Основные структуры химического синапса. Областной университет синапс как функциональный контакт нервной ткани. Нужна помощь по изучению какой-либы темы

Химические синапсы - это преобладающий тип синапсов в мозге млекопитающих. В таких синапсах взаимодействие между нейронами осуществляется с помощью медиатора (нейротрансмиттера) - вещества, выделяющегося из пресинаптического окончания и действующего на постсинаптическую структуру.

Химические синапсы - это самый сложный вид соединений в ЦНС (рис. 3.1). Морфологически он отличается от других форм соединений наличием хорошо выраженной синаптической щели, при этом виде контакта мембраны строго ориентированы или поляризованы в направлении от нейрона к нейрону.

Химический синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки, и постсинаптической, представленной контактирующим участком плазматической мембраны воспринимающей клетки. Между обеими частями имеется синаптическая щель - промежуток шириной 10-50 нм между постсинаптической и пресинап- тической мембранами, края которой укреплены межклеточными контактами. В синаптическом расширении имеются мелкие везикулы, так называемые пресинаптические или синаптические пузырьки , содержащие медиатор (вещество-посредник в передаче возбуждения) либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Рис. 3.1.

Пузырьки (везикулы) размещаются напротив пресинаптической мембраны, что обусловлено их функциональным назначением для высвобождения медиатора в синаптическую щель. Также около пресинаптического пузырька находится большое количество митохондрий (производящих АТФ) и упорядоченные структуры протеиновых волокон. Везикулы имеют различные размеры (от 20 до 150 и более нм) и заполнены химическими веществами, способствующими передаче активности с одной клетки на другую. Одна аксонная терминаль нейрона может содержать несколько типов везикул.

Как правило, из всех окончаний одного нейрона выделяется один и тот же медиатор (правило Дейла). Этот медиатор может подействовать на разные клетки по-разному, в зависимости от их функционального состояния, химизма или степени поляризованности их мембраны. Однако, подчиняясь правилу Дейла, эта пресинаптическая клетка из всех своих аксонных окончаний всегда будет выделять одно и то же химическое вещество. Пузырьки группируются возле уплотненных частей мембраны.

Нервный импульс (возбуждение) с огромной скоростью продвигается по волокну и подходит к синапсу. Этот потенциал действия вызывает деполяризацию мембраны синапса, однако это не приводит к генерации нового возбуждения (потенциала действия), а вызывает открывание специальных ионных каналов. Эти каналы пропускают ионы кальция внутрь синапса. Специальная железа внутренней секреции - паращитовидная (она находится поверх щитовидной) - регулирует содержание кальция в организме. Многие заболевания связаны с нарушением обмена кальция в организме. Например, его недостаток приводит к рахиту у маленьких детей.

Попадая в цитоплазму синаптического окончания, кальций входит в связь с белками, образующими оболочку пузырьков, в которых хранится медиатор. Мембраны синаптических пузырьков сокращаются, выталкивая содержимое в синаптическую щель. Возбуждение (электрический потенциал действия) нейрона в синапсе превращается из электрического импульса в импульс химический. Другими словами, каждое возбуждение нейрона сопровождается выбросом в окончании его аксона порции биологически активного вещества - медиатора. Далее молекулы медиатора связываются с рецепторами (белковыми молекулами), которые находятся на постсинаптической мембране.

Рецептор состоит из двух частей. Одну можно назвать «узнающим центром», другую - «ионным каналом». Если молекулы медиатора заняли определенные места (узнающий центр) на молекуле рецептора, то ионный канал открывается и ионы начинают входить в клетку (ионы натрия) или выходить из клетки (ионы калия).

Т. е. через мембрану протекает ионный ток, который вызывает изменение потенциала на мембране. Этот потенциал получил название возбуждающего постсинаптического потенциала (рис. 3.2).

Рис. 3.2.

Рис. 3.3.

ВПСП - это основной синаптический процесс, обеспечивающий передачу возбуждающих влияний одной клетки на другую. ВПСП отличается от распространяющегося импульса отсутствием рефрактерности, значительной длительностью, способностью суммироваться с другими аналогичными синаптическими процессами, отсутствием способности к активному распространению (рис. 3.3).

Амплитуда потенциала определяется количеством молекул медиатора, связанного рецепторами. Благодаря этой зависимости амплитуда потенциала на мембране нейрона развивается пропорционально количеству открытых каналов.

Синапс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумянейронами или между и получающей сигнал эффекторной клеткой. Служит для передачи между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Структура синапса

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончаниемаксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель - промежуток шириной 10-50нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные .

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче ), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификация синапсов

В зависимости от механизма передачи нервного импульса различают

  • химические;
  • электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм)

Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run ), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность составляет около - 0,5 мс.

Так называемый «принцип Дейла» (один - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

История открытия

  • В 1897 году Шеррингтон сформулировал представление о синапсах.
  • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль.
  • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
  • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие ролинорадреналина в синаптической передаче.
1

Московский Государственный Областной университет




Подготовила Руденко Ксения

Студентка 1 курса П (5,5)


14 Мая 2011


1. Две разновидности синапсов 3

2. Строение химического синапса 4

3. Механизм синаптической передачи. 5

4. Передача возбуждения в нервно-мышечном синапсе 6

5. Передача возбуждения в центральных синапсах 8

7. Функциональное значение и разновидности торможения в ЦНС 9

9. Функциональное значение химических синапсов в переносе информации 10

10. Электрические синапсы 10

Заключение 11

Список литературы 12


Синапс как функциональный контакт нервной ткани. Понятие, строение. Физиология, функции, типы синапсов.

1. Две разновидности синапсов

Синапсом (от греч. синапсис - соединение) называют область функционального соединения одного нейрона с другим или нейрона с эффектором , которым может быть либо мышца, либо внешнесекреторная железа. Это понятие ввёл в обращение на рубеже XIX - XX веков британский физиолог Чарльз С. Шеррингтон (Sherrington Ch.) для обозначения специализированных контактных зон, обеспечивающих связь между нейронами.

В 1921 году Отто Лёви (Loewi O.), сотрудник института фармакологии в Граце (Австрия), с помощью простых по исполнению и остроумных по замыслу экспериментов показал, что влияние блуждающих нервов на сердце обусловлено химическим веществом - ацетилхолином. Английский фармаколог Генри Дейл (Dale H.) сумел доказать, что ацетилхолин образуется в синапсах различных структур нервной системы. В 1936 году Лёви и Дейл получили Нобелевскую премию за открытие химической природы передачи нервной энергии.

Среднестатистический нейрон образует более тысячи синапсов с другими клетками мозга, всего же в мозгу человека приблизительно 10 14 синапсов. Если считать их со скоростью 1000 штук в секунду, то лишь через несколько тысяч лет можно будет подвести итог. В подавляющем большинстве синапсов для передачи информации от одной клетки к другой используются химические посредники - медиаторы или нейротрансмиттеры. Но, наряду с химическими синапсами существуют электрические, в которых сигналы передаются без использования медиаторов.

В химических синапсах взаимодействующие клетки разделены заполненной внеклеточной жидкостью синаптической щелью шириной 20-40 нм. Для того, чтобы передать сигнал, пресинаптический нейрон выделяет в эту щель медиатор, который диффундирует к постсинаптической клетке и присоединяется к специфическим рецепторам её мембраны. Соединение медиатора с рецептором приводит к открытию (но в некоторых случаях - к закрытию) хемозависимых ионных каналов. Через открывшиеся каналы проходят ионы и этот ионный ток изменяет значение мембранного потенциала покоя постсинаптической клетки. Последовательность событий позволяет разделить синаптический перенос на два этапа: медиаторный и рецепторный. Передача информации через химические синапсы происходит гораздо медленней, чем проведение возбуждения по аксонам, и занимает от 0,3 до нескольких мс - в связи с этим получил распространение термин синаптическая задержка.

В электрических синапсах расстояние между взаимодействующими нейронами очень мало - приблизительно 3-4 нм. В них пресинаптический нейрон соединяется с постсинаптической клеткой особым видом ионных каналов, пересекающих синаптическую щель. По этим каналам локальный электрический ток может распространяться от одной клетки к другой.

Синапсы классифицируются:


  1. По местоположению выделяют:

    1. нервно-мышечные синапсы;

    2. нейронейрональные, которые в свою очередь делятся на:

      1. аксосоматические,

      2. аксоаксональные,

      3. аксодендритические,

      4. дендросоматические.

  2. По характеру действия на воспринимающую структуру синапсы могут быть:

    1. возбуждающими и

    2. тормозящими.

  3. По способу передачи сигнала синапсы делятся на:

    1. химические,

    2. электрические,

    3. смешанные - пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом , в этих синапсах химическая передача служит необходимым усиливающим механизмом.
В синапсе различают:

1) пресинаптическая мембрана

2) синаптическая щель

3) постсинаптическая мембрана.

2. Строение химического синапса

В структуре химического синапса выделяют пресинаптическую мембрану, постсинаптическую мембрану и синаптическую щель (10-50 нм). В синаптическом окончании содержится много митохондрий, а также субмикроскопических структур - синаптических пузырьков с медиатором. Диаметр каждого составляет около 50 нм. В нем содержится от 4000 до 20000 молекул медиатора (например , ацетилхолина). Синаптические пузырьки имеют отрицательный заряд и отталкиваются от клеточной мембраны.

Рисунок 1: Фракции медиатора в синапсе
Выделение медиатора происходит при их слиянии с мембраной. В результате он выделяется порционно - квантами . Медиатор образуется в теле нервной клетки, путем аксонного транспорта переносится к нервному окончанию. Частично он может образовываться и в нервном окончании (ресинтез медиатора). В нейроне содержится несколько фракций медиатора: стационарная, депонированная и немедленно доступная (составляет лишь 15-20% от общего количества медиатора), рис. 1.

Субсинаптическая (постсинаптическая) мембрана толще, чем мембрана эфферентной клетки. Она имеет складки , которые делают ее поверхность больше, чем пресинаптической. На мембране практически нет потенциалзависимых ионных каналов, но высокая плотность рецепторуправляемых. Если при взаимодействии медиатора с рецепторами происходит активация каналов и увеличивается проницаемость мембраны для калия и натрия - возникает деполяризация или возбуждающий постсинаптический потенциал (ВПСП) . Если увеличивается проницаемость для калия и хлора - возникает гиперполяризация или тормозной постсинаптический потенциал (ТПСП) . После взаимодействия с рецептором медиатор разрушается специальным ферментом, а продукты разрушения поступают обратно в аксон для ресинтеза медиатора (рис. 2).

Рисунок: Последовательность событий синаптической передачи

Рецепторуправляемые каналы образуются клеточным структурами, затем встраиваются в мембрану. Плотность каналов на постсинаптической мембране относительно постоянна. Однако при денервации, когда выделение медиатора резко снижается или прекращается совсем, плотность рецепторов на мембране увеличивается, они могут появляться на собственной мембране клетки. Обратная ситуация возникает или при длительном выделении большого количества медиатора, или при нарушении его разрушения. В этой ситуации рецепторы временно инактивируются, происходит их десинситизация (снижение чувствительности). Таким образом , синапс не является статичной структурой, он достаточно пластичен.

3. Механизм синаптической передачи.

Первым этапом является высвобождение медиатора. Согласно квантовой теории, при возбуждении нервного волокна (возникновении потенциала действия) происходит активация потенциалзависимых кальциевых каналов, кальций входит внутрь клетки. После его взаимодействия с синаптическим пузырьком он связывается с мембраной клетки и высвобождает медиатор в синаптическую щель (4 катиона кальция необходимы для освобождения 1кванта ацетилхолина).

Выброшенный медиатор диффундирует через синаптическую щель и взаимодействует с рецепторами постсинаптической мембраны. 1). Если синапс возбуждающий , то в результьате активации рецепторуправляемых каналов увеличивается проницаемость мембраны для натрия и калия. Возникает ВПСП. Он существует локально только на постсинаптической мембране. Величина ВПСП определяется величиной порции медиатора, поэтому он не подчиняется правилу – Все или ничего. ВПСП электротонически распространяется на мембрану эфферентной клетки, деполяризует еѐ. Если величина деполяризации достигает критического уровня, то происходит активация потенциалзависимых каналов, возникает потенциал действия или импульсное возбуждение, которое распространяется на всю мембрану клетки (рис. 3).


Рисунок 3: Функциональное изменение синапса После взаимодействия с рецептором медиатор разрушается специальным ферментом (ацетилхолин - холинэстераза, норадреналин моноаминоксидаза и т.д.) Выделение медиатора происходит непрерывно. Вне возбуждения на постсинаптической мембране регистрируют так называемые миниатюрные потенциалы концевой пластинки, представляющие собой волны деполяризации (1 квант в секунду). Интенсивность этого процесса резко увеличивается на фоне возбуждения (1 потенциал действия способствует выделению 200 квантов медиатора).

Таким образом , возможны два основных состояния синапса: на фоне возбуждения и вне возбуждения.

Вне возбуждения на постсинаптической мембране регистрируется МПКП (миниатюрный потенциал концевой пластинки).

На фоне возбуждения вероятность высвобождения медиатора резко возрастает, на постсинаптической мембране регистрируется ВПСП. Последовательность процессов проведения возбуждения через синапс следующая:

Если синапс тормозной , то выделяющийся медиатор активирует калиевые каналы и каналы для хлора. Развивающаяся гиперполяризация (ТПСП) электротонически распространяется на мембрану эфферентной клетки, увеличивает порог возбуждения и снижает возбудимость.

Физиологические особенности химических синапсов:

Односторонняя проводимость

Синаптическая задержка

Быстрая утомляемость

Синаптическое облегчение

4 . Передача возбуждения в нервно-мышечном синапсе

Из всех существующих в организме человека синапсов наиболее простым является нервно-мышечный. который был хорошо изучен ещё в 50-х годах ХХ века Бернардом Катцем и его коллегами (Katz B. - лауреат Нобелевской премии 1970 года). В образовании нервно-мышечного синапса участвуют тонкие, свободные от миелина разветвления аксона мотонейрона и иннервируемые этими окончаниями волокна скелетной мышцы (Рис 5.1). Каждая веточка аксона на конце утолщается: это утолщение называют концевой пуговкой или синаптической бляшкой. В ней содержатся синаптические пузырьки , заполненные медиатором: в нервно-мышечном синапсе им является ацетилхолин. Большая часть синаптических пузырьков расположена в активных зонах: так называются специализированные части пресинаптической мембраны, где медиатор может выделяться в синаптическую щель. В пресинаптической мембране есть каналы для ионов кальция, которые в покое закрыты и открываются лишь тогда, когда к окончанию аксона проводятся потенциалы действия.

Концентрация ионов кальция в синаптической щели намного выше, чем в цитоплазме пресинаптического окончания нейрона, и поэтому открытие кальциевых каналов приводит к вхождению кальция в окончание. Когда концентрация кальция в окончании нейрона повысится, синаптические пузырьки сливаются с активной зоной. Содержимое слившегося с мембраной пузырька опорожняется в синаптическую щель: такой механизм выделения называется экзоцитозом. В одном синаптическом пузырьке содержится около 10 000 молекул ацетилхолина, а при передаче информации через нервно-мышечный синапс он одновременно освобождается из многих пузырьков и диффундирует к концевой пластинке.

Концевой пластинкой называется часть мышечной мембраны, контактирующая с нервными окончаниями. У неё складчатая поверхность, причём складки находятся точно напротив активных зон пресинаптического окончания. На каждой складке, расположившись в форме решётки, сосредоточены холинорецепторы, их плотность около 10 000/ мкм 2 . В глубине складок холинорецепторов нет - там только потенциалзависимые каналы для натрия, причём их плотность тоже высока.

Встречающаяся в нервно-мышечном синапсе разновидность постсинаптических рецепторов относится к типу никотинчувствительных или Н-холинорецепторов (в главе 6 будет описана другая разновидность - мускаринчувствительные или М-холинорецепторы). Это трансмембранные белки, являющиеся одновременно и рецепторами, и каналами (Рис. 5.2). Они состоят из пяти субъединиц, сгруппированных вокруг центральной поры. Две субъединицы из пяти одинаковы, они имеют выступающие наружу концы аминокислотных цепей - это рецепторы, к которым присоединяется ацетилхолин. Когда рецепторы свяжут две молекулы ацетилхолина, конформация белковой молекулы изменяется и во всех субъединицах сдвигаются заряды гидрофобных участков канала: в результате появляется пора диаметром около 0,65 нм.

Через неё могут пройти ионы натрия, калия и даже двухвалентные катионы кальция, в то же время прохождению анионов мешают отрицательные заряды стенки канала. Канал бывает открыт в течение приблизительно 1 мс, но за это время через него в мышечное волокно входит около 17 000 ионов натрия, а несколько меньшее количество ионов калия - выходит. В нервно-мышечном синапсе почти синхронно открывается несколько сотен тысяч управляемых ацетилхолином каналов, поскольку выделившийся только из одного синаптического пузырька медиатор открывает около 2000 одиночных каналов.

Суммарный результат ионного тока натрия и калия через хемозависимые каналы определяется преобладанием тока натрия , что приводит к деполяризации концевой пластинки мышечной мембраны, на которой возникает потенциал концевой пластинки (ПКП). Его величина составляет как минимум 30 мВ, т.е. всегда превышает пороговое значение. Возникший в концевой пластинке деполяризующий ток направляется к соседним, внесинаптическим участкам мембраны мышечного волокна. Поскольку его величина всегда выше пороговой,. он активирует потенциалзависимые натриевые каналы, расположенные поблизости от концевой пластинки и в глубине её складок Вследствие этого возникают потенциалы действия, которые распространяется вдоль мышечной мембраны.

Выполнившие свою задачу молекулы ацетилхолина быстро расщепляются находящимся на поверхности постсинаптической мембраны ферментом - ацетилхолинэстеразой. Её активность достаточно высока и за 20 мс она в состоянии все связанные с рецепторами молекулы ацетилхолина превратить в холин и ацетат. Благодаря этому холинорецепторы освобождаются для взаимодействия с новыми порциями медиатора, если он продолжает выделяться из пресинаптического окончания. Одновременно с этим ацетат и холин с помощью специальных механизмов транспорта поступают в пресинаптическое окончание и используются для синтеза новых молекул медиатора.

Таким образом , основными этапами передачи возбуждения в нервно-мышечном синапсе являются:

1) возбуждение мотонейрона, распространение потенциала действия на пресинаптическую мембрану;

2) повышение проницаемости пресинаптической мембраны для ионов кальция, ток кальция в клетку, повышение концентрации кальция в пресинаптическом окончаниии;

3) слияние синаптических пузырьков с пресинаптической мембраной в активной зоне, экзоцитоз, поступление медиатора в синаптическую щель;

4) диффузия ацетилхолина к постсинаптической мембране, присоединение его к Н-холинорецепторам, открытие хемозависимых ионных каналов;

5) преобладающий ионный ток натрия через хемозависимые каналы, образование надпорогового потенциала концевой пластинки;

6) возникновение потенциалов действия на мышечной мембране;

7) ферментативное расщепление ацетилхолина, возвращение продуктов расщепления в окончание нейрона, синтез новых порций медиатора.

5 . Передача возбуждения в центральных синапсах

Центральные синапсы, в отличие от нервно-мышечного, образованы тысячами соединений между многими нейронами , в которых могут использоваться десятки нейромедиаторов различной химической природы. При этом следует учитывать, что для каждого нейротрансмиттера существуют специфические рецепторы, которые разными способами управляют хемозависимыми каналами. Кроме того, если в нервно-мышечных синапсах всегда передаётся лишь возбуждение, то центральные синапсы могут быть как возбуждающими, так и тормозными.

В нервно-мышечном синапсе одиночный потенциал действия, достигший пресинаптического окончания, способен привести к выделению достаточного для передачи сигнала количества медиатора и поэтому потенциал концевой пластинки всегда превышает пороговое значение. Одиночные постсинаптические потенциалы центральных синапсов как правило не превышают даже 1 мВ - их среднее значение составляет всего лишь 0,2- 0,3 мВ, что совершенно недостаточно для достижения критической деполяризации. Чтобы её получить, требуется суммарная активность от 50 до 100 потенциалов действия, достигших пресинаптического окончания один за другим - тогда общее количество выделившегося медиатора может оказаться достаточным для того, чтобы сделать деполяризацию постсинаптической мембраны критической.
В возбуждающих синапсах центральной нервной системы используются, так же, как и в нервно-мышечном синапсе, хемозависимые каналы, которые одновременно пропускают ионы натрия и калия. Когда такие каналы открываются при обычном для центральных нейронов значении потенциала покоя (приблизительно -65 мВ), преобладает направленный внутрь клетки деполяризующий ток натрия.

Потенциал действия обычно возникает в триггерной зоне - аксонном холмике, где самая высокая плотность потенциалзависимых каналов и самый низкий порог деполяризации. Здесь оказывается достаточным сдвиг значения мембранного потенциала с -65 Мв до -55 мВ, чтобы возник потенциал действия. В принципе потенциал действия может образоваться и на теле нейрона, но для этого понадобится изменить мембранный потенциал с -65 мВ до приблизительно -35 мВ, т.е. в этом случае постсинаптический потенциал должен быть гораздо больше - около 30 мВ.

Большинство возбуждающих синапсов образуется на ветвях дендритов. У типичного нейрона обычно существует от двадцати до сорока главных дендритов, разделяющихся на множество мелких ветвей. На каждой такой веточке есть две области синаптических контактов: главный стержень и шипики. Возникшие там возбуждающие постсинаптические потенциалы (ВПСП) пассивно распространяются к аксонному холмику, при этом амплитуда этих локальных потенциалов уменьшается пропорционально расстоянию. И, если даже максимальная величина ВПСП в контактной зоне не превышает 1 мВ, то в триггерной зоне обнаруживается и вовсе ничтожный деполяризующий сдвиг.

При таких обстоятельствах критическая деполяризация триггерной зоны возможна лишь в результате пространственной или последовательной суммации одиночных ВПСП (Рис. 5.3). Пространственная суммация происходит при одновременной возбуждающей активности группы нейронов, аксоны которых конвергируют к одной общей постсинаптической клетке. В каждой из контактных зон образуется небольшой ВПСП, который пассивно распространяется к аксонному холмику. Когда слабые деполяризующие сдвиги достигают его одновременно, суммарный итог деполяризации может составить величину более 10 мВ: только в таком случае мембранный потенциал уменьшается с -65 мВ до критического уровня -55 мВ и возникает потенциал действия.

Последовательная суммация, её ещё называют временной, наблюдается при достаточно частом ритмическом возбуждении пресинаптических нейронов, когда к пресинаптическому окончанию один за другим через короткий промежуток времени проводятся потенциалы действия. В течение всего этого времени выделяется медиатор, что и приводит к увеличению амплитуды ВПСП. В центральных синапсах оба механизма суммации обычно действуют одновременно и это даёт возможность передать возбуждение постсинаптическому нейрону.

7 . Функциональное значение и разновидности торможения в ЦНС

Передаваясь от одного нейрона к другому , возбуждение, если рассуждать теоретически, могло бы распространиться на большинство клеток мозга, в то время как для нормальной деятельности необходимо строго упорядоченное чередование активности определённых групп нейронов, соединённых друг с другом топографически точными связями. Необходимостью упорядочить передачу сигналов, предупредить ненужное распространение возбуждения и определяется функциональная роль тормозных нейронов.

Следует обратить внимание на очень важное обстоятельство: торможение всегда является местным процессом, оно не может, подобно возбуждению, распространяться от одной клетки к другой. Торможение лишь угнетает процесс возбуждения или препятствует самому возникновению возбуждения.

Убедиться в исключительно важной роли торможения помогает простой, но поучительный эксперимент. Если экспериментальному животному ввести некоторое количество стрихнина (это алкалоид семени чилибухи или рвотного ореха), блокирующего только одну разновидность тормозных синапсов в центральной нервной системе, то начнётся неограниченное распространение возбуждения в ответ на любой раздражитель, что приведёт к неупорядоченной активности нейронов, затем возникнут мышечные судороги, конвульсии и, наконец, смерть.

Тормозные нейроны есть во всех областях мозга, например , в спинном мозгу распространены тормозные клетки Реншоу, в коре мозжечка нейроны Пуркинье, звёздчатые клетки и т.д. В качестве тормозных медиаторов чаще других используются гамма-аминомасляная кислота (ГАМК) и глицин, хотя тормозная специфичность синапса зависит не от медиатора, а исключительно от типа хемозависимых каналов: в тормозных синапсах это каналы для хлора или для калия.
Существует несколько весьма характерных, типовых вариантов торможения: возвратное (или антидромное), реципрокное, нисходящее, центральное и т.д. Возвратное торможение позволяет регулировать выходную активность нейрона по принципу отрицательной обратной связи (Рис. 5.5). Здесь возбуждающий какую-либо клетку нейрон одной из коллатералей своего аксона действует ещё и на вставочный тормозной нейрон, который начинает тормозить активность самой возбуждающей клетки. Так, например , мотонейрон спинного мозга возбуждает мышечные волокна, а другая коллатераль его аксона возбуждает клетку Реншоу, которая тормозит активность самого мотонейрона

Реципрокное торможение (от лат. reciprocus - взаимный) наблюдается, например , в тех случаях, когда коллатерали входящего в спинной мозг аксона афферентного нейрона образуют две ветви: одна из них возбуждает мотонейроны мышцы-сгибателя, а другая - тормозной интернейрон, который действует на мотонейрон для мышцы-разгибателя. Благодаря реципрокному торможению мышцы-антагонисты не могут сокращаться одновременно и, если для совершения движения сокращаются сгибатели, то разгибатели должны расслабляться.

Нисходящее торможение впервые описал И. М. Сеченов: он обнаружил, что рефлексы спинного мозга у лягушки замедляются, если её промежуточный мозг раздражать кристалликом поваренной соли. Сеченов назвал такое торможение центральным. Нисходящее торможение может, например , управлять передачей афферентных сигналов: длинные аксоны некоторых нейронов ствола мозга способны тормозить активность интернейронов спинного мозга, получающих информацию о болевом раздражении. Некоторые двигательные ядра ствола мозга могут активировать деятельность тормозных интернейронов спинного мозга, которые, в свою очередь, способны уменьшить активность мотонейронов - такой механизм важен для регуляции тонуса мышц.
Блокирование передачи возбуждения с нервного окончания на мышцу достигается применением миорелаксантов. По механизму действия они делятся на несколько групп:

1. Блокада проведения возбуждения по нервному окончанию (примером являются местные анэстетики - новокаин, декаин и т.д.)

2. Блокада высвобождения медиатора (ботулин токсин).

3. Нарушение синтеза медиатора (гемихолиний угнетает поглощение холина нервным окончанием).

4. Блокирование связывания медиатора с рецепторами постсинаптической мембраны (а-бунгаротоксин, курареподобные вещества и другие истиные миорелаксанты).

5. Угнетение активности холинэстеразы (физостигмин, неостигмин).

9 . Функциональное значение химических синапсов в переносе информации

Можно с уверенностью сказать, что синапсам принадлежит решающая роль во всей деятельности мозга. Этот вывод обоснован по меньшей мере тремя важными доказательствами:

1. Все химические синапсы функционируют по принципу клапана, поскольку информация в нём может передаваться только от пресинаптической клетки к постсинаптической и никогда - наоборот. Именно этим определяется упорядоченное направление передачи информации в ЦНС.

2. Химические синапсы способны усиливать или ослаблять передаваемые сигналы, причём любая модификация может осуществляться несколькими способами. Эффективность синаптической передачи изменяется в связи с увеличением или уменьшением тока кальция в пресинаптическое окончание, что сопровождается соответствующим увеличением или уменьшением количества выделяющегося медиатора. Деятельность синапса может изменяться в связи с меняющейся чувствительностью постсинаптической мембраны , которая способна уменьшать или увеличивать количество и эффективность функционирования своих рецепторов. Благодаря этим возможностям проявляется пластичность межклеточных соединений, на основе которой синапсы участвуют в процессе научения и формировании следов памяти.

3. Химический синапс представляет собой область действия многих биологически активных веществ, лекарств или иных химических соединений, по той или иной причине поступивших в организм (токсины, яды, наркотики). Одни вещества, имея сходную с медиатором молекулу, конкурируют за право связываться с рецепторами, другие - не позволяют медиаторам своевременно разрушаться, третьи - стимулируют или угнетают выделение медиаторов из пресинаптических окончаний, четвёртые - усиливают или ослабляют действие тормозных медиаторов и т. д. Результатом изменений синаптической передачи в тех или иных химических синапсах может стать появление новых форм поведения.

10 . Электрические синапсы

Большинство известных электрических синапсов образованы большими пресинаптическими аксонами, контактирующими со сравнительно мелкими волокнами постсинаптических клеток. Передача информации в них происходит без химического посредника, а между взаимодействующими клетками очень небольшое расстояние: ширина синаптической щели около 3,5 нм, тогда как в химических синапсах она варьирует от 20 до 40 нм. Кроме того, синаптическую щель пересекают соединительные мостики - специализированные белковые структуры, образующие т.н. коннексоны (от англ. connexion - соединение) (Рис. 5.6).

Коннексоны представляют собой трансмембранные белки цилиндрической формы, которые образованы шестью субъединицами и в центре имеют довольно широкий, около 1,5 нм в диаметре, канал с гидрофильными стенками. Коннексоны соседних клеток располагаются друг против друга так, что каждая из шести субъединиц одного коннексона как бы продолжается субъединицами другого. Фактически коннексоны являются полуканалами, но совмещение коннексонов двух клеток образует полноценный канал, который эти две клетки соединяет. Механизм открывания и закрывания таких каналов состоит во вращательных перемещениях его субъединиц.

Эти каналы обладают малым сопротивлением и потому хорошо проводят электрический ток от одной клетки к другой. Поток положительных зарядов от пресинаптической мембраны возбуждённой клетки вызывает деполяризацию постсинаптической мембраны. Когда такая деполяризация достигает критического значения, открываются потенциалзависимые каналы для натрия и возникает потенциал действия.

Всё происходит очень быстро, без характерной для химических синапсов задержки, связанной с относительно медленной диффузией медиатора от одной клетки к другой. Соединённые электрическими синапсами клетки реагируют как единое целое на поступивший к одной из них сигнал, латентное время между пресинаптическим и постсинаптическим потенциалами практически не определяется.

Направление передачи сигнала в электрических синапсах обусловлено различиями входного сопротивления контактирующих клеток. Обычно большое пресинаптическое волокно одновременно передаёт возбуждение нескольким соединённым с ним клеткам, создавая в них значительное изменение напряжения. Так, например , в хорошо изученном гигантском аксо-аксональном синапсе речного рака толстое пресинаптическое волокно возбуждает несколько значительно уступающих ему в толщине аксонов других клеток.

Электрическая синаптическая передача сигнала оказывается биологически полезной при осуществлении реакций бегства или защиты в случае внезапной опасности. Таким способом, например, синхронно активируются мотонейроны и следом происходит молниеносное движение хвостового плавника у золотой рыбки при реакции бегства. Такая же синхронная активация нейронов обеспечивает залповый выброс маскирующей краски морским моллюском при возникновении опасной ситуации.

Через каналы коннексонов осуществляется ещё и метаболическое взаимодействие клеток. Достаточно большой диаметр пор каналов позволяет проходить не только ионам, но и органическим молекулам средних размеров, в том числе и важным вторичным посредникам, таким, как циклический АМФ, инозитолтрифосфат, а также небольшим пептидам. Этот транспорт, видимо, имеет большое значение в процессе развития мозга.

Электрический синапс отличается от химического:

Отсутствием синаптической задержки

Двусторонним проведением возбуждения

Проводит только возбуждение

Менее чувствителен к снижению температуры

Заключение

Между нервными клетками, а также между нервными мышцами, или между нервными и секреторными имеются специализированные контакты, которые называются синапсы.

История открытия была следующая:
А. В. Кибяков установил роль адреналина в синаптической передаче.


  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие роли норадреналина в синаптической передаче.
  • Синапсы служат для передачи сигналов от одной клетки к другой и их можно классифицировать по:

    • типу контактирующих клеток: нейро-нейрональные (межнейронные), нервно-мышечные и нервно-железистые (нейро-секреторные);

    • действию – возбуждающие и тормозящие;

    • характеру передачи сигнала – электрические, химические и смешанные.
    Обязательным компонентом любого синапса являются: пресинаптическая мембрана, синаптическая щель, постсинаптическая мембрана.

    Пресинаптическая часть образована окончанием аксона (терминалью) мотонейрона и содержит скопление синаптических пузырьков вблизи пресинаптической мембраны, а также митохондрии. Постсинаптические складки увеличивают площадь поверхности постсинаптической мембраны. В синаптической щели находится синаптическая базальная мембрана (продолжение базальной мембраны мышечного волокна), она заходит в постсинаптические складки).

    В электрических синапсах синаптическая щель значительно уже, чем в химических. Они обладают низким сопротивлением пре- и постсинаптических мембран, что обеспечивает лучшее проведение сигнала. Схема проведения возбуждения в электрическом синапсе подобна схеме проведения ПД в нервном проводнике, т.е. ПД в пресинаптической мембране раздражает мембрану постсинаптическую.

    В химических синапсах передача сигнала происходит при выделении в синаптическую щель специальных веществ, вызывающих возникновение ПД на постсинаптической мембране. Вещества эти называются медиаторами.

    Для проведения возбуждения через нервно-мышечные синапсы характерно:


    • одностороннее проведение возбуждения: от пре- к постинаптической мембране;

    • задержка проведения возбуждения , связанная с синтезом, секрецией медиатора, его взаимодействием с рецепторами постсинаптической мембраны и инактивацией медиатора;

    • низкая лабильность и высокая утомляемость;

    • высокая избирательная чувствительность к химическим веществам;

    • трансформация (изменение) ритма и силы возбуждения;

    • суммация и инерционность возбуждения.
    Синапсам принадлежит ключевая роль в организации информационных потоков. Химические синапсы не просто передают сигнал, но они трансформируют его, усиливают, меняют характер кода. Химические синапсы функционируют как клапан: они передают информацию только в одном направлении. Взаимодействие возбуждающих и тормозных синапсов сохраняет наиболее значимую информацию и устраняет несущественную. Эффективность синаптической передачи может увеличиваться или уменьшаться как за счёт меняющейся концентрации кальция в пресинаптическом окончании, так и за счёт изменения количества рецепторов постсинаптической мембраны. Подобная пластичнность синапсов служит предпосылкой для их участия в процессе научения и формировании памяти. Синапс представляет собой мишень для действия многих веществ, способных блокировать или, наоборот, стимулировать синаптическую передачу. Передача информации в электрических синапсах происходит с помощью коннексонов, имеющих малое сопротивление и проводящих электрический ток от аксона одной клетки к аксонам другой.

    Список литературы


    1. Васильев В.Н. Физиология: учебное пособие / В.Н.Васильев, Л.В.Капилевич – Томск: Томск: Изд-во Томского политехнического университета, 2010. – 290 с.

    2. Глебов Р. Н., Крыжановский Г. Н. Функциональная биохимия синапсов. М., 1978.

    3. Катц Б., Нерв, мышца и синапс, пер. с англ., М., 1998

    4. Назарова Е. Н., Жилов Ю. Д., Беляева А. В. Физиология человека: Учебное пособие по разделам дисциплины физиология человека: физиология центральной нервной системы; физиология высшей нервной деятельности и сенсорных систем; психофизиология; физиология систем, формирующих гомеостаз. – М.: САНВИТА, 2009. – 282 с.

    5. Шепперд Г. Нейробиология. М., 1987. Т. 1.

    6. Экклз Д.К. Физиология синапсов. М.: Мир, 1966, – 397 с.

    МИНОБРНАУКИ РОССИИ

    Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

    «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ»

    ИНСТИТУТ ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА

    ФАКУЛЬТЕТ УПРАВЛЕНИЯ


    Структура и функция синапса. Классификации синапсов. Химический синапс, медиатор

    Итоговая контрольная работа по Психологии развития


    студента 2-го курса дистанционной (заочной) формы обучения

    Кундиренко Екатерины Викторовны

    Руководитель

    Усенко Анна Борисовна

    Кандидат психологических наук, доцент


    Москва 2014



    Ведение. Физиология нейрона и его строение. Структура и функции синапса. Химический синапс. Выделение медиатора. Химические медиаторы и их виды

    Заключение

    синапс медиатор нейрон


    Введение


    За согласованную деятельность различных органов и систем, а также за регуляцию функций организма отвечает нервная система. Она осуществляет также связь организма с внешней средой, благодаря чему мы чувствуем различные изменения в окружающей среде и реагируем на них. Основные функции нервной системы - получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем.

    У человека, как и у всех млекопитающих, нервная система включает три основных компонента: 1) нервные клетки (нейроны); 2) связанные с ними клетки глии, в частности клетки нейроглии, а также клетки, образующие неврилемму; 3) соединительная ткань. Нейроны обеспечивают проведение нервных импульсов; нейроглия выполняет опорные, защитные и трофические функции как в головном, так и в спинном мозгу, а неврилемма, состоящая преимущественно из специализированных, т.н. шванновских клеток, участвует в образовании оболочек волокон периферических нервов; соединительная ткань поддерживает и связывает воедино различные части нервной системы.

    Передача нервных импульсов от одного нейрона к другому осуществляется при помощи синапса. Синапс (synapse, от греч. synapsys - связь): специализированные межклеточные контакты, посредством которых клетки нервной системы (нейроны) передают друг другу или не нейрональным клеткам сигнал (нервный импульс). Информация в виде потенциалов действия поступает от первой клетки, называемой пресинаптической, ко второй, называемой постсинаптической. Как правило, под синапсом понимают химический синапс, в котором сигналы передаются с помощью нейротрансмиттеров.


    I. Физиология нейрона и его строение


    Структурной и функциональной единицей нервной системы является нервная клетка - нейрон.

    Нейроны - специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний - синапсов.

    Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков - нейромедиаторов (нейротрансмиттеры): ацетилхолина, катехоламинов и др. Размеры нейронов колеблются от 6 до 120 мкм.

    Число нейронов мозга человека приближается к 1011. На одном нейроне может быть до 10 000 синапсов. Если только эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 1019 ед. информации, т. е. способна вместить практически все знания, накопленные человечеством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из памяти всю информацию, которая в нем хранится.

    Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, организующие единую функцию, образуют так называемые группы, популяции, ансамбли, колонки, ядра. В коре большого мозга, мозжечке нейроны формируют слои клеток. Каждый слой имеет свою специфическую функцию.

    Клеточные скопления образуют серое вещество мозга. Между ядрами, группами клеток и между отдельными клетками проходят миелинизированные или немиелинизированные волокна: аксоны и дендриты.

    Одно нервное волокно из нижележащих структур мозга в коре разветвляется на нейроны, занимающие объем 0,1 мм3, т. е. одно нервное волокно может возбудить до 5000 нейронов. В постнатальном развитии происходят определенные изменения в плотности расположения нейронов, их объема, ветвления дендритов.

    Строение нейрона.

    Функционально в нейроне выделяют следующие части: воспринимающую - дендриты, мембрана сомы нейрона; интегративную - сома с аксонным холмиком; передающую - аксонный холмик с аксоном.

    Тело нейрона (сома), помимо информационной, выполняет трофическую функцию относительно своих отростков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальней перерезки, а следовательно, и синапсов этих отростков. Сома обеспечивает также рост дендритов и аксона.

    Сома нейрона заключена в многослойную мембрану, обеспечивающую формирование и распространение электротонического потенциала к аксонному холмику.

    Нейроны способны выполнять свою информационную функцию в основном благодаря тому, что их мембрана обладает особыми свойствами. Мембрана нейрона имеет толщину 6 нм и состоит из двух слоев липидных молекул, которые своими гидрофильными концами обращены в сторону водной фазы: один слой молекул обращен внутрь, другой - кнаружи клетки. Гидрофобные концы повернуты друг к другу - внутрь мембраны. Белки мембраны встроены в двойной липидный слой и выполняют несколько функций: белки-"насосы" обеспечивают перемещение ионов и молекул против градиента концентрации в клетке; белки, встроенные в каналы, обеспечивают избирательную проницаемость мембраны; рецепторные белки распознают нужные молекулы и фиксируют их на мембране; ферменты, располагаясь на мембране, облегчают протекание химических реакций на поверхности нейрона. В ряде случаев один и тот же белок может быть и рецептором, и ферментом, и «насосом».

    Рибосомы располагаются, как правило, вблизи ядра и осуществляют синтез белка на матрицах тРНК. Рибосомы нейронов вступают в контакт с эндоплазматической сетью пластинчатого комплекса и образуют базофильное вещество.

    Базофильное вещество (вещество Ниссля, тигроидное вещество, тигроид) - трубчатая структура, покрытая мелкими зернами, содержит РНК и участвует в синтезе белковых компонентов клетки. Длительное возбуждение нейрона приводит к исчезновению в клетке базофильного вещества, а значит, и к прекращению синтеза специфического белка. У новорожденных нейроны лобной доли коры большого мозга не имеют базофильного вещества. В то же время в структурах, обеспечивающих жизненно важные рефлексы - спинном мозге, стволе мозга, нейроны содержат большое количество базофильного вещества. Оно аксоплазматическим током из сомы клетки перемещается в аксон.

    Пластинчатый комплекс (аппарат Гольджи) - органелла нейрона, окружающая ядро в виде сети. Пластинчатый комплекс участвует в синтезе нейросекреторных и других биологически активных соединений клетки.

    Лизосомы и их ферменты обеспечивают в нейроне гидролиз ряда веществ.

    Пигменты нейронов - меланин и липофусцин находятся в нейронах черного вещества среднего мозга, в ядрах блуждающего нерва, клетках симпатической системы.

    Митохондрии - органеллы, обеспечивающие энергетические потребности нейрона. Они играют важную роль в клеточном дыхании. Их больше всего у наиболее активных частей нейрона: аксонного холмика, в области синапсов. При активной деятельности нейрона количество митохондрий возрастает.

    Нейротрубочки пронизывают сому нейрона и принимают участие в хранении и передаче информации.

    Ядро нейрона окружено пористой двухслойной мембраной. Через поры происходит обмен между нуклеоплазмой и цитоплазмой. При активации нейрона ядро за счет выпячиваний увеличивает свою поверхность, что усиливает ядерно-плазматические отношения, стимулирующие функции нервной клетки. Ядро нейрона содержит генетический материал. Генетический аппарат обеспечивает дифференцировку, конечную форму клетки, а также типичные для данной клетки связи. Другой существенной функцией ядра является регуляция синтеза белка нейрона в течение всей его жизни.

    Ядрышко содержит большое количество РНК, покрыто тонким слоем ДНК.

    Существует определенная зависимость между развитием в онтогенезе ядрышка и базофильного вещества и формированием первичных поведенческих реакций у человека. Это обусловлено тем, что активность нейронов, установление контактов с другими нейронами зависят от накопления в них базофильного вещества.

    Дендриты - основное воспринимающее поле нейрона. Мембрана дендрита и синаптической части тела клетки способна реагировать на медиаторы, выделяемые аксонными окончаниями изменением электрического потенциала.

    Обычно нейрон имеет несколько ветвящихся дендритов. Необходимость такого ветвления обусловлена тем, что нейрон как информационная структура должен иметь большое количество входов. Информация к нему поступает от других нейронов через специализированные контакты, так называемые шипики.

    «Шипики» имеют сложную структуру и обеспечивают восприятие сигналов нейроном. Чем сложнее функция нервной системы, чем больше разных анализаторов посылают информацию к данной структуре, тем больше «шипиков» на дендритах нейронов. Максимальное количество их содержится на пирамидных нейронах двигательной зоны коры большого мозга и достигает нескольких тысяч. Они занимают до 43% поверхности мембраны сомы и дендритов. За счет «шипиков» воспринимающая поверхность нейрона значительно возрастает и может достигать, например у клеток Пуркинье, 250 000 мкм.

    Напомним, что двигательные пирамидные нейроны получают информацию практически от всех сенсорных систем, ряда подкорковых образований, от ассоциативных систем мозга. Если данный «шипик» или группа «шипиков» длительное время перестает получать информацию, то эти «шипики» исчезают.

    Аксон представляет собой вырост цитоплазмы, приспособленный для проведения информации, собранной дендритами, переработанной в нейроне и переданной аксону через аксонный холмик - место выхода аксона из нейрона. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиновую оболочку, образованную из глии. Аксон имеет разветвленные окончания. В окончаниях находятся митохондрии и секреторные образования.

    Типы нейронов.

    Строение нейронов в значительной мере соответствует их функциональному назначению. По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

    Истинно униполярные нейроны находятся только в мезэнцефалическом ядре тройничного нерва. Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц.

    Другие униполярные нейроны называют псевдоуниполярными, на самом деле они имеют два отростка (один идет с периферии от рецепторов, другой - в структуры центральной нервной системы). Оба отростка сливаются вблизи тела клетки в единый отросток. Все эти клетки располагаются в сенсорных узлах: спинальных, тройничном и т. д. Они обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, бароцептивной, вибрационной сигнализации.

    Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Биполярные нейроны дендритом связаны с рецептором, аксоном - с нейроном следующего уровня организации соответствующей сенсорной системы.

    Мультиполярные нейроны имеют несколько дендритов и один аксон. В настоящее время насчитывают до 60 различных вариантов строения мультиполярных нейронов, однако все они представляют разновидности веретенообразных, звездчатых, корзинчатых и пирамидных клеток.

    Обмен веществ в нейроне.

    Необходимые питательные вещества и соли доставляются в нервную клетку в виде водных растворов. Продукты метаболизма также удаляются из нейрона в виде водных растворов.

    Белки нейронов служат для пластических и информационных целей. В ядре нейрона содержится ДНК, в цитоплазме преобладает РНК. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых структурах нервной системы выше, чем в более старых. Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше - в мозжечке, наименьшая - в спинном мозге.

    Липиды нейронов служат энергетическим и пластическим материалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление, достигающее у некоторых нейронов 1000 Ом/см2 поверхности. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается.

    Углеводы нейронов являются основным источником энергии для них. Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит глюкоза крови.

    Глюкоза расщепляется в нейроне аэробным и анаэробным путем. Расщепление идет преимущественно аэробным путем, этим объясняется высокая чувствительность нервных клеток к недостатку кислорода. Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. При наркозе потребление углеводов снижается.

    В нервной ткани содержатся соли калия, натрия, кальция, магния и др. Среди катионов преобладают К+, Na+, Mg2+, Са2+; из анионов - Сl-, НСОз-. Кроме того, в нейроне имеются различные микроэлементы (например, медь и марганец). Благодаря высокой биологической активности они активируют ферменты. Количество микроэлементов в нейроне зависит от его функционального состояния. Так, при рефлекторном или кофеиновом возбуждении содержание меди, марганца в нейроне резко снижается.

    Обмен энергии в нейроне в состоянии покоя и возбуждения различен. Об этом свидетельствует значение дыхательного коэффициента в клетке. В состоянии покоя он равен 0,8, а при возбуждении - 1,0. При возбуждении потребление кислорода возрастает на 100%. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз.

    Собственные энергетические процессы нейрона (его сомы) тесно связаны с трофическими влияниями нейронов, что сказывается прежде всего на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон.

    Классификация нейронов.

    Существует классификация нейронов, учитывающая химическую структуру выделяемых в окончаниях их аксонов веществ: холинергические, пептидергические, норадреналинергические, дофаминергические, серотонинергические и др.

    По чувствительности к действию раздражителей нейроны делят на моно-, би-, полисенсорные.

    Моносенсорные нейроны. Располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на световое раздражение сетчатки глаза.

    Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры большого мозга могут реагировать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более - полимодальными.

    Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зрительные и слуховые раздражения.

    Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем.

    Нервные клетки разных отделов нервной системы могут быть активными вне воздействия - фоновые, или фоновоактивные (рис. 2.16). Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение.

    Фоновоактивные нейроны делятся на тормозящиеся - урежающие частоту разрядов и возбуждающиеся - учащающие частоту разрядов в ответ на какое-либо раздражение. Фоновоактивные нейроны могут генерировать импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов - это первый тип активности - непрерывно-аритмичный. Такие нейроны обеспечивают тонус нервных центров. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.

    Нейроны второго типа выдают группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка, импульсов. Этот тип активности называется пачечным. Значение пачечного типа активности заключается в создании условий проведения сигналов при снижении функциональных возможностей проводящих или воспринимающих структур мозга. Межимпульсные интервалы в пачке равны приблизительно 1- 3 мс, между пачками этот интервал составляет 15-120 мс.

    Третья форма фоновой активности - групповая. Групповой тип активности характеризуется апериодическим появлением в фоне группы импульсов (межимпульсные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.

    Функционально нейроны можно также разделить на три типа: афферентные, интернейроны (вставочные), эфферентные. Первые выполняют функцию получения и передачи информации в вышележащие структуры ЦНС, вторые - обеспечивают взаимодействие между нейронами ЦНС, третьи - передают информацию в нижележащие структуры ЦНС, в нервные узлы, лежащие за пределами ЦНС, и в органы организма.

    Функции афферентных нейронов тесно связаны с функциями рецепторов.

    Структура и функции синапса


    Синапсами называются контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки).

    Классификация синапсов. Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.

    По местоположению выделяют нервно-мышечные синапсы и нейро-нейрональные, последние в свою очередь делятся на аксо-соматические, аксо-аксональные, аксодендритические, дендро-соматические.

    По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.

    По способу передачи сигнала синапсы делятся на электрические, химические, смешанные.

    Характер взаимодействия нейронов. Определяется способом это взаимодействия: дистантное, смежное, контактное.

    Дистантное взаимодействие может быть обеспечено двумя нейронами, расположенными в разных структурах организма. Например, в клетках ряда структур мозга образуются нейрогормоны, нейропептиды, которые способны воздействовать гуморально на нейроны других отделов.

    Смежное взаимодействие нейронов осуществляется в случае, когда мембраны нейронов разделены только межклеточным пространством. Обычно такое взаимодействие имеется там, где между мембранами нейронов нет глиальных клеток. Такая смежность характерна для аксонов обонятельного нерва, параллельных волокон мозжечка и т. д. Считают, что смежное взаимодействие обеспечивает участие соседних нейронов в выполнении единой функции. Это происходит, в частности, потому, что метаболиты, продукты активности нейрона, попадая в межклеточное пространство, влияют на соседние нейроны. Смежное взаимодействие может в ряде случаев обеспечивать передачу электрической информации от нейрона к нейрону.

    Контактное взаимодействие обусловлено специфическими контактами мембран нейронов, которые образуют так называемые электрические и химические синапсы.

    Электрические синапсы. Морфологически представляют собой слияние, или сближение, участков мембран. В последнем случае синаптическая щель не сплошная, а прерывается мостиками полного контакта. Эти мостики образуют повторяющуюся ячеистую структуру синапса, причем ячейки ограничены участками сближенных мембран, расстояние между которыми в синапсах млекопитающих 0,15-0,20 нм. В участках слияния мембран находятся каналы, через которые клетки могут обмениваться некоторыми продуктами. Кроме описанных ячеистых синапсов, среди электрических синапсов различают другие - в форме сплошной щели; площадь каждого из них достигает 1000 мкм, как, например, между нейронами ресничного ганглия.

    Электрические синапсы обладают односторонним проведением возбуждения. Это легко доказать при регистрировании электрического потенциала на синапсе: при раздражении афферентных путей мембрана синапса деполяризуется, а при раздражении эфферентных волокон - гиперполяризуется. Оказалось, что синапсы нейронов с одинаковой функцией обладают двусторонним проведением возбуждения (например, синапсы между двумя чувствительными клетками), а синапсы между разнофункциональными нейронами (сенсорные и моторные) обладают односторонним проведением. Функции электрических синапсов заключаются прежде всего в обеспечении срочных реакций организма. Этим, видимо, объясняется расположение их у животных в структурах, обеспечивающих реакцию бегства, спасения от опасности и т. д.

    Электрический синапс сравнительно мало утомляем, устойчив к изменениям внешней и внутренней среды. Видимо, эти качества наряду с быстродействием обеспечивают высокую надежность его работы.

    Химические синапсы. Структурно представлены пресинаптической частью, синаптической щелью и постсинаптической частью. Пресинаптическая часть химического синапса образуется расширением аксона по его ходу или окончания. В пресинаптической части имеются агранулярные и гранулярные пузырьки (рис.1). Пузырьки (кванты) содержат медиатор. В пресинаптическом расширении находятся митохондрии, обеспечивающие синтез медиатора, гранулы гликогена и др. При многократном раздражении пресинаптического окончания запасы медиатора в синаптических пузырьках истощаются. Считают, что мелкие гранулярные пузырьки содержат норадреналин, крупные - другие катехоламины. Агранулярные пузырьки содержат ацетилхолин. Медиаторами возбуждения могут быть также производные глутаминовой и аспарагиновой кислот.

    Рис. 1. Схема процесса передачи нервного сигнала в химическом синапсе.

    Химический синапс


    Существо механизма передачи электрического импульса от одной нервной клетки к другой через химический синапс состоит в следующем. Электрический сигнал, идущий по отростку нейрона одной клетки, приходит в пресинаптическую область и вызывает выход из нее в синаптическую щель определенного химического соединения - посредника или медиатора. Медиатор, диффундируя по синаптической щели, достигает постсинаптической области и химически связывается с находящейся там молекулой, называемой рецептором. В результате этого связывания запускается ряд физико-химических превращений в постсинаптической зоне, в результате чего в ее области возникает импульс электрического тока, распространяющийся далее ко второй клетке.

    Область пресинапса характеризуется несколькими важными морфологическими образованиями, играющими основную роль в его работе. В этой области находятся специфические гранулы - везикулы - содержащие то или иное химическое соединение, названное в общем случае медиатором. У этого термина чисто функциональный смысл, как, например, и у термина - гормон. Одно и тоже вещество можно отнести или к медиаторам, или к гормонам. Например, норадреналин необходимо называть медиатор, если он выделяется из визикул пресинапса; если же норадреналин выделяется в кровь надпочечниками, то в этом случае он называется гормон.

    Кроме того, в зоне пресинапса находятся митохондрии, содержащие ионы кальция, и специфические структуры мембраны - ионные каналы. Включение работы пресинапса начинается в тот момент, когда в эту область приходит электрический импульс от клетки. Этот импульс приводит к тому, что внутрь пресинапса по ионным каналам входит в большом количестве кальций. Кроме того, в ответ на электрический импульс ионы кальция выходят из митохондрий. Оба эти процесса приводят к увеличению концентрации кальция в пресинапсе. Появление избыточного кальция приводит к соединению мембраны пресинапса с мембраной визикул, и последние начинают подтягиваться к пресинаптической мембране, в итоге выбрасывая свое содержимое в синаптическую щель.

    Основной структурой постсинаптической области является мембрана участка второй клетки, контактирующая с пресинапсом. Эта мембрана содержит генетически детерминированную макромолекулу - рецептор, которая избирательно связывается с - медиатором. Эта молекула содержит два участка. Первый участок ответственен за узнавание «своего» медиатора, второй участок ответственен за физико-химические изменения в мембране, приводящие к возникновению электрического потенциала.

    Включение работы постсинапса начинается в тот момент, когда в эту область приходит молекула медиатора. Центр узнавания «узнает» свою молекулу и связывается с ней определенным типом химической связи, которую можно наглядно представить в виде взаимодействия замка со своим ключом. Это взаимодействие включает работу второго участка молекулы, и ее работа приводит к возникновению электрического импульса.

    Особенности проведения сигнала через химический синапс определяются особенностями его структуры. Во-первых, электрический сигнал от одной клетки передается к другой при помощи химического посредника - медиатора. Во-вторых, электрический сигнал передается только в одном направлении, что определяется особенностями строения синапса. В-третьих, существует небольшая задержка в проведении сигнала, время которой определяется временем диффузии медиатора по синаптической щели. В-четвертых, проведение через химический синапс можно блокировать различными способами.

    Работа химического синапса регулируется как на уровне пресинапса, так и на уровне постсинапса. В стандартном режиме работы из пресинапса после поступления туда электрического сигнала выбрасывается медиатор, который связывается с рецептором постсинапса и вызывает возникновение нового электрического сигнала. До поступления в пресинапс нового сигнала количество медиатора успевает восстановиться. Однако, если сигналы от нервной клетки идут слишком часто или длительное время, количество медиатора там истощается и синапс перестает работать.

    Вместе с тем синапс можно «приучить» к передаче очень частых сигналов в течение длительного времени. Этот механизм крайне важен для понимания механизмов памяти. Показано, что в везикулах, кроме вещества, играющего роль медиатора, находятся и другие вещества белковой природы, а на мембране пресинапса и постсинапса находятся специфические рецепторы, их узнающие. Эти рецепторы к пептидам принципиально отличаются от рецепторов к медиаторам тем, что взаимодействие с ними не вызывает возникновения потенциалов, а запускает биохимические синтетические реакции.

    Таким образом, после прихода импульса в пресинапс вместе с медиаторами выбрасываются и регуляторные пептиды. Часть из них взаимодействует с пептидными рецепторами на пресинаптической мембране, и это взаимодействие включает механизм синтеза медиатора. Следовательно, чем чаще выбрасывается медиатор и регуляторные пептиды, тем интенсивнее будет проходить синтез медиатора. Другая часть регуляторных пептидов вместе с медиатором достигает постсинапса. Медиатор связывается со своим рецептором, а регуляторные пептиды со своим, и это последнее взаимодействие запускает процессы синтеза рецепторных молекул к медиатору. В результате подобного процесса рецепторное поле, чувствительное к медиатору, увеличивается для того, что бы все без остатка молекулы медиатора связались со своими рецепторными молекулами. В целом, этот процесс приводит к так называемому облегчению проведения через химический синапс.

    Выделение медиатора


    Фактор, выполняющий медиаторную функцию, вырабатывается в теле нейрона, и оттуда транспортируется в окончание аксона. Содержащийся в пресинаптческих окончаниях медиатор должен выделиться в синоптическую щель, чтобы воздействовать на рецепторы постсинаптической мембраны, обеспечивая транссинаптическую передачу сигналов. В качестве медиатора могут выступать такие вещества, как ацетилхолин, катехоламиновая группа, серотонин, нейропиптиды и многие другие, их общие свойства будут описаны ниже.

    Еще до того, как были выяснены многие существенные особенности процесса высвобождения медиатора, было установлено, что пресинаптические окончания могут изменять состояния спонтанной секреторной активности. Постоянно выделяемые небольшие порции медиатора вызывают в постсинаптической клетке так называемые спонтанные, миниатюрные постсинаптические потенциалы. Это было установлено в 1950 году английскими учеными Феттом и Катцом, которые, изучая работу нервно-мышечного синапса лягушки, обнаружили, что без всякого действия на нерв в мышце в области постсинаптической мембраны сами по себе через случайные промежутки времени возникают небольшие колебания потенциала, амплитудой примерно в 0,5мВ.

    Открытие, не связанного с приходом нервного импульса, выделения медиатора помогло установить квантовый характер его высвобождения, то есть получилось, что в химическом синапсе медиатор выделяется и в покое, но изредка и небольшими порциями. Дискретность выражается в том, что медиатор выходит из окончания не диффузно, не в виде отдельных молекул, а в форме многомолекулярных порций (или квантов), в каждой из которых содержится несколько.

    Происходит это следующим образом: в аксоплазме окончаний нейрона в непосредственной близости к пресинаптической мембране при рассмотрении под электронным микроскопом было обнаружено множество пузырьков или везикул, каждая из которых содержит один квант медиатора. Токи действия, вызываемые пресинаптическими импульсами, не оказывают заметного влияния на постсинаптическую мембрану, но приводят к разрушению оболочки пузырьков с медиатором. Этот процесс (экзоцитоз) заключается в том, что пузырек, подойдя к внутренней поверхности мембраны пресинаптического окончания при наличии кальция (Са2+), сливается с пресинаптической мембраной, в результате чего и происходит опорожнение пузырька в синоптическую щель. После разрушения пузырька окружающая его мембрана включается в мембрану пресинаптического окончания, увеличивая его поверхность. В дальнейшем, в результате процесса эндомитоза, небольшие участки пресинаптической мембраны впячиваются внутрь, вновь образуя пузырьки, которые впоследствии снова способны включать медиатор и вступать в цикл его высвобождения.


    V. Химические медиаторы и их виды


    В ЦНС медиаторную функцию выполняет большая группа разнородных химических веществ. Список вновь открываемых химических медиаторов неуклонно пополняется. По последним данным их насчитывается около 30. Хотелось бы также отметить, что согласно принципу Дейла, каждый нейрон во всех своих синоптических окончаниях выделяет один и тот же медиатор. Исходя из этого принципа, принято обозначать нейроны по типу медиатора, который выделяют их окончания. Таким образом, например, нейроны, освобождающие ацетилхолин, называют холинэргическими, серотонин - серотонинергическими. Такой принцип может быть использован для обозначения различных химических синапсов. Рассмотрим некоторые из наиболее известных химических медиаторов:

    Ацетилхолин. Один из первых обнаруженных медиаторов (был известен также как «вещество блуждающего нерва» из-за своего действия на сердце).

    Особенностью ацетилхолина как медиатора, является быстрое его разрушение после высвобождения из пресинаптических окончаний с помощью фермента ацетилхолинэстеразы. Ацетилхолин выполняет функцию медиатора в синапсах, образуемых возвратными коллатералями аксонов двигательных нейронов спинного мозга на вставочных клетках Реншоу, которые в свою очередь с помощью другого медиатора оказывают тормозящее воздействие на мотонейроны.

    Холинэргическими являются также нейроны спинного мозга, иннервирующие хромаффинные клетки и преганглионарные нейроны, иннервирующие нервные клетки интрамуральных и экстрамуральных ганглиев. Полагают, что холинэргические нейроны имеются в составе ретикулярной формации среднего мозга, мозжечка, базальных ганглиях и коре.

    Катехоламины. Это три родственных в химическом отношении вещества. К ним относятся: дофамин, норадреналин и адреналин, которые являются производными тирозина и выполняют медиаторную функцию не только в периферических, но и в центральных синапсах. Дофаминергические нейроны находятся у млекопитающих главным образом в пределах среднего мозга. Особенно важную роль дофамин играет в полосатом теле, где обнаруживаются особенно большие количества этого медиатора. Кроме того, дофаминергические нейроны имеются в гипоталамусе. Норадренергические нейроны содержатся также в составе среднего мозга, моста и продолговатого мозга. Аксоны норадренергических нейронов образуют восходящие пути, направляющиеся в гипоталамус, таламус, лимбические отделы коры и в мозжечок. Нисходящие волокна норадренергических нейронов иннервируют нервные клетки спинного мозга.

    Катехоламины оказывают как возбуждающее, так и тормозящее действие на нейроны ЦНС.

    Серотонин. Подобно катехоламинам, относится к группе моноаминов, то есть синтезируется из аминокислоты триптофана. У млекопитающих серотонинергических нейроны локализуются главным образом в стволе мозга. Они входят в состав дорсального и медиального шва, ядер продолговатого мозга, моста и среднего мозга. Серотонинергические нейроны распространяют влияние на новую кору, гиппокамп, бледный шар, миндалину, подбугровую область, стволовые структуры, кору мозжечка, спинной мозг. Серотонин играет важную роль в нисходящем контроле активности спинного мозга и в гипоталамическом контроле температуры тела. В свою очередь нарушения серотонинового обмена, возникающие при действии ряда фармакологических препаратов, могут вызывать галлюцинации. Нарушение функций серотонинергических синапсов наблюдаются при шизофрении и других психических расстройствах. Серотонин может вызывать возбуждающее и тормозящее действие в зависимости от свойств рецепторов постсинаптической мембраны.

    Нейтральные аминокислоты. Это две основные дикарбоксильные кислоты L-глутамат и L-аспартат, которые находятся в большом количестве в ЦНС и могут выполнять функцию медиаторов. L-глютаминовая кислота, входит в состав многих белков и пептидов. Она плохо проходит через гематоэнцефалический барьер и поэтому не поступает в мозг из крови, образуясь главным образом из глюкозы в самой нервной ткани. В ЦНС млекопитающих глутамат обнаруживается в высоких концентрациях. Полагают, что его функция главным образом связана с синоптической передачей возбуждения.

    Полипептиды. В последние годы показано, что в синапсах ЦНС медиаторную функцию могут выполнять некоторые полипептиды. К таким полипептидам относятся вещества-Р, гипоталамические нейрогормоны, энкефалины и др. Под веществом-Р подразумевается группа агентов, впервые экстрагированных из кишечника. Эти полипептиды обнаруживаются во многих частях ЦНС. Особенно велика их концентрация в области черного вещества. Наличие вещества-Р в задних корешках спинного мозга позволяет предполагать, что оно может служить медиатором в синапсах, образуемых центральными окончаниями аксонов некоторых первичных афферентных нейронов. Вещество-Р оказывает возбуждающее действие на определенные нейроны спинного мозга. Медиаторная роль других нейропептидов выяснена еще меньше.


    Заключение


    В основе современного представления о структуре и функции ЦНС лежит нейронная теория, которая представляет собой частный случай клеточной теории. Однако если клеточная теория была сформулирована еще в первой половине XIX столетия, то нейронная теория, рассматривающая мозг как результат функционального объединения отдельных клеточных элементов - нейронов, получила признание только на рубеже нынешнего века. Большую роль в признании нейронной теории сыграли исследования испанского нейрогистолога Р. Кахала и английского физиолога Ч. Шеррингтона. Окончательные доказательства полной структурной обособленности нервных клеток были получены с помощью электронного микроскопа, высокая разрешающая способность которого позволила установить, что каждая нервная клетка на всем своем протяжении окружена пограничной мембраной, и что между мембранами разных нейронов имеются свободные пространства. Наша нервная система построена из двух типов клеток - нервных и глиальных. Причем число глиальных клеток в 8-9 раз превышает число нервных. Число нервных элементов, будучи очень ограниченным, у примитивных организмов, в процессе эволюционного развития нервной системы достигает многих миллиардов у приматов и человека. При этом количество синаптических контактов между нейронами приближается к астрономической цифре. Сложность организации ЦНС проявляется также в том, что структура и функции нейронов различных отделов головного мозга значительно варьируют. Однако необходимым условием анализа деятельности мозга является выделение фундаментальных принципов, лежащих в основе функционирования нейронов и синапсов. Ведь именно эти соединения нейронов обеспечивают все многообразие процессов, связанных с передачей и обработкой информации.

    Можно себе только представить, что случится, если в этом сложнейшем процессе обмена произойдёт сбой...что будет с нами. Так можно говорить о любой структуре организма, она может не являться главной, но без неё деятельность всего организма будет не совсем верной и полной. Всё равно, что в часах. Если отсутствует одна, даже самая маленькая деталь в механизме, часы уже не будут работать абсолютно точно. И вскоре часы сломаются. Так же и наш организм, при нарушении одной из систем, постепенно ведёт к сбою всего организма, а в последствие к гибели этого самого организма. Так что в наших интересах следить за состоянием своего организма, и не допускать тех ошибок, которые могут привести к серьёзным последствиям для нас.


    Список источников и литературы


    1. Батуев А. С. Физиология высшей нервной деятельности и сенсорных систем: учебник / А. С. Батуев. - СПб. : Питер, 2009. - 317 с.

    Данилова Н. Н. Психофизиология: Учебник / Н. Н. Данилова. - М. : АСПЕКТ ПРЕСС, 2000. - 373с.

    Данилова Н. Н. Физиология высшей нервной деятельности: учебник / Н. Н. Данилова, А. Л. Крылова. - М. : Учебная литература, 1997. - 428 с.

    Караулова Л. К. Физиология: учебное пособие / Л. К. Караулова, Н. А. Красноперова, М. М. Расулов. - М. : Академия, 2009. - 384 с.

    Каталымов, Л. Л. Физиология нейрона: учебное пособие / Л. Л. Каталымов, О. С. Сотников; Мин. народ. образования РСФСР, Ульяновск. гос. пед. ин-т. - Ульяновск: Б. и., 1991. - 95 с.

    Семенов, Э. В. Физиология и анатомия: учебное пособие / Э. В. Семенов. - М. : Джангар, 2005. - 480 с.

    Смирнов, В. М. Физиология центральной нервной системы: учебное пособие / В. М. Смирнов, В. Н. Яковлев. - М. : Академия, 2002. - 352с.

    Смирнов В. М. Физиология человека: учебник / В. М. Смирнова. - М. : Медицина, 2002. - 608с.

    Россолимо Т. Е. Физиология высшей нервной деятельности: хрестоматия: учебное пособие / Т. Е. Россолимо, И. А. Москвина - Тарханова, Л. Б. Рыбалов. - М.; Воронеж: МПСИ: МОДЭК, 2007. - 336 с.


    Репетиторство

    Нужна помощь по изучению какой-либы темы?

    Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
    Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

    Область контакта между двумя нейронами называют синапсом .

    Внутреннее строение аксодендритического синапса.

    а) Электрические синапсы . Электрические синапсы в нервной системе млекопитающих встречаются редко. Они образованы щелевидными контактами (нексусами) между дендритами или сомами соприкасающихся нейронов, которые соединяются с помощью цитоплазматических каналов диаметром 1,5 нм. Процесс передачи сигнала происходит без синаптической задержки и без участия медиаторов.

    Посредством электрических синапсов возможно распространение электротонических потенциалов от одного нейрона к другому. Вследствие тесного синаптического контакта модуляция проведения сигнала невозможна. Задача этих синапсов - осуществление одновременного возбуждения нейронов, выполняющих одинаковую функцию. Примером служат нейроны дыхательного центра продолговатого мозга, которые во время вдоха синхронно генерируют импульсы. Кроме того, примером могут служить нейронные цепи, управляющие саккадами, при которых точка фиксации взора перемещается от одного объекта внимания к другому.

    б) Химические синапсы . Большинство синапсов нервной системы - химические. Функционирование таких синапсов зависит от высвобождения медиаторов. Классический химический синапс представлен пресинаптической мембраной, синаптической щелью и постсинаптической мембраной. Пресинаптическая мембрана - часть булавовидного расширения нервного окончания клетки, передающей сигнал, а постсинаптическая мембрана - часть клетки, получающей сигнал.

    Медиатор высвобождается из булавовидного расширения посредством экзоцитоза, проходит через синаптическую щель и связывается с рецепторами на постсинаптической мембране. Под постсинаптической мембраной расположена субсинаптическая активная зона, в которой после активации рецепторов постсинаптической мембраны происходят разнообразные биохимические процессы.

    В булавовидном расширении расположены содержащие медиаторы синаптические пузырьки, а также большое количество митохондрий и цистерны гладкой эндоплазматической сети. Применение традиционных методик фиксации при исследовании клеток позволяет различить на пресинаптической мембране пресинаптические уплотнения, ограничивающие активные зоны синапса, к которым при помощи микротрубочек направляются синаптические пузырьки.


    Аксодендритический синапс.
    Срез препарата спинного мозга: синапс между концевым участком дендрита и, предположительно, двигательным нейроном.
    Наличие округлых синаптических пузырьков и постсинаптического уплотнения характерно для возбуждающих синапсов.
    Срез дендрита проведен в поперечном направлении, о чем свидетельствует наличие множества микротрубочек.
    Кроме того, видны некоторые нейрофиламенты. Участок синапса окружен протоплазматическим астроцитом.

    Процессы, происходящие в нервных окончаниях двух типов.
    (А) Синаптическая передача небольших молекул (например, глутамата).
    (1) Транспортные пузырьки, содержащие мембранные белки синаптических пузырьков, направляются вдоль микротрубочек к плазматической мембране булавовидного утолщения.
    В это же время происходит перенос молекул ферментов и глутамата путем медленного транспорта.
    (2) Мембранные белки пузырьков выходят из плазматической мембраны и формируют синаптические пузырьки.
    (3) Глутамат погружается в синаптические пузырьки; происходит накопление медиатора.
    (4) Пузырьки, содержащие глутамат, подходят к пресинаптической мембране.
    (5) В результате деполяризации происходит экзоцитоз медиатора из частично разрушенных пузырьков.
    (6) Высвобождающийся медиатор распространяется диффузно в области синаптической щели и активирует специфические рецепторы на постсинаптической мембране.
    (7) Мембраны синаптических пузырьков транспортируются обратно в клетку путем эндоцитоза.
    (8) Происходит частичный обратный захват глутамата в клетку для повторного использования.
    (Б) Передача нейропептидов (например, субстанции Р), осуществляющаяся одновременно с синаптической передачей (например, глутамата).
    Совместная передача этих веществ происходит в центральных нервных окончаниях униполярных нейронов, обеспечивающих болевую чувствительность.
    (1) Синтезированные в комплексе Гольджи (в области перикариона) пузырьки и предшественники пептидов (пропептиды) транспортируются к булавовидному расширению путем быстрого транспорта.
    (2) При их попадании в область булавовидного утолщения завершается процесс формирования молекулы пептида, и пузырьки транспортируются к плазматической мембране.
    (3) Деполяризация мембраны и перенос содержимого пузырьков в межклеточное пространство путем экзоцитоза.
    (4) Одновременно с этим происходит высвобождение глутамата.

    1. Активация рецепторов . Молекулы медиаторов проходят через синаптическую щель и активируют рецепторные белки, расположенные парами на постсинаптической мембране. Активация рецепторов запускает ионные процессы, которые приводят к деполяризации постсинаптической мембраны (возбуждающее постсинаптическое действие) или гиперполяризации постсинаптической мембраны (тормозящее постсинаптическое действие). Изменение электротонуса передается в сому в виде затухающего по мере распространения электротонического потенциала, за счет которого происходит изменение потенциала покоя в начальном сегменте аксона.

    Ионные процессы подробно описаны в отдельной статье на сайте. При преобладании возбуждающих постсинаптических потенциалов начальный сегмент аксона деполяризуется до порогового уровня и генерирует потенциал действия.

    Наиболее распространенный возбуждающий медиатор ЦНС - глутамат, а тормозной - гамма-аминомасляная кислота (ГАМК). В периферической нервной системе медиатором для двигательных нейронов поперечно-полосатой мускулатуры служит ацетилхолин, а для чувствительных нейронов - глутамат.

    Последовательность процессов, происходящих в глутаматергических синапсах, показана на рисунке ниже. При передаче глутамата совместно с другими пептидами высвобождение пептидов осуществляется внесинаптическим путем.

    Большинство чувствительных нейронов помимо глутамата выделяет и другие пептиды (один или несколько), высвобождающиеся в различных участках нейрона; однако основная функция этих пептидов - модуляция (повышение или снижение) эффективности синаптической передачи глутамата.

    Кроме того, нейротрансмиссия может происходить путем диффузной внесинаптической передачи сигнала, характерной для моноаминергических нейронов (нейронов, использующих биогенные амины для обеспечения нейротрансмиссии). Выделяют две разновидности моноаминергических нейронов. В одних нейронах осуществляется синтез катехоламинов (норадреналина или дофамина) из аминокислоты тирозина, а в других - серотонина из аминокислоты триптофана. Например, дофамин высвобождается как в синаптической области, так и из варикозных утолщений аксона, в которых также происходит синтез этого нейромедиатора.

    Дофамин проникает в межклеточную жидкость ЦНС и до момента деградации способен активировать специфические рецепторы на расстоянии до 100 мкм. Моноаминергические нейроны присутствуют во многих структурах ЦНС; нарушение передачи импульса этими нейронами приводит к различным заболеваниям, среди которых выделяют болезнь Паркинсона, шизофрению и глубокую депрессию.

    Оксид азота (газообразная молекула) также участвует в диффузной нейропередаче в глутаматергической системе нейронов. Избыточное влияние оксида азота оказывает цитотоксическое действие, особенно в тех участках, кровоснабжение которых нарушено за счет тромбоза артерий. Глутамат также является потенциально цитотоксическим нейромедиатором.

    В отличие от диффузной нейротрансмиссии, традиционную синаптическую передачу сигнала ввиду ее относительной стабильности называют «проводниковой».

    в) Резюме . Мультиполярные нейроны ЦНС состоят из сомы, дендритов и аксона; аксон образует коллатеральные и терминальные ветви. В соме расположены гладкая и шероховатая эндоплазматическая сети, комплексы Гольджи, нейрофиламенты и микротрубочки. Микротрубочки пронизывают нейрон на всем протяжении, принимают участие в процессе антероградного транспорта синаптических пузырьков, митохондрий и веществ для построения мембран, а также обеспечивают ретроградный транспорт «маркерных» молекул и разрушенных органелл.

    Существует три вида химических межнейрональных взаимодействий: синаптическое (например, глутаматергическое), внесинаптическое (пептидергическое) и диффузное (например, моноаминергическое, серотонинергическое).

    Химические синапсы классифицируют по анатомическому строению на аксодендритические, аксосоматические, аксоаксональные и дендро-дендритические. Синапс представлен пре- и постсинаптическими мембранами, синаптической щелью и субсинаптической активной зоной.

    Электрические синапсы обеспечивают одновременную активацию целых групп , образуя между ними электрические связи за счет щелевидных контактов (нексусов).

    Диффузная нейротрансмиссия в головном мозге.
    Аксоны глутаматергического (1) и дофаминергического (2) нейронов образуют плотные синаптические контакты с отростком звездчатого нейрона (3) полосатого тела.
    Дофамин высвобождается не только из пресинаптической области, но и из варикозного утолщения аксона, откуда диффузно распространяется в межклеточное пространство и активирует дофаминовые рецепторы дендритного ствола и стенки перицита капилляра.

    Растормаживание.
    (А) Возбуждающий нейрон 1 активирует тормозной нейрон 2, который в свою очередь затормаживает нейрон 3.
    (Б) Появление второго тормозного нейрона (2б) оказывает противоположное влияние на нейрон 3, поскольку происходит торможение нейрона 2б.
    Спонтанно-активный нейрон 3 генерирует сигналы в условиях отсутствия тормозных влияний.

    2. Лекарственные средства - «ключи» и «замки» . Рецептор можно сравнить с замком, а медиатор - с подходящим к нему ключом. В том случае, если процесс высвобождения медиатора нарушится с возрастом или в результате какого-либо заболевания, лекарственное средство может сыграть роль «запасного ключа», выполняющего аналогичную медиатору функцию. Такое лекарственное средство называют агонистом. В то же время в случае чрезмерной продукции медиатор может быть «перехвачен» блокатором рецептора - «фальшивым ключом», который свяжется с «замком»-рецептором, но при этом не вызовет его активацию.

    3. Торможение и растормаживание . Функционирование спонтанно-активных нейронов сдерживается под влиянием тормозных нейронов (обычно, ГАМКергических). Деятельность тормозных нейронов, в свою очередь, может быть ингибирована воздействующими на них другими тормозными нейронами, в результате чего происходит растормаживание клетки-мишени. Процесс растормаживания - важная особенность нейрональной активности в базальных ганглиях.

    4. Редкие виды химических синапсов . Выделяют два типа аксоаксональных синапсов. В обоих случаях булавовидное утолщение образует тормозной нейрон. Синапсы первого типа образуются в области начального сегмента аксона и передают мощное ингибирующее влияние тормозного нейрона. Синапсы второго типа образуются между булавовидным утолщением тормозного нейрона и булавовидными утолщениями возбуждающих нейронов, что приводит к угнетению высвобождения медиаторов. Этот процесс получил название пресинаптического торможения. В этом плане традиционный синапс обеспечивает постсинаптичсекое торможение.

    Дендро-дендритические (Д-Д) синапсы образуются между дендритными шипиками дендритов смежных шипиковых нейронов. Их задача - не генерирование нервного импульса, а изменение электротонуса клетки-мишени. В последовательных Д-Д-синапсах синаптические пузырьки располагаются только в одном дендритном шипике, а в реципрокном Д-Д-синапсе- в обоих. Возбуждающие Д-Д-синапсы изображены на рисунке ниже. Тормозные Д-Д-синапсы широко представлены в переключающих ядрах таламуса.

    Кроме того, выделяют немногочисленные сомато-дендритические и сомато-соматические синапсы.

    Аксоаксональные синапсы коры головного мозга.
    Стрелками указано направление проведения импульсов.

    (1) Пресинаптическое и (2) постсинаптическое торможение спинномозгового нейрона, направляющегося к головному мозгу.
    Стрелками указано направление проведения импульсов (возможно торможение переключательного нейрона под действием тормозных влияний).

    Возбуждающие дендро-дендритические синапсы. Изображены дендриты трех нейронов.
    Реципрокный синапс (справа). Стрелками указано направление распространения электрото-нических волн.

    Учебное видео - строение синапса