Действие над положительными действительными числами. Конспект урока "действительные числа". Сравнение действительных чисел

Урок №2.

Тема урока. Действительные числа.

Цель урока. Ввести понятие действительного числа. Действия с действительными числами.

Ход урока.

I. Организационный момент. Сообщение темы и цели урока.

II . Повторение пройденного материала.

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения знаний (самостоятельная работа).

1 вариант. 2 вариант.

1. Найдите значения выражений:

1) ; 2) ; 3) 1) 2) 3)

2. Вычислить:

1) 2) 1) 2)

3) 4) 3) ; 4)

III . Изучение нового материала.

1.Рациональных чисел недостаточно для решения задач измерения. Так диагональ квадрата с единичной стороной не может быть измерена, если использовать только рациональные числа(2,5т.л. до н.э.)

Для задач измерения можно выбрать стандартную величину - длину отрезка и задать числа геометрически – отрезками, а точнее их отношениями к выбранному единичному отрезку (единице масштаба). Если назвать числом отношение отрезка к единичному, то возникает задача записи числа. Удобна запись числа в виде десятичной дроби, отражающей некоторый процесс измерения.

Измеряя диагональ квадрата со стороной 1, мы сначала отложим целый

единичный отрезок и получим число 1. В остатке будем откладывать деся-

тую часть единичного отрезка. Она отложится 4 раза, и останется отрезок

длины, меньшей . Получим десятичную дробь 1,4. Затем делим

снова на 10 частей, откладываем новый отрезок в остатке и записываем

результат. Получим последовательность десятичных дробей с увеличива-

ющимся количеством знаков после запятой: 1; 1.4; 1,41; 1,414; 1,4142;… .

Эту последовательность удобно представить в виде одной беско-

нечной десятичной дроби 1,414213562373095…, которую и можно считать

числом. Итак, по определению действительное число – это бесконечная

непериодическая десятичная дробь.

2. Конечная десятичная дробь. Рациональное число, представленное

Дробью, в знаменателе которой стоят только двойки и пятерки, запишется

конечной десятичной дробью, так как на каком-то шаге десятичный процесс измерения закончится – некоторая доля единичного отрезка отложится в остатке целое число раз.

Например:

Если у некоторой несократимой дроби в знаменателе есть простые числа, отличные от 2 и 5, то процесс десятичного измерения станет периодическим, и цифры (одна или несколько) начнут периодически повторяться.

Например:

3. Иррациональные числа – это числа, не являющиеся рациональными. Они записываются бесконечными непериодическими десятичными дробями.

Например: .

Объединение множества рациональных и иррациональных чисел образует множество действительных чисел R . ( ).

4 . Зачем понадобились действительные числа, и хватает ли их для решения задач?

Добавление к рациональным числам иррациональных чисел было вызвано необходимостью измерения длины любых отрезков. С помощью так построенных действительных чисел можно измерять многие другие величины, которые были названы скалярными .

5 . Почему диагональ квадрата со стороной, равной единице, нельзя измерить рациональным числом?

6. Действия над действительными числами.

Бесконечная десятичная дробь – это последовательность приближений конечными десятичными дробями к данному действительному числу. Для выполнения арифметических операций над ними эти операции делаются с конечными десятичными дробями.

Например: . Получим:

Аналогично (с помощью калькулятора).

Действительные числа можно изобразить точками на числовой оси. Если два числа b изображены точками на числовой оси, то расстояние между А и В равно модулю разности чисел a u b : Свойства:

I v . Закрепление пройденного материала.

1. Ответить на вопросы.

1) Всякое ли целое число является рациональным? (Да)

2) Является ли число иррациональным? (Нет)

3) Всегда ли сумма рациональных чисел является рациональным числом? (Нет. Сумма периодических дробей.)

4) Может ли при сложении иррациональных чисел получиться рациональное число? (Нет)

5) Может ли частное от деления рационального числа на иррациональное быть рациональным числом? (Нет)

6) Всегда ли квадрат иррационального числа является рациональным числом? (Нет. ).

2. Решение примеров.

1) Приведите примеры рациональных и иррациональных чисел.

2) Укажите рациональные и иррациональные числа:

3) Верно ли, что: а) . б)

Повторение неполной средней школы

Интеграл

Производная

Объемы тел

Тела вращения

Метод координат в пространстве

Прямоугольная система координат. Связь между координатами векторов и координатами точек. Простейшие задачи в координатах. Скалярное произведение векторов.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса.

Площадь поверхности конуса. Сфера и шар. Площадь сферы. Взаимное расположение сферы и плоскости.

Понятие объема. Объем прямоугольного параллелепипеда. Объем прямой призмы, цилиндра. Объем пирамиды и конуса. Объём шара.

Раздел III. Начала математического анализа

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Применение производной к исследованию функций Возрастание и убывание функции. Экстремумыфункции. Применение производной к построению графиков. Наибольшее, наименьшее значенияфункции.

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Учебно-тренировочные задания к экзаменам

Раздел I. Алгебра

Число - абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа – это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Дополнением натуральных чисел нулём и отрицательными числами (т.е. числами, противоположными натуральным) множество натуральных чисел расширяется до множества целых чисел.

Целые числа – это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, что Z={1,2,3,....}. Рациональные числа – это числа, представимые в виде дроби , где m - целое число, а n - натуральное число.

Существуют рациональные числа, которые нельзя записать в виде конечной десятичной дроби, например . Если, например, попытаться записать число в виде десятичной дроби, используя известный алгоритм деления уголком, то получится бесконечная десятичная дробь . Бесконечную десятичную дробь называют периодической, повторяющуюся цифру 3 – её периодом. Периодическую дробь коротко записывают так: 0,(3); читается: «Ноль целых и три в периоде».



Вообще, периодическая дробь – это бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр – период дроби.

Например, десятичная дробь периодическая с периодом 56; читается «23 целых, 14 сотых и 56 в периоде».

Итак, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.

Справедливо и обратное утверждение: каждая бесконечная периодическая десятичная дробь является рациональным числом, так как может быть представлена в виде дроби , где - целое число, - натуральное число.

Действительные (вещественные) числа – это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа – это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел – это .

Любое действительное число можно отобразить на числовой прямой:

Для перечисленных выше множеств чисел справедливо следующее высказывание: множество натуральных чисел входит во множество целых чисел, множество целых чисел входит во множество рациональных чисел, а множество рациональных чисел входит во множество действительных чисел. Это высказывание можно проиллюстрировать с помощью кругов Эйлера.

Упражнения для самостоятельного решения

Тема № 1.

Действительные числа.Числовые выражения. Преобразование числовых выражений

I. Теоретический материал

Основные понятия

· Натуральные числа

· Десятичная запись числа

· Противоположные числа

· Целые числа

· Обыкновенная дробь

· Рациональные числа

· Бесконечная десятичная дробь

· Период числа, периодическая дробь

· Иррациональные числа

· Действительные числа

· Арифметические действия

· Числовое выражение

· Значение выражения

· Обращение десятичной дроби в обыкновенную

· Обращение обыкновенной дроби в десятичную

· Обращение периодической дроби в обыкновенную

· Законы арифметических действий

· Признаки делимости

Числа, употребляемые при счете предметов или для указания порядкового номера того или иного предмета среди однородных предметов, называются натуральными . Любое натуральное число можно записать с помощью десяти цифр : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Такую запись чисел называют десятичной.

Например : 24; 3711; 40125.

Множество натуральных чисел принято обозначать N .

Два числа, отличающиеся друг от друга только знаком, называются противоположными числами.

Например , числа 7 и – 7.

Числа натуральные, им противоположные, а также число нуль составляют множество целых Z .

Например : – 37; 0; 2541.

Число вида , где m – целое число, n – натуральное число, называется обыкновенной дробью . Заметим, что любое натуральное число можно представить в виде дроби со знаменателем 1.

Например : , .

Объединение множеств целых и дробных чисел (положительных и отрицательных) составляет множество рациональных чисел. Его принято обозначать Q .

Например : ; – 17,55; .

Пусть дана десятичная дробь. Ее значение не изменится, если справа приписать любое число нулей.

Например : 3,47 = 3,470 = 3,4700 = 3,47000… .

Такая десятичная дробь называется бесконечной десятичной дробью.

Любую обыкновенную дробь можно представить в виде бесконечной десятичной дроби.

Последовательно повторяющаяся группа цифр после запятой в записи числа называется периодом , а бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической . Для краткости принято период записывать один раз, заключая его в круглые скобки.



Например : 0,2142857142857142857… = 0,2(142857).

2,73000… = 2,73(0).

Бесконечные десятичные непериодические дроби называются иррациональными числами.

Объединение множеств рациональных и иррациональных чисел составляет множество действительных чисел. Его принято обозначать R .

Например : ; 0,(23); 41,3574…

Число является иррациональным.

Для всех чисел определены действия трёх ступеней:

· действия I ступени: сложение и вычитание;

· действия II ступени: умножение и деление;

· действия III ступени: возведение в степень и извлечение корня.

Выражение, составленное из чисел, знаков арифметических действий и скобок, называется числовым.

Например : ; .

Число, полученное в результате выполнения действий, называется значением выражения .

Числовое выражение не имеет смысла , если содержит деление на нуль.

При нахождении значения выражения выполняются последовательно действия III ступени, II ступени и в конце действия I ступени. При этом необходимо учитывать размещение в числовом выражении скобок.

Преобразование числового выражения заключается в последовательном выполнении арифметических действий над входящими в него числами с использованием соответствующих правил (правило сложения обыкновенных дробей с разными знаменателями, умножения десятичных дробей и др.). Задания на преобразование числовых выражений в учебных пособиях встречаются в следующих формулировках: «Найдите значение числового выражения», «Упростите числовое выражение», «Вычислите» и др.

При нахождении значений некоторых числовых выражений приходится выполнять действия с дробями разного вида: обыкновенными, десятичными, периодическими. В этом случае бывает необходимо обратить обыкновенную дробь в десятичную или выполнить обратное действие – заменить периодическую дробь обыкновенной.

Чтобы обратить десятичную дробь в обыкновенную , достаточно в числителе дроби записать число, стоящее после запятой, а в знаменателе – единицу с нулями, причем нулей должно быть столько, сколько цифр находится справа от запятой.

Например : ; .

Чтобы обратить обыкновенную дробь в десятичную , надо разделить ее числитель на знаменатель по правилу деления десятичной дроби на целое число.

Например : ;

;

.

Чтобы обратить периодическую дробь в обыкновенную , надо:

1) из числа, стоящего до второго периода, вычесть число, стоящее до первого периода;

2) записать эту разность числителем;

3) в знаменателе написать цифру 9 столько раз, сколько цифр в периоде;

4) дописать в знаменателе столько нулей, сколько цифр между запятой и первым периодом.

Например : ; .

Законы арифметических действий над действительными числами

1. Переместительный (коммутативный) закон сложения: от перестановки слагаемых значение суммы не меняется:

2. Переместительный (коммутативный) закон умножения: от перестановки множителей значение произведения не меняется:

3. Сочетательный (ассоциативный) закон сложения: значение суммы не изменится, если какую-либо группу слагаемых заменить их суммой:

4. Сочетательный (ассоциативный) закон умножения: значение произведения не изменится, если какую-либо группу множителей заменить их произведением:

.

5. Распределительный (дистрибутивный) закон умножения относительно сложения: чтобы умножить сумму на число, достаточно умножить каждое слагаемое на это число и сложить полученные произведения:

Свойства 6 – 10 называют законами поглощения 0 и 1.

Признаки делимости

Свойства, позволяющие в некоторых случаях, не производя деление, определить, делится ли одно число на другое, называются признаками делимости .

Признак делимости на 2. Число делится на 2 тогда и только тогда, когда запись числа оканчивается на четную цифру. То есть на 0, 2, 4, 6, 8.

Например : 12834; –2538; 39,42.

Признак делимости на 3 . Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Например : 2742; –17940.

Признак делимости на 4 . Число, содержащее не менее трех цифр, делится на 4 тогда и только тогда, когда делится на 4 двузначное число, образованное последними двумя цифрами заданного числа.

Например : 15436; –372516.

Признак делимости на 5 . Число делится на 5 тогда и только тогда, когда его последняя цифра либо 0, либо 5.

Например : 754570; –4125.

Признак делимости на 9 . Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Например : 846; –76455.

Если число α нельзя представить в виде несократимой дроби $$\frac{p}{q}$$, то его называют иррациональным.
Иррациональное число записывается в виде бесконечной непериодической десятичной дроби.

Факт существования иррациональных чисел продемонстрируем на примере.
Пример 1.4.1. Докажите, что не существует рационального числа, квадрат которого равен 2.
Решение. Предположим, что существует несократимая дробь $$\frac{p}{q}$$ такая, что $$(\frac{p}{q})^{2}=2$$
или $$p^{2}=2q^{2}$$. Отсюда следует, что $$p^{2}$$ кратно 2, а значит, и p кратно 2. В противном случае, если p не делится на 2, т.е. $$p=2k-1$$, то $$p^{2}=(2k-1)^{2}=4k^{2}-4k+1$$ также не делится на 2. Следовательно, $$p=2k$$ $$\Rightarrow$$ $$p^{2}=4k^{2}$$ $$\Rightarrow$$ $$4k^{2}=2q^{2}$$ $$\Rightarrow$$ $$q^{2}=2k^{2}$$.
Поскольку $$q^{2}$$ кратно 2, то и q кратно 2, т.е. $$q=2m$$.
Итак, числа p и q имеют общий множитель – число 2, а значит, дробь $$\frac{p}{q}$$ сократимая.
Это противоречие означает, что сделанное предположение неверно, тем самым утверждение доказано.
Множество рациональных и иррациональных чисел называется множеством действительных чисел.
В множестве действительных чисел аксиоматически вводятся операции сложения и умножения: любым двум действительным числам a и b ставится в соответствие число $$a+b$$ и произведение $$a\cdot b$$.
Кроме того, в этом множестве вводятся отношения "больше", "меньше" и равенства:
$$a>b$$ тогда и только тогда, когда a - b – положительное число;
$$a a = b тогда и только тогда, когда a - b = 0.
Перечислим основные свойства числовых неравенств.
1. Если $$a>b$$ и $$b>c$$ $$\Rightarrow$$ $$a>c$$.
2. Если $$a>b$$ и $$c>0$$ $$\Rightarrow$$ $$ac>bc$$.
3. Если $$a>b$$ и $$c<0$$ $$\Rightarrow$$ $$ac 4. Если $$a>b$$ и c – любое число $$\Rightarrow$$ $$a+c>b+c$$.
5. Если a, b, c, d – положительные числа такие, что $$a>b$$ и $$c>d$$ $$\Rightarrow$$ $$ac>bd$$.
Следствие. Если a и b – положительные числа и $$a>b$$ $$\Rightarrow$$ $$a^{2}>b^{2}$$.
6. Если $$a>b$$ и $$c>d$$ $$\Rightarrow$$ $$a+c>b+d$$.
7. Если $$a>0$$, $$b>0$$ и $$a>b$$ $$\Rightarrow$$ $$\frac{1}{a}<\frac{1}{b}$$.

Геометрическая интерпретация действительных чисел.
Возьмем прямую l , см. рис. 1.4.1, и зафиксируем на ней точку O – начало отсчета.
Точка O разбивает прямую на две части – лучи. Луч, направленный вправо, назовем положительным лучом, а луч, направленный влево – отрицательным. На прямой отметим отрезок, принятый за единицу длины, т.е. вводим масштаб.

Рис. 1.4.1. Геометрическая интерпретация действительных чисел.

Прямая с выбранным началом отсчета, положительным направлением и масштабом называется числовой прямой.
Каждой точке числовой прямой можно поставить в соответствие действительное число по следующему правилу:

– точке О поставим в соответствие нуль;
– каждой точке N на положительном луче поставим в соответствие положительное число a, где a – длина отрезка ON ;
– каждой точке M на отрицательном луче поставим в соответствие отрицательное число b, где $$b=-\left | OM \right |$$ (длина отрезка OM, взятая со знаком минус).
Таким образом, между множеством всех точек числовой прямой и множеством действительных чисел устанавливается взаимно–однозначное соответствие, т.е. :
1) каждой точке на числовой прямой поставлено в соответствие одно и только одно действительное число;
2) разным точкам поставлены в соответствие разные числа;
3) нет ни одного действительного числа, которое не соответствовало бы какой–либо точке числовой прямой.

Пример 1.4.2. На числовой прямой отметьте точки, соответствующие числам:
1) $$1\frac{5}{7}$$ 2) $$\sqrt{2}$$ 3) $$\sqrt{3}$$
Решение. 1) Для того, чтобы отметить дробное число $$\frac{12}{7}$$, надо построить точку, соответствующую $$\frac{12}{7}$$.
Для этого надо отрезок длины 1 разделить на 7 равных частей. Эту задачу решаем так.
Проводим произвольный луч из т.О и на этом луче отложим 7 равных отрезков. Получим
отрезок ОА, и из т. А проведем прямую до пересечения с 1.

Рис. 1.4.2. Деление единичного отрезка на 7 равных частей.

Прямые, проведенные параллельно прямой А1 через концы отложенных отрезков, делят отрезок единичной длины на 7 равных частей (рис.1.4.2). Это дает возможность построить точку, изображающую число $$1\frac{5}{7}$$ (рис.1.4.3).

Рис. 1.4.3. Точка числовой оси, соответствующая числу $$1\frac{5}{7}$$.

2) Число $$\sqrt{2}$$ можно получить так. Построим прямоугольный треугольник с единичными катетами. Тогда длина гипотенузы равна $$\sqrt{2}$$; этот отрезок откладываем от О на числовой прямой (рис.1.4.4).
3) Для построения точки, удаленной от т.О на расстояние $$\sqrt{3}$$ (вправо) надо построить прямоугольный треугольник с катетами длиной 1 и $$\sqrt{2}$$. Тогда его гипотенуза имеет длину $$\sqrt{2}$$, что позволяет указать искомую точку на числовой оси.
Для действительных чисел определено понятие модуля (или абсолютной величины).

Рис. 1.4.4. Точка числовой оси, соответствующая числу $$\sqrt{2}$$.

Модулем действительного числа a называется:
– само это число, если a – положительное число;
– нуль, если a – нуль;
-a , если a – отрицательное число.
Модуль числа a обозначается $$\left | a \right |$$.
Определение модуля (или абсолютной величины) можно записать в виде

$$\left | a \right |=\left\{\begin{matrix}a, a\geq0\\-a, a<0\end{matrix}\right.$$ (1.4.1)

Геометрически модуль числа a означает расстояние на числовой прямой от начала отсчета О до точки, соответствующей числу a .
Отметим некоторые свойства модуля.
1. Для любого числа a справедливо равенство $$\left | a \right |=\left | -a \right |$$.
2. Для любых чисел a и b справедливы равенства

$$\left | ab \right |=\left | a \right |\cdot \left | b \right |$$; $$\left | \frac{a}{b} \right |=\frac{\left | a \right |}{\left | b \right |}$$ $$(b\neq 0)$$; $$\left | a \right |^{2}=a^{2}$$.

3. Для любого числа a справедливо неравенство $$\left | a \right |\geq 0$$.
4. Для любого числа a справедливо неравенство $$-\left | a \right |\leq a\leq \left | a \right |$$.
5. Для любых чисел a и b справедливо неравенство

$$\left | a+b \right |\leq \left | a \right |+\left | b \right |$$

Рассмотрим следующие числовые множества.
Если $$a 1) отрезком называется множество всех действительных чисел α для каждого из которых справедливо: $$a\leq \alpha \leq b$$;
2) интервалом (a; b) называется множество всех действительных чисел α , для каждого из которых справедливо: $$a<\alpha 3) полуинтервалом (a; b] называется множество всех действительных чисел α для каждого из которых справедливо: $$a<\alpha \leq b$$.
Аналогично можно ввести полуинтервал .
В некоторых случаях говорят о "промежутках", понимая под этим либо луч, либо отрезок, либо интервал, либо полуинтервал.

Множество R всех действительных чисел обозначают так: $$(-\infty; \infty)$$.
Для любого действительного числа a вводится понятие степени с натуральным показателем n , а именно

$$a^{n}=\underbrace {a\cdot a\cdot a\cdot a...a}$$, $$n\geq 2$$ и $$a^{1}=a$$.

Пусть a – любое отличное от нуля число, тогда по определению $$a^{0}=1$$.
Нулевая степень нуля не определена.
Пусть a – любое отличное от нуля число, m – любое целое число. Тогда число $$a^{m}$$ определяется по правилу:

$$a^{m}=\left\{\begin{matrix}a, m=1;\\\underbrace{a\cdot a\cdot a\cdot a...a}, m\in N, m\geq2;\\1, m=0;\\\frac{1}{a^{n}}, m=-n, n\in N\end{matrix}\right.$$

при этом a m называется степенью с целым показателем.

Прежде, чем определить понятие степени с рациональным показателем, введем понятие арифметического корня.
Арифметическим корнем степени n (n ∈ N , n > 2 ) неотрицательного числа a называется неотрицательное число b такое, что b n = a . Число b обозначается как $$b\sqrt[n]{a}$$.
Свойства арифметических корней (a > 0 , b > 0 , n, m, k – натуральные числа.)

1. $$\sqrt[n]{ab}=\sqrt[n]{a}\cdot \sqrt[n]{b}$$ 5. $$\sqrt[n]{\sqrt[k]{a}}=\sqrt{a}$$
2. $$(a)^{\frac{k}{n}}=\sqrt[n]{a^{k}}$$ 6. $$\sqrt[n]{a^{m}}=\sqrt{a^{mk}}$$
3. $$(\sqrt[n]{a})^{k}=\sqrt[n]{a^{k}}$$ 7. $$\sqrt{a^{2}}=\left | a \right |$$
4. $$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} (b\neq 0)$$ 8. $$\sqrt{a^{2n}}=\left | a \right |$$

Пусть a < 0 , а n – натуральное число, большее 1. Если n – четное число, то равенство b n = a не выполняется ни при каком действительном значении b . Это значит, что в области действительных чисел нельзя определить корень четной степени из отрицательного числа. Если же n – нечетное число, то существует единственное действительное число b такое, что b n = a . Это число обозначают √n a и называют корнем нечетной степени из отрицательного числа.
Используя определение возведения в целую степень и определение арифметического корня, дадим определение степени с рациональным показателем.
Пусть a – положительное число и $$r=\frac{p}{q}$$ – рациональное число, причем q – натуральное число.

Положительное число

$$b=\sqrt[q]{a^{p}}$$

называется степенью числа a с показателем r и обозначается как

$$b=a^{r}$$, или $$a^{\frac{p}{q}}=\sqrt[q]{a^{r}}$$, здесь $$q\in N$$, $$q\geq2$$.

Рассмотрим основные свойства степени с рациональным показателем.

Пусть a и b – любые положительные числа, r 1 и r 2 – любые рациональные числа. Тогда справедливы следующие свойства:

1. $$(ab)^{r_{1}}=a^{r_{1}}\cdot b^{r_{1}}$$
2. $$(\frac{a}{b})^{r_{1}}=\frac{a^{r_{1}}}{b^{r_{1}}}$$
3. $$a^{r_{1}}\cdot a^{r_{2}}=a^{r_{1}+r_{2}}$$
4. $$\frac{a^{r_{1}}}{a^{r_{2}}}=a^{r_{1}-r_{2}}$$
5. $$(a^{r_{1}})^{r_{2}}=a^{r_{1}r_{2}}$$ (1.4.2)
6. $$a^{0}=1$$
7. Если $$a>1$$ и $$r_{1}>0\Rightarrow a^{r_{1}}> 1$$
8. Если $$0< a< 1$$ и $$r_{1}>0\Rightarrow 0< a^{r_{1}}< 1$$
9. Если $$a>1$$ и $$r_{1}>r_{2}\Rightarrow a^{r_{1}}> a^{r_{2}}$$
10. Если $$0< a< 1$$ и $$r_{1}>r_{2}\Rightarrow a^{r_{1}}> a^{r_{2}}$$

Понятие степени положительного числа обобщается для любого действительного показателя α .
Определение степени положительного числа a с действительными показателями α .

1. Если $$\alpha > 0$$ и

1) $$\alpha=m$$, $$m\in N \Rightarrow a^{\alpha}=\left\{\begin{matrix}a, m=1\\\underbrace{a\cdot a\cdot a\cdot a....a}, m\geq 2\end{matrix}\right.$$

2) $$\alpha=\frac{p}{q}$$, где p и q - натуральные числа $$\Rightarrow a^{\alpha}=\sqrt[q]{a^{p}}$$

3) α - иррациональное число, тогда

а) если a > 1, то a α - число большее, чем a r i и меньшее, чем a r k , где r i α с недостатком, r k - любое рациональное приближение числа α с избытком;
b) если 0 < a < 1, то a α - число большее, чем a r k и меньшее, чем a r i ;
c) если a = 1, то a α = 1.

2. Если $$\alpha=0$$, то a α = 1.

3. Если $$\alpha<0$$, то $$a^{\alpha}=\frac{1}{a^{\left | \alpha \right |}}$$.

Число a α называется степенью, число a – основание степени, число α – показатель степени.
Степень положительного числа с действительным показателем обладает теми же свойствами, что и степень с рациональным показателем.

Пример 1.4.3. Вычислите $$\sqrt{81}\cdot\sqrt{\frac{16}{6}}$$.

Решение. Воспользуемся свойством корней:

$$\sqrt{81}\cdot\sqrt{\frac{16}{6}}=\sqrt{\frac{81\cdot16}{6}}=\sqrt{\frac{3^{4}\cdot2^{4}}{3\cdot2}}=\sqrt{3^{3}\cdot2^{3}}=6$$

Ответ. 6.

Пример 1.4.4. Вычислите $$6,25^{1,5}-2,25^{1,5}$$

1) 4 2) 8 3) 8,25 4) 12,25

Повторение неполной средней школы

Интеграл

Производная

Объемы тел

Тела вращения

Метод координат в пространстве

Прямоугольная система координат. Связь между координатами векторов и координатами точек. Простейшие задачи в координатах. Скалярное произведение векторов.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса.

Площадь поверхности конуса. Сфера и шар. Площадь сферы. Взаимное расположение сферы и плоскости.

Понятие объема. Объем прямоугольного параллелœепипеда. Объем прямой призмы, цилиндра. Объем пирамиды и конуса. Объём шара.

Раздел III. Начала математического анализа

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Применение производной к исследованию функций Возрастание и убывание функции. Экстремумыфункции. Применение производной к построению графиков. Наибольшее, наименьшее значенияфункции.

Первообразная. Правила нахождения первообразных. Площадь криволинœейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Учебно-тренировочные задания к экзаменам

Раздел I. Алгебра

Число - абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем крайне важно понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа - ϶ᴛᴏ числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Дополнением натуральных чисел нулём и отрицательными числами (ᴛ.ᴇ. числами, противоположными натуральным) множество натуральных чисел расширяется до множества целых чисел.

Целые числа - ϶ᴛᴏ числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, что Z={1,2,3,....}. Рациональные числа - ϶ᴛᴏ числа, представимые в виде дроби , где m - целое число, а n - натуральное число.

Существуют рациональные числа, которые нельзя записать в виде конечной десятичной дроби, к примеру . В случае если, к примеру, попытаться записать число в виде десятичной дроби, используя известный алгоритм делœения уголком, то получится бесконечная десятичная дробь . Бесконечную десятичную дробь называют периодической, повторяющуюся цифру 3 – её периодом. Периодическую дробь коротко записывают так: 0,(3); читается: «Ноль целых и три в периоде».

Вообще, периодическая дробь - ϶ᴛᴏ бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр – период дроби.

К примеру, десятичная дробь периодическая с периодом 56; читается «23 целых, 14 сотых и 56 в периоде».

Итак, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.

Справедливо и обратное утверждение: каждая бесконечная периодическая десятичная дробь является рациональным числом, так как может быть представлена в виде дроби , где - целое число, - натуральное число.

Действительные (вещественные) числа - ϶ᴛᴏ числа, ĸᴏᴛᴏᴩᴏᴇ применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа - ϶ᴛᴏ числа, которые получаются в результате выполнения различных операций с рациональными числами (к примеру, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел - ϶ᴛᴏ .

Любое действительное число можно отобразить на числовой прямой:

Для перечисленных выше множеств чисел справедливо следующее высказывание: множество натуральных чисел входит во множество целых чисел, множество целых чисел входит во множество рациональных чисел, а множество рациональных чисел входит во множество действительных чисел. Это высказывание можно проиллюстрировать с помощью кругов Эйлера.

Упражнения для самостоятельного решения