электролизе различных химических соединений равные

количества электричества выделяют на электродах массы веществ,

пропорциональные молярным массам их эквивалентов.

2. Масса вещества, выделяющегося на электродах или разлагающегося

при электролизе, прямо пропорциональна количеству

прошедшего через электролит электричества.

Поляризация электродов-это отклонение потенциала электрода от равновестного значения.

Перенапряжение - любое увеличение напряжённости электрического поля, в какой-либо части установки или линии электропередачи, достигающее величины, опасной для состояния изоляции установки.

11. последовательность электродных процессов…

Электролизом называется совокупность процессов, протекающих при прохождении постоянного электрического тока через систему, состоящую из двух электродов и расплава или раствора электролита.Электрод, на котором при электролизе происходит восстановление, называется катодом, а электрод, на котором осуществляется процесс окисления-анодом. Если система, в которой проводят электролиз, содержит различные окислители, то на катоде будет восстанавливаться наиболее активный из них.При Эл-зе также выдел-ся мол-лы воды.Из нескольких возможных окисл-вост. процессов на катоде и аноде идет процесс с меньший затратой энергии.Процесс э-за записв в виде схем NaClаNa++Cl- K(-)Na++e=Na A(+)2Cl-2e =Cl2

12. Законы фарадея…

Количественная характеристика процессов электролиза определяется законами, установленными Фарадеем.При Эл-зе разложение хим-х соед-й равное кол-во Электр-ва выделяется на электродах массы в-в пропорц-ны молярным массам их эквивал-ов nэк(анод)=nэк(катод) q=It I-сила тока А t-время сек закон Фарадея Массы в-ва выдел-ся на Эл-дах или разлагающихся при эл-зе,пропорц-ны кол-ву прошедшего через элект-т электричества mтеор=MэкIt/F V=VMэкIt/F (Vo2=5.6,VСl2=VH2=11.2л/моль) m-масса образовавшегося или подвергшегося превращению вещества; Мэк-его эквивалентная масса г/моль; I- сила тока А;t-время сек; F-постоянная Фарадея (96500 Кл/моль), аоксиды, карбиды,сульфиды,галнды.От индивидуальности Ме,от внешних условий эти реакции протекают по разному чем акт-е Ме тем больше разница в электроотр Ме и Окисл ΔЕ=EOме-EOокисл тем более активней протекает реа-ция.С водой реагируют только Ме гидроксиды которых растворимы в воде и имеют отр-ное значение Электр-го потан-ла.2Na+2H2O=2NaOH+H2 2Fe+3H2O=Fe2O3 +3H2.Со щелочами ме гидрооксиды которых растворимы в щелочах. Zn(OH)2+2NaOH=Na2.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

Если погрузить металлический электрод в раствор, содержащий ионы того же металла, атомы металлической решетки переходят в раствор и образуют гидратированные ионы металла. В то же время гидратированные ионы приобретают электроны на электроде и образуют атомы металла. В результате они становятся частью металлической решетки. В конце концов на электроде устанавливается равновесие

Процесс, идущий в прямом направлении (вправо), представляет собой восстановление, при котором гидратированные ионы металла в растворе отбирают электроны у электрода (рис. 10.16). Это приводит к дефициту электронов на рассматриваемом электроде и, следовательно, к возникновению на нем положительного заряда. Вместе с тем, в обратном процессе, т. е. в процессе окисления, атомы металлической решетки переходят в раствор, образуя гидратированные катионы. Это приводит к образованию избыточных электронов на данном электроде и возникновению на нем отрицательного заряда.

От того, какой из этих двух противоположно направленных процессов преобладает, а следовательно, от того, в какую сторону окажется смещено равновесие, зависит заряд рассматриваемого электрода. Положение равновесия зависит от целого ряда факторов, в том числе от химической природы металла, концентрации ионов в электролите и от температуры. Если равновесие сдвинуто вправо, восстановление

преобладает над окислением и, следовательно, электрод приобретает положительный заряд. Если равновесие сдвинуто влево, окисление преобладает над восстановлением и, следовательно, электрод приобретает отрицательный заряд.

В любом случае происходит разделение зарядов, а значит, возникает разность потенциалов между электродом и ионами в растворе. Электродный потенциал полуэлемента - это электродвижущая сила (э.д.с.) гальванического элемента, в схематической записи которого слева находится водородный электрод, а справа - рассматриваемый электрод (полуэлемент). Для электрода такой гальванический элемент изображается схемой

Электродный потенциал обозначается символом и соответствует реакции восстановления, протекающей на электроде

Повышение температуры полуэлемента приводит к увеличению способности металла растворяться в растворе и образовывать гидратированные ионы металла. Это способствует протеканию обратной реакции и сдвигу равновесия влево. В результате возрастает разность потенциалов между электродом и раствором.

Рис. 10.16. Возникновение электродных потенциалов, электроде, на котором происходит самопроизвольное восстановление ионов металла из раствора, они забирают электроны у электрода, и поэтому электрод приобретает положительный заряд; электроде, на котором происходит самопроизвольное окисление, металла переходят с электрода в раствор, оставляя на электроде избыток электронов, вследствие чего он приобретает отрицательный заряд.

Если же увеличится концентрация гидратированных ионов металла в растворе, равновесие сдвинется вправо. В таком случае разность потенциалов между электродом и раствором уменьшится.

Поскольку электродные потенциалы зависят от температуры, концентрации, а также от давления, то прежде, чем сравнивать их друг с другом, необходимо их стандартизовать, т. е. привести к стандартным условиям. Напомним, что стандартными условиями являются температура 298 К, давление 1 атм и концентрация 1 моль/дм3. Это позволяет определить стандартный электродный потенциал электрода (или полуэлемента) как электродвижущую силу гальванического элемента, в схематической записи которого левым электродом является стандартный водородный электрод, а правым - стандартный рассматриваемый электрод. Для электрода такой гальванический элемент схематически записывается следующим образом:

Стандартный электродный потенциал этого электрода обозначается символом приведенного выше определения следует, что стандартный электродный потенциал (стандартного) водородного электрода равен нулю

Окислительно-восстановительные потенциалы

Электродные потенциалы полуэлементов часто называют окислительно-восстановительными потенциалами. Принято указывать окислительно-восстановительные потенциалы в виде восстановительных потенциалов. Это означает, что равновесные полуреакции должны записываться так, чтобы восстановление было прямой реакцией:

Окислительно-восстановительный потенциал является мерой способности восстановительного процесса к самопроизвольному протеканию.

В табл. 10.5 указаны стандартные окислительно-восстановительные потенциалы для ряда полуреакций. Их значения находятся в пределах от - 3 В до + 3 В. Чем положительнее окислительно-восстановительный потенциал, тем легче должно происходить восстановление. Чем менее положительным или более отрицательным является окислительно-восстановительный потенциал, тем легче должно происходить окисление.