Скорость, Вектор скорости и траектория, Сложение скоростей. Средняя векторная скорость: графическая интерпретация Вектор средней линейной скорости определяется выражением

Пятиминутка: Закон движения точки задан уравнениями

x=2м/с*t; y=2м/с*t-1м/с 2 *t 2

Найти координаты точки для моментов времени 0, 0.5с, 1с, 1.5с, 2с. Отметить положение точки в системе координат X-Y, провести траекторию, определить скорость точки (|v|) как функцию времени.

Из формулы (1.3) вытекает, что скорость любого движения можно представить как результат сложения скоростей трех прямолинейных движений вдоль координатных осей X,Y и Z ,т.е. любое сложное движение можно представить как сумму прямолинейных движений (принцип суперпозиции движений). Используя данный принцип, определим, к примеру, величину первой космической скорости, т.е. такой скорости, параллельной земной поверхности, которую должно иметь тело, чтобы оно никогда не упало на Землю. Задача может быть решена следующим образом. Движение тела вдоль земной поверхности можно представить, как сумму двух движений: равномерного горизонтального движения со скоростью бросания v и свободного падения тела к поверхности Земли с ускорением g (ускорением свободного падения).

За малый промежуток времени Dt тело пройдет, двигаясь перпендикулярно земному радиусу, из точки А в точку В. (см.рис.1.9). При этом его радиус-вектор повернется на некоторый малый угол β. За это же за время, скорость тела получит приращение ∆v=g∆t вдоль земного радиуса, т.е. вектор скорости также повернется на некоторый угол. Для того, чтобы тело продолжало двигаться вдоль земной поверхности этот угол должен совпасть с углом поворота радиус-вектора тела. Следовательно, угол поворота вектора скорости - это также угол β. Приравняем тангенс β, найденный из треугольника перемещения и треугольника скорости:

(1.7)

После этого выразим величину скорости:

Как видно из вывода выражения для первой космической скорости, любое тело, двигаясь с этой скоростью вокруг Земли, изменяет направление скорости за счет постоянного падения на землю. и это изменение приводит к тому, что вектор скорости оказывается всегда параллелен земной поверхности.

Движение с неизменным вектором скорости называется равномерным. В общем случае скорость изменяется как по величине, так и по направлению.

Для характеристики быстроты изменения скорости вводится понятиеускорения. Ускорением называется отношение приращения скорости за бесконечно малый интервал времени к этому интервалу, т.е. производная от скорости по времени

Вектор ускорения можно также разложить по координатным осям:

Модуль вектора ускорения равен:

. (1.11)

Подставив в (1.9) выражение скорости как производную от радиус-вектора тела, получим выражение ускорения в виде второй производной от радиус-вектора по времени:

Пример . Радиус-вектор движущейся точки задан следующим выражением:

Определить характер движения, скорость и ускорение.

Для определения характера движения вычислим модуль радиус-вектора:

Таким образом, при движении точки |r|-const. Можно заключить, что это движение по окружности радиуса R с центром в начале координат.

Вычислим скорость движения точки:

Модуль скорости:

Модуль скорости также не изменяется во времени, следовательно, - это движение по окружности с постоянной по модулю скоростью.

Определим ускорение точки:

Сравнив формулы для радиус-вектора точки и ее ускорения, видим, что они выражают противоположно направленные векторы. Если радиус-вектор направлен из центра траектории к точке, то вектор ускорения направлен от точки в центр траектории. При этом модуль ускорения не изменяется во времени и равен |a|=Rω 2 . Вычислим скалярное произведение векторов скорости и ускорения:

Следовательно, в данном примере векторы скорости и ускорения перпендикулярны друг другу.

В общем случае векторы скорости и ускорения образуют какой-то угол. При этом удобно разложить вектор ускорения на две составляющие. Одна из них - параллельна (или антипараллельна) вектору скорости и называется тангенциальной составляющей ускорения. Другая - перпендикулярна вектору скорости, она называется нормальной составляющей ускорения. Тангенциальная составляющая ускорения выражает изменение модуля скорости, а нормальная составляющая - изменение направления скорости. В рассмотренном выше примере тангенциальная составляющего ускорения равна нулю. Вследствие этого скорость изменяется только по направлению, модуль ее остается неизменным.

В общем случае модуль полного ускорения определяется по теореме Пифагора:

1.3. Кинематика вращательного движения, вектор угловой скорости, связь линейно и угловой скорости точки, вектор углового ускорения .

Движение по окружности является частным, но весьма распространенным типом движения. Для него вводятся такие дополнительные кинематические характеристики как угловая скорость - ω и угловое ускорение - ε .

Величина угловой скорости w определяется как отношение приращения угла - dj, на который повернется радиус-вектор точки за время dt, к этому интервалу времени т.е.

Это вполне естественное определение. Однако, согласно (1.18), и угол поворота и угловая скорость определились как векторные величины. В будущем мы увидим, что такое определение угловых величин оказывается очень удобным и продуктивным. Направление вектора угла поворота определяется правилом правого винта: если правый винт поворачивать в направлении положительного приращения угла, то поступательное движение винта укажет направление вектора приращения угла .

Похожее определение уже встречалось сегодня при определении векторного произведения. Действительно, если выразить приращение радиус-вектора точки, движущейся по окружности, при ее повороте на угол ∆φ, то получим следующую формулу

(1.19)

Вектор линейной скорости при движении точки по окружности с угловой скорость ω определится на основе (1.19)

Термин «скорость» используют в науке и в широком смысле, понимая под ним быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени , но также в пространстве или любой другой). Так, например, говорят об угловой скорости , скорости изменения температуры , скорости химической реакции , групповой скорости , скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.

Расширениями понятия скорости являются четырёхмерная скорость , или скорость в релятивистской механике обобщённых координатах .

Скорость точки в классической механике

v → = d r → d t ≡ v τ τ → , {\displaystyle {\vec {v}}={\mathrm {d} {\vec {r}} \over \mathrm {d} t}\equiv v_{\tau }{\vec {\tau }},}

где τ → ≡ d r → / d s {\displaystyle {\vec {\tau }}\equiv \mathrm {d} {\vec {r}}/\mathrm {d} s} - единичный вектор касательной , проходящей через текущую точку траектории (он направлен в сторону возрастания дуговой координаты s {\displaystyle s} движущейся точки), а v τ ≡ s ˙ {\displaystyle v_{\tau }\equiv {\dot {s}}} - проекция вектора скорости на направление упомянутого единичного вектора, равная производной дуговой координаты по времени и именуемая алгебраической скоростью точки. В соответствии с приведёнными формулами, вектор скорости точки всегда направлен вдоль касательной, а алгебраическая скорость точки может отличаться от модуля v {\displaystyle v} этого вектора лишь знаком . При этом:

Не следует смешивать дуговую координату и пройденный точкой путь . Путь , пройденный точкой за промежуток времени от до t {\displaystyle t} , может быть найден так:

s ~ = ∫ t 0 t | s ˙ | d t ; {\displaystyle {\tilde {s}}=\int _{t_{0}}^{t}|{\dot {s}}|\,\mathrm {d} t\;;}

лишь в случае, когда алгебраическая скорость точки всё время неотрицательна, связь пути и дуговой координаты достаточно проста: путь совпадает с приращением дуговой координаты за время от t 0 {\displaystyle t_{0}} до t {\displaystyle t} (если же при этом начало отсчёта дуговой координаты совпадает с начальным положением движущейся точки, то s ~ {\displaystyle {\tilde {s}}} будет совпадать с s {\displaystyle s} ).

Если алгебраическая скорость точки не меняется с течением времени (или, что то же самое, модуль скорости постоянен), то движение точки называется равномерным (алгебраическое касательное ускорение s ¨ {\displaystyle {\ddot {s}}} при этом тождественно равно нулю).

Предположим, что s ¨ ⩾ 0 {\displaystyle {\ddot {s}}\geqslant {0}} . Тогда при равномерном движении скорость точки (алгебраическая) будет равна отношению пройденного пути s ~ {\displaystyle {\tilde {s}}} к промежутку времени t − t 0 {\displaystyle t-t_{0}} , за который этот путь был пройден:

s ˙ c p = s ~ t − t 0 . {\displaystyle {\dot {s}}^{\,\mathrm {cp} }={{\tilde {s}} \over t-t_{0}}\;.}

В общем же случае аналогичные отношения

v → c p = r → − r → 0 t − t 0 ≡ Δ r → Δ t {\displaystyle {\vec {v}}^{\,\,\mathrm {cp} }={{\vec {r}}-{\vec {r}}_{0} \over t-t_{0}}\equiv {\Delta {\vec {r}} \over \Delta {t}}} и s ˙ c p = s − s 0 t − t 0 ≡ Δ s Δ t {\displaystyle {\dot {s}}^{\,\mathrm {cp} }={s-s_{0} \over t-t_{0}}\equiv {\Delta {s} \over \Delta {t}}}

определяют соответственно среднюю скорость точки и её среднюю алгебраическую скорость ; если термином «средняя скорость » пользуются, то о величинах и s ˙ {\displaystyle {\dot {s}}} говорят (чтобы избежать путаницы) как о мгновенных скоростях.

Иллюстрация средней и мгновенной скорости

Не следует смешивать два введённых выше понятия средней скорости. Во-первых, v → c p {\displaystyle {\vec {v}}^{\,\,\mathrm {cp} }} - вектор, а s ˙ c p {\displaystyle {\dot {s}}^{\,\mathrm {cp} }} - скаляр. Во-вторых, эти величины могут не совпадать по модулю. Так, пусть точка движется движется по винтовой линии и за время своего движения проходит один виток; тогда модуль средней скорости этой точки будет равен отношению шага винтовой линии (то есть расстояния между её витками) ко времени движения, а модуль средней алгебраической скорости - отношению длины витка ко времени движения.

Для тела протяжённых размеров понятие «скорости» (тела как такового, а не одной из его точек) не может быть определено; исключение составляет случай мгновенно-поступательного движения. Говорят, что абсолютно твёрдое тело совершает мгновенно-поступательное движение , если в данный момент времени скорости всех составляющих его точек равны ; тогда можно, разумеется, положить скорость тела равной скорости любой из его точек. Так, например, равны скорости всех точек кабинки колеса обозрения (если, конечно, пренебречь колебаниями кабинки).

В общем же случае скорости точек, образующих твёрдое тело, не равны между собой. Так, например, для катящегося без проскальзывания колеса модули скоростей точек на ободе относительно дороги принимают значения от нуля (в точке касания с дорогой) до удвоенного значения скорости центра колеса (в точке, диаметрально противоположной точке касания). Распределение скоростей точек абсолютно твёрдого тела описывается кинематической формулой Эйлера .

В декартовых координатах

v = v x i + v y j + v z k . {\displaystyle \mathbf {v} =v_{x}\mathbf {i} +v_{y}\mathbf {j} +v_{z}\mathbf {k} .}

В то же время r = x i + y j + z k , {\displaystyle \mathbf {r} =x\mathbf {i} +y\mathbf {j} +z\mathbf {k} ,} поэтому

v = d (x i + y j + z k) d t = d x d t i + d y d t j + d z d t k . {\displaystyle \mathbf {v} ={\frac {\mathrm {d} (x\mathbf {i} +y\mathbf {j} +z\mathbf {k})}{\mathrm {d} t}}={\frac {\mathrm {d} x}{\mathrm {d} t}}\mathbf {i} +{\frac {\mathrm {d} y}{\mathrm {d} t}}\mathbf {j} +{\frac {\mathrm {d} z}{\mathrm {d} t}}\mathbf {k} .}

Таким образом, координаты вектора скорости - это скорости изменения соответствующей координаты материальной точки :

v x = d x d t ; v y = d y d t ; v z = d z d t . {\displaystyle v_{x}={\frac {\mathrm {d} x}{\mathrm {d} t}};v_{y}={\frac {\mathrm {d} y}{\mathrm {d} t}};v_{z}={\frac {\mathrm {d} z}{\mathrm {d} t}}.}

В цилиндрических координатах

Скорость в полярных координатах

v R = d R d t ; v φ = R d φ d t ; v z = d z d t . {\displaystyle v_{R}={\frac {\mathrm {d} R}{\mathrm {d} t}};v_{\varphi }=R{\frac {\mathrm {d} \varphi }{\mathrm {d} t}};v_{z}={\frac {\mathrm {d} z}{\mathrm {d} t}}.}

V φ {\displaystyle v_{\varphi }} носит название поперечной скорости , v R {\displaystyle v_{R}} - радиальной .

В сферических координатах

v R = d R d t ; v φ = R sin ⁡ θ d φ d t ; v θ = R d θ d t . {\displaystyle v_{R}={\frac {\mathrm {d} R}{\mathrm {d} t}};v_{\varphi }=R\sin \theta {\frac {\mathrm {d} \varphi }{\mathrm {d} t}};v_{\theta }=R{\frac {\mathrm {d} \theta }{\mathrm {d} t}}.}

Обобщения

Обобщениями понятия скорости является четырёхмерная скорость , или скорость в релятивистской механике , и обобщённая скорость, или скорость в обобщённых координатах .

Четырёхмерная скорость

v 0 = c 1 − v 2 c 2 ; v 1 = v x 1 − v 2 c 2 ; v 2 = v y 1 − v 2 c 2 ; v 3 = v z 1 − v 2 c 2 . {\displaystyle v_{0}={\frac {c}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{1}={\frac {v_{x}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{2}={\frac {v_{y}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{3}={\frac {v_{z}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}

Четырёхмерный вектор скорости является времениподобным вектором, то есть лежит внутри светового конуса .

В обобщённых координатах

Следует различать координатную и физическую скорости. При введении криволинейных или обобщённых координат положение тел описывается их зависимостью от времени. Производные от координат тела по времени при этом называются координатными скоростями.

Преобразование скорости

В классической механике Ньютона скорости преобразуются при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея . Если скорость тела в системе отсчёта S {\displaystyle S} была равна v → {\displaystyle {\vec {v}}} , а скорость системы отсчёта S ′ {\displaystyle S"} S {\displaystyle S} равна , то скорость тела при переходе в систему отсчёта S ′ {\displaystyle S"} будет равна

v → ′ = v → − u → . {\displaystyle {\vec {v}}"={\vec {v}}-{\vec {u}}.}

Для скоростей, близких к скорости света преобразования Галилея становятся несправедливы. При переходе из системы S {\displaystyle S} в систему S ′ {\displaystyle S"} необходимо использовать преобразования Лоренца для скоростей :

v x ′ = v x − u 1 − (v x u) / c 2 , v y ′ = v y 1 − u 2 c 2 1 − (v x u) / c 2 , v z ′ = v z 1 − u 2 c 2 1 − (v x u) / c 2 , {\displaystyle v_{x}"={\frac {v_{x}-u}{1-(v_{x}u)/c^{2}}},v_{y}"={\frac {v_{y}{\sqrt {1-{\frac {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},v_{z}"={\frac {v_{z}{\sqrt {1-{\frac {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},}

в предположении, что скорость u → {\displaystyle {\vec {u}}} направлена вдоль оси x {\displaystyle x} системы S {\displaystyle S} . Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Связанные понятия

Ряд понятий классической механики выражаются через скорость.

p μ = m U μ , {\displaystyle p^{\mu }=m\,U^{\mu }\!,}

где U μ {\displaystyle U^{\mu }} - обобщённая четырёхмерная скорость.

T = m v 2 2 + I ω → 2 2 , {\displaystyle T={\frac {mv^{2}}{2}}+{\frac {{\mathcal {I}}{\vec {\omega }}^{2}}{2}},}

где m {\displaystyle \ m} - масса тела, v {\displaystyle \ v} - скорость центра масс тела, I {\displaystyle {\mathcal {I}}} - момент инерции тела, ω → {\displaystyle {\vec {\omega }}} - угловая скорость тела.

Изменение скорости по времени характеризуется ускорением . Ускорение отражает изменение скорости как по величине (тангенциальное ускорение), так и по направлению (центростремительное ускорение) :

a → = d v → d t = a → τ + a → n = d | v → | d t e → τ + v 2 r e → n , {\displaystyle {\vec {a}}={\frac {\mathrm {d} {\vec {v}}}{\mathrm {d} t}}={\vec {a}}_{\tau }+{\vec {a}}_{n}={\frac {\mathrm {d} |{\vec {v}}|}{\mathrm {d} t}}{\vec {e}}_{\tau }+{v^{2} \over r}{\vec {e}}_{n},}

где r {\displaystyle \ r} - радиус кривизны траектории точки.

В релятивистской механике угол между касательной к мировой линии частицы и осью времени в базовой системе отсчёта носит название быстроты (обозначается θ {\displaystyle \theta } ). Быстрота выражается формулой:

θ = c A r t h v c = c 2 ln ⁡ 1 + v c 1 − v c , {\displaystyle \theta =c\,\mathrm {Arth} \,{\frac {v}{c}}={\frac {c}{2}}\ln {\frac {1+{\dfrac {v}{c}}}{1-{\dfrac {v}{c}}}},}

где A r t h x {\displaystyle \mathrm {Arth} \,x} - ареатангенс , или гиперболический арктангенс. Быстрота стремится к бесконечности когда скорость стремится к скорости света. В отличие от скорости, для которой необходимо пользоваться преобразованиями Лоренца, быстрота аддитивна, то есть

θ ′ = θ + θ 0 , {\displaystyle \theta "=\theta +\theta _{0},}

где θ 0 {\displaystyle \theta _{0}} - быстрота системы отсчёта S ′ {\displaystyle S"} относительно системы отсчёта S {\displaystyle S} .

Некоторые скорости

Космические скорости

Скорость света

Скорость гравитации

  • Радианы в секунду , принята в системах СИ и СГС . Физическая размерность 1/с.
  • Обороты в секунду (в технике)
  • градусы в секунду, грады в секунду

Соотношения между единицами скорости

  • 1 м/с = 3,6 км/ч
  • 1 узел = 1,852 км/ч = 0,514 м/c
  • Мах 1 ~ 330 м/c ~ 1200 км/ч (зависит от условий, в которых находится воздух)
  • c = 299 792 458 м/c

Исторический очерк

Две стадии движения брошенного тела по теории Авиценны: отрезок АВ - период «насильственного стремления», отрезок ВС - период «естественного стремления» (падение вертикально вниз)

В 1328 году увидел свет «Трактат о пропорциях или о пропорциях скоростей при движении» Томаса Брадвардина , в котором он нашёл несоответствие в физике Аристотеля и связи скорости с действующими силами. Брадвардин заметил, что по словесной формуле Аристотеля если движущая сила равна сопротивлению, то скорость равна 1, в то время как она должна быть равна 0. Он также представил свою формулу изменения скорости, которая хоть и была не обоснованна с физической точки зрения, но представляла собой первую функциональную зависимость скорости от причин движения. Брадвардин называл скорость «количеством движения» . Уильям Хейтсбери , в трактате «О местном движении» ввёл понятие мгновенной скорости. В 1330-1340 годах он и другие ученики Брадвардина доказали так называемое «мертонское правило», которое означает равенство пути при равноускоренном движении и равномерном движении со средней скоростью .

Всякая широта движения, униформно приобретаемая или теряемая, соответствует своему среднему градусу, так что столько же в точности будет пройдено благодаря этой приобретаемой широте, сколько и благодаря среднему градусу, если бы тело двигалось всё время с этим средним градусом.

В 1609 году в работе «Новая астрономия» Кеплер сформулировал закон площадей, согласно которому секторная скорость планеты (площадь, описываемая отрезком планета - Солнце, за единицу времени) постоянна . В «Началах философии» Декарт сформулировал закон сохранения количества движения , которое в его понимании есть произведение количества материи на скорость , при этом Декарт не принимал во внимание тот факт, что количество движения имеет не только величину, но и направление . В дальнейшем понятие «количество движения» развивал Гук , который понимал его как «степень скорости, присущей в определённом количестве вещества» . Гюйгенс , Валлис и Рен добавили к этому определению направление. В таком виде во второй половине XVII века количество движения стало важным понятием в динамике, в частности в работах

В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению , неравномерное движение - это движение с неодинаковой скоростью, по любой траектории . В чем особенность равноускоренного движения? Это неравномерное движение, но которое "равно ускоряется" . Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово "равно", получим равное увеличение скорости. А как понимать "равное увеличение скорости", как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.


Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую - 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью - замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

Равноускоренное движение - это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

Ускорение тела

Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение - это физическая векторная величина , численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй - 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды - 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.


Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Формула записана не в векторном виде, поэтому знак "+" пишем, когда тело ускоряется, знак "-" - когда замедляется.

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках


На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.


На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на "-2м/с". 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком "минус"!!!

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах


Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

1) Что такое равноускоренное движение;
2) Что характеризует ускорение;
3) Ускорение - вектор. Если тело разгоняется ускорение положительное, если замедляется - ускорение отрицательное;
3) Направление вектора ускорения;
4) Формулы, единицы измерения в СИ

Упражнения

Два поезда идут навстречу друг другу: один - ускоренно на север, другой - замедленно на юг. Как направлены ускорения поездов?

Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго - противоположное движению (он замедляется).

> Средняя векторная скорость: графическая интерпретация

Средняя скорость по векторной величине: определение, как найти среднюю скорость движения тела, единица измерения векторной скорости, формула и вычисление.

Средняя векторная скорость – изменение положения во время движения.

Задача обучения

  • Разобраться в постоянной скорости и физической.

Основные пункты

  • Средняя скорость высчитывается через определение общего перемещения, поделенного на время движения.
  • Средняя скорость ничего не говорит о том, что происходит с объектом между двумя точками.
  • Средняя векторная скорость отличается от скалярной тем, что учитывает направление движения и общее изменение положения.

Термин

Векторная скорость – величина, обозначающая скорость изменения положения по времени или направлении.

Если говорить о быте, то векторную и скалярную скорость именуют просто скоростью и не делают никаких отличий. Но в физике они явно заметны. Скалярная скорость обладает лишь величиной, а векторная средняя скорость добавляет к величине направление.

Средняя скалярная скорость высчитывается как дистанция, пройденная за общее время движения. А векторная – изменение положения в течении всего времени перемещения.

Vсредняя = Δx/t

Единицей СИ скорости выступает м/с, но могут быть и км/ч, миль/ч, см/с. Допустим, что пассажир в поезде потратил 5 с, чтобы сместиться на -4м (отрицательный знак указывает на движение назад). Тогда средняя векторная скорость:

V = Δx/t = -4м/5с = -0.8 м/с.

Однако эти данные ничего не говорят о том, что случилось с объектом между двумя точками. У нас не получится выяснить, остановился он или же вернулся обратно. Чтобы узнать детали, придется вникать в меньшие временные промежутки.

Давайте рассмотрим еще один пример, чтобы провести четкую границу между векторной и скалярной скоростями. Допустим вы очутились в маленьком прямоугольнике. Вы движетесь на 3 м севернее, 4 м восточнее, 3 м южнее и на 4 м западнее. На все это ушло полминуты. Вычисление скалярной начнется с охвата полной дистанции (3 + 4 + 3 + 4 = 14 м), а отсюда – 14/30 = 0.47 м/с.

Однако векторная реагирует на смещение с течением времени. Вы вернулись на стартовую точку, поэтому смещение = 0. Поэтому средняя векторная скорость – 0 м/с.

(1 оценок, среднее: 5,00 из 5)

Основываясь на определении скорости, мы можем утверждать, что скорость является вектором. Она непосредственно выражается через вектор-перемещения, отнесенный к промежутку времени, и должна обладать всеми свойствами вектора перемещения.

Направление вектора скорости, так же как направление физически малого вектора перемещения, определяется по чертежу траектории. В этом можно наглядно убедиться на простых примерах.

Если к вращающемуся точильному камню прикоснуться железной пластинкой, то снимаемые им опилки приобретут скорость тех точек камня, к которым прикасалась пластинка, и затем улетят в направлении вектора этой скорости. Все точки камня движутся по окружностям. Во время опыта хорошо видно, что отрывающиеся раскаленные частички-опилки уходят по касательным к этим окружностям, указывая направления векторов скоростей отдельных точек вращающегося точильного камня.

Обратите внимание на то, как расположены выходные трубы у кожуха центробежного водяного насоса или у сепаратора для молока. В этих машинах частицы жидкости заставляют двигаться по окружностям и затем дают им возможность выйти в отверстие, расположенное в направлении вектора той скорости, которую они имеют в момент выхода. Направление вектора скорости в этот момент совпадает с направлением касательной к траектории движения частиц жидкости. И выходная труба тоже направлена по этой касательной.

Точно так же обеспечивают выход частиц в современных ускорителях электронов и протонов при ядерных исследованиях.

Итак, мы убедились, что направление вектора скорости определяется по траектории движения тела. Вектор скорости всегда направлен вдоль касательной к траектории в той точке, через которую проходит движущееся тело.

Для того чтобы определить, в какую сторону вдоль касательной направлен вектор скорости и каков его модуль, нужно обратиться к закону движения. Допустим, что закон движения задан графиком, показанным на рис. 1.54. Возьмем приращение длины пути соответствующее малому вектору по которому определяется вектор скорости. Вспомним, что Знак указывает

направление движения по траектории, а следовательно, определяет ориентировку вектора скорости вдоль касательной. Очевидно, что через модуль этого приращения длины пути будет определяться модуль скорости.

Таким образом, модуль вектора скорости и ориентировку вектора скорости вдоль касательной к траектории можно определить из соотношения

Здесь является алгебраической величиной, знак которой указывает, в какую сторону по касательной к траектории направлен вектор скорости.

Итак, мы убедились, что модуль вектора скорости может быть найден по графику закона движения. Отношение определяет угол наклона а касательной на этом графике. Наклон касательной на графике закона движения будет тем больше, чем больше т. е. чем больше в выбранный момент скорость движения.

Еще раз обратим внимание на то, что для полного определения скорости требуется одновременное знание траектории и закона движения. Чертеж траектории позволяет определить направление скорости, а график закона движения - ее модуль и знак.

Если теперь мы обратимся снова к определению механического движения, то убедимся в том, что после введения понятия скорости для полного описания любого движения больше ничего не требуется. Используя понятия радиус-вектора, вектора перемещения, вектора скорости, длины пути, траектории и закона движения, можно получить ответы на все вопросы, связанные с определением особенностей любого движения. Все эти понятия взаимосвязаны друг с другом, причем знание траектории и закона движения позволяет найти любую из этих величин.