Как происходит теплопередача при конвекции. Теплопередача - это что такое? Виды, способы, расчет теплопередачи. IV. Закрепление полученных знаний на примерах задач

Теория: Теплопроводность - явление передачи внутренней энергии от одной части тела к другой, или от одного тела другому, при их непосредственном контакте.
Чем плотнее молекулы расположены друг к другу, тем лучше теплопроводность тела.(теплопроводность зависит от удельной теплоемкости тела)
Рассмотрим опыт, на металлический стержень с помощью воска прикреплены гвоздики. С одного конца, к стержню поднесли спиртовку, тепло со временем распространяется по стержню, воск плавится и гвоздики падают. Это связано с тем, что молекулы при нагревании начинают двигаться быстрее. Пламя спиртовки нагревает один конец стержня, молекулы с этого конца начинают колебаться быстрее, соударяются с соседними молекулами, и передают им часть своей энергии, поэтому внутренняя энергия передается от одной части к другой.

Конвекция - перенос внутренней энергии со слоями жидкости или газа. Конвекция в твердых телах невозможна.
Излучение - перенос внутренней энергии лучами (электромагнитным излучением).

Задание:

Решение:
Ответ: 2.
1) Турист разжёг костёр на привале в безветренную погоду. Находясь на некотором расстоянии от костра, турист ощущает тепло. Каким способом в основном происходит процесс передачи теплоты от костра к туристу?
1) путём теплопроводности
2) путём конвекции
3) путём излучения
4) путём теплопроводности и конвекции
Решение (спасибо Алене): путём излучения. Так как энергия в данном случае передавалась не теплопроводностью, ведь между человеком и костром находился воздух - плохой проводник тепла. Конвекция здесь тоже не может наблюдаться, по скольку костер находился рядом с человеком, а не под ним следовательно, в данном случае передача энергии происходит путем излучения.
Ответ: 3
Задание: Какое из веществ при нормальных условиях обладает наилучшей теплопроводностью?
1) вода 2) сталь 3) древесина 4) воздух
Решение: Воздух обладает плохой теплопроводностью так как расстояние между молекулами велико. У стали самая маленькая теплоемкость.
Ответ: 2.
Задание огэ по физике (фипи): 1) Учитель провёл следующий опыт. Два одинаковые по размеру стержня (медный расположен слева, а стальной – справа) с закреплёнными на них с помощью парафина гвоздиками нагревались с торца с помощью спиртовки (см. рисунок). При нагревании парафин плавится, и гвоздики падают.


Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.
1) Прогревание металлических стержней происходит в основном способом излучения.
2) Прогревание металлических стержней происходит в основном способом конвекции.
3) Прогревание металлических стержней происходит в основном способом теплопроводности.
4) Плотность меди меньше плотности стали.
5) Теплопроводность меди больше теплопроводности стали
Решение: Прогревание металлических стержней происходит в основном способом теплопроводности, внутренняя энергия переходит от одной части стержня к другой. Теплопроводность меди больше теплопроводности стали, так как медь прогревается быстрее.
Ответ: 35

Задание огэ по физике (фипи): Два одинаковых бруска льда внесли с мороза в тёплое помещение. Первый брусок завернули в шерстяной шарф, а второй оставили открытым. Какой из брусков будет нагреваться быстрее? Ответ поясните.
Решение: Быстрее будет нагреваться второй брусок, шерстяной шарф будет препятствовать передаче внутренней энергии из комнаты в брусок. Шерсть плохо проводит тепло, у нее плохая теплопроводность, благодаря этому брусок льда будет нагреваться медленнее.

Задание огэ по физике (фипи): Горячий чайник какого цвета – чёрного или белого – при прочих равных условиях будет остывать быстрее и почему?
1) белый, так как он интенсивнее поглощает тепловое излучение
2) белый, так как тепловое излучение от него более интенсивное
3) чёрный, так как он интенсивнее поглощает тепловое излучение
4) чёрный, так как тепловое излучение от него более интенсивное
Решение: Черные тела лучше поглощают тепловое излучение, например на солнце быстрее нагреется вода в черной баке, чем в белой. Справедлив и обратный процесс, черные тела остывают быстрее.
Ответ: 4

Задание огэ по физике (фипи): В твёрдых телах теплопередача может осуществляться путем
1) теплопроводности
2) конвекции
3) конвекции и теплопроводности
4) излучения и конвекции
Решение: В твёрдых телах теплопередача может осуществляться только теплопроводностью. В твердом теле молекулы находятся около положения равновесия, и могут только колебаться около него, поэтому конвекция невозможна.
Ответ: 1

Задание огэ по физике (фипи): Из какой кружки – металлической или керамической – легче пить горячий чай, не обжигая губы? Объясните почему.
Решение: Теплопроводность металлической кружки выше, и тепло от горячего чая будет передаваться губам быстрее, и обжигать сильнее.

Теплопроводность - переход энергии дельта Q от более нагретых T1 частей тела к менее нагретым T2.

Закон теплопроводности: теплота дельта Q, переносимая через элемент площади дельта S за время дельта t, пропорциональна градиенту температуры dT/dx, площади дельта S и времени дельта t

Дельта Q = -X * (dT/dx) * дельта S * дельта t

X - коэффициент теплопроводности.

Суть теплопроводности

Теплопроводность происходит из-за движения тепла и взаимодействия его составляющих частиц друг с другом. Процесс теплопроводности приводит к тому, чтобы температура всего тела была одинакова.

Как правило энергия, которая подлежит переносу, определяется в качестве плотности теплового потока, пропорциональному градиенту температуры. Такой коэффициент пропорциональности называется коэффициентом теплопроводности.

Теплопроводность это свойство тел передавать тепло, основанное на теплообмене которое происходит между атомами и молекулами тела.

При теплопроводности не происходит перенос вещества от одного конца тела к другому. У жидкостей теплопроводность небольшая, исключение состовляет ртуть и расплавленные металлы.

Все это из-за того что молекулы расположены далеко друг от друга в отличии от твердых тел. У газов теплопроводность еще меньше т.к. его молекулы находятся на еще большем расстоянии, чем у жидкостей.

Плохой теплопроводностью обладает шерсть, волосы, бумага. Это связано с тем, что между волокнами этих веществ воздух. Теплопроводность у разных веществ различна

Дома строят из кирпича и бревен, потому что они обладают плохой теплопроводностью и могут сохранить прохладу или тепло в помещении. Для сковородок делают пластмассовые ручки для того, чтобы люди не обжигались, потому что они обладают плохой теплопроводностью.

Суть конвекции

Конвекция - еще один вид теплопередачи, при которой энергия переноситься самими струями жидкостей и газа.

Пример: в отапливаемой комнате из за конвенции теплый воздух поднимается вверх, а холодный опускается вниз.

Тепловой поток Q - колличество теплоты W, ДЖ проходящие за время Т,С через данную поверхность в направлении нормали к ней

Если колличество переданной теплоты W отнести к площади поверхности F и времени Т то получим величину:

Плотность теплового потока измеряется в Вт/м2

Существует два вида конвекции - естественная и вынужденная.

К естественной конвекции относится нагревание помещения, нагревание тела во время жары (естественным путем).

К вынужденной конвекции относится мешание чая ложкой, использование вентилятора, что бы охладить помещение (неестественным путем)

Конвекция не происходит если нагревать жидкости сверху (правильно снизу), потому что нагретые слои не могут опуститься ниже холодных т.к. они более тяжелее.

Теплопередача - это один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы.

Существует 3 вида теплопередачи:

Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними.
Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому.

Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене.
Это является частным случаем закона сохранения энергии.

ИНТЕРЕСНО

Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма!

Теплопроводность - это перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела.
Не сопровождается переносом вещества!

Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов.
Теплопроводность различных веществ разная.
Металлы обладают самой высокой теплопроводностью,

причем у разных металлов теплопроводность отличается.

Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости.

При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.
Интересно, что можно было бы поднести руку почти вплотную к пламени, например, газовой горелки (температура больше 1000 градусов) и не обжечь ее, если бы …

А что если бы?

Газ, как правило, очень плохой проводник тепла, поэтому достаточно было бы лишь небольшой прослойки воздуха между рукой и пламенем. Но!
Но существует такое явление, как конвекция в газах, поэтому вблизи пламени руку сильно жжет.

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

Знаешь ли ты, что...

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
Это не сказка, не фантастика!
Такой проект реально разработан и испытан!

Итальянские ученые изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Ученые обещают, что летом в ней не будет жарко, а зимой – холодно, поскольку она сшита из специальных материалов. Подобные материалы уже используются при космических полетах.

В старых пулеметах "Максим" нагревание воды предохраняло оружие от расплавления.

На кухне, поднимая посуду, наполненную горячей жидкостью, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все прмежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной - водой. Смотри, не обожгись!

Огонь в решете

Явление, о котором рассказано ниже демонстрирует свойство металлов хорошо проводить тепло.
Если изготовить сетку из проволоки, обеспечив хорошее соединение металла в местах перекрещивания проволоки, и поместить ее над газовой горелкой, то можно при включенном вентиле поджечь газ над сеткой, в то время как под сеткой он гореть не будет. А если зажечь газ под сеткой, то наверх через сетку огонь « не просочится»!

В те времена, когда еще не было электрических шахтерских лампочек, пользовались лампой Дэви.
Это была свеча, «посаженная» в металлическую клетку. И даже, если шахта наполнялась легковоспламеняющимися газами, лампа Дэви была безопасна и не вызывала взрыва - пламя не выходило за пределы лампы,благодаря металлической сетке.

Положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало - холоднее.
Почему?
Ведь температура окружающего воздуха одинаковая!
Стекло - хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет "отбирать" от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет, нагреваясь, "отбирать" тепло у руки, но медленнее, поэтому и покажется теплее.


ДОМАШНИЕ ОПЫТЫ

Оберните толстый гвоздь или металлический стержень полоской бумаги в один слой. Подержите над пламенем свечи до момента возгорания, засеките время. Объясните, почему бумага загорелась не сразу.

Используйте свои руки как термодатчики – обследуйте окружающие вас предметы. Найдите самые холодные на ощупь, сделайте вывод об их теплопроводности. По своим ощущениям составьте список веществ, обладающих разной теплопроводностью, от самой хорошей до самой плохой.

Подберите ложки из разных материалов (алюминиевую, мельхиоровую, стальную, деревянную и т.д.). Опустите их наполовину в сосуд с горячей водой. Через 1–2 мин проверьте, одинаково ли нагрелись их ручки. Проанализируйте результат.

Приготовьте три одинаковых кусочка льда, один из них заверните в фольгу, второй – в бумагу, третий– в вату и оставьте на блюдцах в комнате. Определите время полного таяния. Объясните разницу.

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч,затем проверьте сохранность льда. Объясните наблюдаемое состояние. Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.


ЗАДАЧИ ДЛЯ УМЕЮЩИХ ДУМАТЬ

(или " покумекаем"?)

1. Какая почва прогревается солнцем быстрее: влажная или сухая? Почему?

2. Почему толстый человек в холодной воде меньше мерзнет, чем худой?

3. Человек не чувствует прохлады на воздухе при температуре 20 градусов Цельсия, но в воде мерзнет при температуре 25 градусов Цельсия. Почему?

4. Если зимой к замерзшему стеклу(покрытому инеем) трамвая или автобуса приложить на одинаковое время палец, а другим пальцем прижать монету, то площадь оттаивания под монетой окажется больше.
Почему?

Лекция 11. Способы переноса теплоты. Температурное поле. Теплопроводность. Конвекция. Излучение. Теплообмен. Теплопередача.

1. Латыпов Р.Ш., Шарафиев Р.Г. Техническая термодинамика и энерготехнология химических производств.-М.:Энергоатомиздат, 1998.-344 с.

2. Баскаков А.П. Теплотехника.-М.:Энергоатомиздат, 1991.-244 с.

3. Алабовский А.Н., Константинов С.М., Недужий А.Н. Теплотехника.-Киев: Выща Школа, Головное издательство, 1986.-255 с.

4. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. Справочник.-М.: Издательство МЭИ, 1994.- 168 с.

5. Лариков Н.Н. Теплотехника: Учебник для вузов. -3-е изд., перераб. и дополн.-М.; Стройиздат, 1985 -432 с.ил.

Лекция 11. Способы переноса теплоты. Температурное поле. Теплопроводность. Конвекция. Излучение. Теплообмен. Теплопередача.

Теплота - кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже). Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

До конца 18 в. теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом – это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика.

Теплопередача – это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

Теплопередача – это теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними. Теплопередача включает в себя теплоотдачу от более горячей жидкости к стенке, теплопроводность в стенке, теплоотдачу от стенки к более холодной подвижной среде. Интенсивность передачи теплоты при теплопередаче характеризуется коэффициентом теплопередачи k, численно равным количеству теплоты, которое передаётся через единицу поверхности стенки в единицу времени при разности температур между жидкостями в 1 К; размерность k - вт/ (м 2 ․К) [ккал/м 2 ․°С)]. Величина R, обратная коэффициенту теплопередачи, называется полным термическим сопротивлением. Например, R однослойной стенки

где α 1 и α 2 - коэффициенты теплоотдачи от горячей жидкости к поверхности стенки и от поверхности стенки к холодной жидкости; δ - толщина стенки; λ - коэффициент теплопроводности.

Существуют три основных вида теплопередачи : теплопроводность, конвекция и лучистый теплообмен.

Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное). Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ /Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м 2) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(мDК)]. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид:

где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье ; знак «минус» в нем указывает на то, что теплотапередается в направлении, обратном градиенту температуры.Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну извеличин – коэффициент теплопроводности, площадь или градиент температуры. Дляздания в зимних условиях последние величины практически постоянны, а поэтомудля поддержания в помещении нужной температуры остается уменьшатьтеплопроводность стен, т.е. улучшать их теплоизоляцию.

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества. Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.



Конвекция. Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха. Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона

q = hA (T W - T ¥),

где q – тепловой поток (измеряемый в ваттах), A – площадь поверхности источника тепла (в м 2), T W и T ¥ – температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м 2 хК). Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность – это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные. Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса. Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.

Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен – отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение – это один из видов электромагнитного излучения. Другие его виды – радиоволновое, ультрафиолетовое и гамма-излучения – возникают в отсутствие разности температур. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана

где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт), A – площадь поверхности излучающего тела (в м 2), а T 1 и T 2 – температуры (в кельвинах) излучающего тела иокружения, поглощающего это излучение. Коэффициент s называетсяпостоянной Стефана – Больцмана и равен (5,66961 х 0,00096)х10 –8 Вт/(м 2 DК 4).

Представленный закон теплового излучения справедлив лишь для идеального излучателя – так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана – Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м 2 . Солнечная энергия – источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.

Определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже). Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

До конца 18 в. теплоту считали материальной субстанцией , полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом - это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика.

Теплопередача - это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

где, как и ранее, q - тепловой поток (в джоулях в секунду, т.е. в Вт), A - площадь поверхности излучающего тела (в м 2), а T 1 и T 2 - температуры (в кельвинах) излучающего тела иокружения, поглощающего это излучение. Коэффициент s называетсяпостоянной Стефана - Больцмана и равен (5,66961 х 0,00096)х10 -8 Вт/(м 2 DК 4).

Представленный закон теплового излучения справедлив лишь для идеального излучателя - так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана - Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей - это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце ; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м 2 . Солнечная энергия - источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.