10 5 разделить обратно пропорционально числам решение. Решение задач на пропорциональное деление. §2. Задачи на пропорциональное деление

Решение: х кг – масса одной части

Сережа – х кг, Наташа – 4х кг, Коля – 3х кг

х + 4х + 3х = 2,4

х = 0,3

Сережа – 0,3 кг, Наташа – 1,2 кг, Коля – 0,9 кг

Решение: пусть х

Тогда масса воды – 4х кг, масса ягод – 3х кг, сахара – 2х кг.

4х + 3х + 2х = 13,5

9х = 13,5

х = 1,5

Масса воды – 6 кг, масса ягод – 4,5 кг, сахара – 3 кг.

Решение: 1 способ. Пусть х – коэффициент пропорциональности. Тогда длина первого отрезка 2х м, длина второго - 3х м.

2х + 3х = 1

х = 0,2

длины отрезков 0,4 м и 0,6 м

2 способ. Найдем длину одной части 2+3=5 частей

1:5=0,2 м – длина одной части

Решение: Пусть х – коэффициент пропорциональности.

88=16+24+48

Решение: Пусть х – коэффициент пропорциональности.

8х = 112

х = 14 – коэффициент пропорциональности

первое число – 42, второе – 70


Решение: Пусть х – коэффициент пропорциональности.

Первое число -
, второе - .


Решение: Пусть х – коэффициент пропорциональности.

Третье число -
, второе число -
.

Пусть у – коэффициент пропорциональности.

Первое число - .

Решение: Пусть х – коэффициент пропорциональности.

Тогда собственная скорость парохода – 36х км/ч, скорость течения - 5х км/ч, скорость против течения - 31х км/ч, скорость по течению - 41х км/ч.

Скорость по течению относится к скорости против течения, как 41:31.

Скорость

Время

5 ч 10 мин = ч

х ч

Обратная пропорциональность

- время на обратный путь

    х, у, z так, чтобы х:у=3:4, у: z =4:5.

Решение: х:у: z =3:4:5

Всего 3+4+5=12 частей

144:12=12 – одна часть

х=36, у=48, z =60.

    х, у, z так, чтобы х:у=3:2, у: z =5:3.

Решение:

Всего 15+10+6=31 часть

310:31=10 – одна часть

х=150, у=100, z= 60.

Решение: пусть х, у, z данные числа.

10x=15y, 15y=5z

Всего 3+2+6=11 частей

Первое число -
, второе -
, третье -
.

    т, 2т, т-3. т можно решить эту задачу?

Решение: всего т + 2т + т-3 = 4т – 3 частей

Найдем длину одной части:

Длина первой части -
км, длина второй части -
км, длина третьей части -
км.

Задача имеет решение при

Пропорциональное деление

    Сережа собрал 2,4 кг клубники. Четыре части он отдал сестре Наташе, три части – брату Коле, а одну часть оставил себе. Сколько килограммов клубники получил каждый?

    Для приготовления компота требуется вода, ягоды и сахар, массы которых должны быть пропорциональны числам 4, 3 и 2 соответственно. Сколько надо взять воды, ягод и сахара (по массе) для приготовления 13,5 кг компота?

    Отрезок длиной 1 м разделили на две части, длины которых пропорциональны числам 2 и 3. Найдите длины этих отрезков.

    Три числа относятся, как 3:5:8, третье число равно 112. Вычислите два первых числа.



    Собственная скорость парохода относится к скорости течения реки, как 36:5. Пароход двигался вниз по течению реки 5 ч 10 мин. Сколько времени потребуется ему, чтобы вернуться обратно?

    Разделите число 144 на три части х, у, z так, чтобы х:у=3:4, у: z =4:5.

    Разделите число 310 на три части х, у, z так, чтобы х:у=3:2, у: z =5:3.

    Сумма трех чисел равна 90. Произведения первого числа на 10, второго числа на 15 и третьего числа на 5 равны между собой. Найдите эти числа.

    От станции до поселка 4 км. Турист решил это расстояние разделить на три части, пропорциональные числам т, 2т, т-3. Найдите, сколько километров составляет каждая часть пути. При любом ли значении т можно решить эту задачу?

Характерные особенности такого вида задач:

1) В начальных классах решаются задачи на пропорциональное деление только с прямо пропорциональной зависимостью величин.

2) В начальных классах задачи на пропорциональное деление решаются только способом нахождения значения постоянной величины.

Подготовка:

1) Работа над величинами.

2) Связь между величинами.

3) Наблюдение за зависимостью между величинами.

4) Хорошее овладение способами решения задач на нахождение четвёртого пропорционального.

Ознакомление: первые задачи на пропорциональное деление иллюстрируются или инсценируются. Переход к ознакомлению можно осуществлять от задач на нахождение четвёртого пропорционального.

Вид задачи На пропорциональное деление
Условие В магазин привезли 6 ящиков картофеля и 4 таких же ящика свёклы. Всего в магазин привезли 120 кг овощей. Сколько килограммов картофеля и сколько килограммов свёклы привезли в магазин?
Краткая запись условия 120 кг
Разбор задачи Ана­литический способ разбора (от вопроса к данным): 1) Что известно в задаче? 2) Что нужно узнать в задаче? 3) Можем ли мы сразу ответить, сколько килограммов картофеля привезли в магазин? (Нет.) 4) Что для этого нужно узнать? (Массу одного ящика и количества ящиков.) 5) Количество ящиков известно, а как можно найти массу одного ящика? (Общую массу разделить на общее количество ящиков.) 6) Как найдём общее количество ящиков? (К 6 прибавим 4.) 7) Узнав массу одного ящика, как найдём массу всего картофеля? (Массу одного ящика умножим на количество ящиков с картофелем.) 8) Как узнать массу всей свёклы? (Массу одного ящика умножим на количество ящиков со свёклой.) 9) Как можно другим способом узнать массу всей свёклы? (Из общей массы вычесть массу картофеля.)
Запись решения Запись решения по действиям с пояснением: 1) 6 + 4 = 10 (ящ.) – привезли всего. 2) 120: 10 = 12 (кг) – масса одного ящика. 3) 12 ∙ 6 = 72 (кг) – привезли картофеля. 4) 12 ∙ 4 = 48 (кг) – привезли свёклы. Ответ: 72 кг и 48 кг.
Закрепление:задания на составление задач данного вида с акцентированием на жизненную ситуацию. Решение задач на нахождение неизвестных по двум разностям В качестве подготовительных упражнений к ведению задач этого типа полезно предлагать задачи-вопросы и простые задачи повышенной трудности, которые помогут детям уяснить соответствие между двумя разностями, например: 1) Сестра купила 5 одинаковых тетрадей, а брат 8 таких же тетрадей. Кто из них больше уплатил денег? Почему? За сколько тетрадей брат уплатил столько же денег, сколько уплатила сестра? 2) Брат и сестра купили тетради по одинаковой цене. Брат купил на 3 тетради больше, чем сестра, и уплатил на 6 рублей больше, чем сестра. Сколько стоила 1 тетрадь? Выполняя предметную иллюстрацию, надо показать детям, что брат купил столько же тетрадей, сколько сестра, и ещё 3 тетради и уплатил денег столько же, сколько сестра, и ещё 6 рублей. Отсюда можно заключить, что 3 тетради стоят 6 рублей, значит, можно узнать, сколько стоит 1 тетрадь. Такие упражнения надо включать с различными группами пропорциональных величин. Методика работы по ознакомлению с задачами на нахождение неизвестных по двум разностям аналогична мето­дике введения задач на пропорциональное деление.
Вид задачи На нахождение неизвестных по двум разностям
Условие В магазин привезли 6 ящиков картофеля и 4 таких же ящика свёклы, причём картофеля привезли на 24 кг больше, чем свёклы. Сколько килограммов картофеля и сколько килограммов свёклы привезли в магазин?
Краткая запись условия на 24 кг больше. Из этой наглядной записи хорошо видно, что 24 кг картофеля находится в 2 ящиках.
Разбор задачи Синтетический способ разбора (от данных к вопросу): 1) Что известно в задаче? 2) Что нужно узнать в задаче? 3) Почему картофеля оказалось в магазине на 24 кг больше? (Потому, что ящиков с картофелем было больше.) 4) На сколько ящиков больше? (На 2.) 5) Какой вывод из этого можно сделать? (Что 24 кг картофеля находится в 2 ящиках.) 6) Зная это, как найти массу одного ящика с картофелем? (Нужно 24 кг разделить на 2.) 7) Как теперь найти массу картофеля и массу свёклы? (Массу одного ящика умножить на количество ящиков.)
Запись решения Запись решения с предварительной постановкой вопросов: 1) На сколько ящиков картофеля привезли больше, чем свёклы? 6 – 4 = 2 (ящ.) 2) Какова масса одного ящика с овощами? 24: 2 = 12 (кг) 3) Сколько килограммов картофеля привезли в магазин? 12 ∙ 6 = 72 (кг) 4) Сколько килограммов картофеля привезли в магазин? 12 ∙ 4 = 48 (кг) Ответ: 72 кг картофеля и 48 кг свёклы.

Проверка решения выполняется способом установления соот­ветствия между числами, полученными в ответе, и данными в условии задачи: узнаем, действительно ли картофеля привезли на 24 кг больше чем свёклы: 72 – 48 = 24; значит, можно считать, что задача решена правильно.

Для закрепления умения решать задачи предлага­ются:

Готовые задачина нахождение неизвестных по двум раз­ностям I вида с различными группами пропорциональных ве­личин и проводятся различные упражнения творческого характера;

Задачи на нахож­дение неизвестных по двум разностям II вида;

Упражнения на преобразование задач.

Задачи, связанные с движением , т. е. задачи с ве­личинами: скорость, время, расстояние, рассматриваются в 4 классе.

Подготовительная работа к решению задач, свя­занных с движением, предусматривает обобщение представлений детей о движении, знакомство с новой величиной – ско­ростью, раскрытие связей между величинами: скорость, время, расстояние.

С целью обобщения представлений детей о движении полезно провести специальную экскурсию по наблюдению за движе­нием транспорта, после чего провести наблюдение в условиях класса, где движение будут демонстрировать сами дети. На экскурсии и во время работы в классе пронаблюдать за движением одного тела и двух тел относительно друг друга. Так, одно тело (трамвай, машина, человек и т.п.) может двигаться быстрее имедленнее, может остановиться, может двигаться по прямой или кривой. Два тела могут двигаться в одном направлении, а могут двигаться в противоположных направлениях: либо приближаясь одно к другому (двигаясь навстречу одно к другому), либо удаляясь одно от другого. Наблюдая указанные ситуации в условиях класса, надо показать детям, как вы­полняются чертежи: расстояние принято обозначать отрезком; место (пункт) отправления, встречи, прибытия и т.п. обознача­ют либо точкой на отрезке и соответствующей буквой, либо чёр­точкой, либо флажком; направление движения указывают стрел­кой. Например, встречное движение двух тел изображается так:


А ├────────┼────────┤В

Здесь отрезок обозначает расстояние, которое должны прой­ти тела до встречи, флажок – место встречи, точки А и В – пункты выхода тел, стрелки – направление движения. Полезно выполнять и обратные упражнения: по данному чертежу выпол­нять соответствующее движение.

При ознакомлении со скоростью целесообразно так органи­зовать работу, чтобы учащиеся нашли скорость своего движе­ния пешком. Для этого можно начертить во дворе, в спортзале или коридоре «замкнутую дорожку». На дорожке надо отметить расстояния по 10 м, чтобы удобнее было нахо­дить, какой путь прошёл каждый ученик. Учитель предлагает детям идти по дорожке, например, в течение 4 мин. Учащиеся сами легко найдут по десятиметровым отметкам пройденное расстояние. На уроке каждый из детей может вычислить, какое расстояние он проходит за 1 мин. Учитель сообщает, что рас­стояние, которое прошёл ученик за минуту, называют его ско­ростью. Ученики называют свои скорости. Затем учитель назы­вает скорости некоторых видов транспорта. Эти данные уча­щиеся могут записать в своих справочниках и использовать в дальнейшем при составлении задач.

Раскрытие связей между величинами : скорость – время – расстояние ведётся по такой же методике, как и раскрытие связей между другими пропорциональными величинами. В результате решения соответствующих простых задач ученики долж­ны усвоить такие связи: если известны расстояние и время дви­жения, то можно найти скорость действием деления; если из­вестны скорость и время движения, то можно найти расстояние действием умножения; если известны расстояние и скорость, то можно найти время движения действием деления.

Далее, опираясь на эти знания, дети будут решать состав­ные задачи, в том числе задачи на нахождение четвёртого про­порционального, на пропорциональное деление, на нахождение неизвестных по двум разностям с величинами: скорость, время, расстояние. При работе над этими задачами надо чаще исполь­зовать иллюстрации в виде чертежа, так как чертёж помогает правильно представить жизненную ситуацию, отражённую в задаче.

Так же как и при решении задач других видов, следует включать упражнения творческого характера на преобразова­ние и составление задач.

Одновременно с решением задач названных видов в 4 клас­се вводятся задачи на встречное движение и движение в про­тивоположных направлениях. Каждая из этих задач имеет три вида в зависимости от данных и искомого:

I вид – даны скорость каждого из тел и время движения, искомое – расстояние;

II вид – даны скорость каждого из тел и расстояние, ис­комое – время движения;

III вид – даны расстояние, время движения и скорость одного из тел, искомое – скорость другого тела.

В целях подготовки к введению задач на встречное дви­жение очень важно сформировать правильные представления об одновременном движении двух тел: дети должны хорошо уяснить, что если два тела вышли одновременно навстречу друг другу, то до встречи они будут находиться в пути одинаковое время и при этом оба пройдут всё расстояние между пунктами, из которых они вышли. Чтобы дети осознали это, следует вклю­чать задачи-вопросы, аналогичные следующим:

1) Из двух городов одновременно отплыли навстречу друг другу два теплохода и встретились через 3 ч. Сколько времени был в пути до встречи каждый теплоход?

2) Из посёлка в город вышел пешеход и в это время из го­рода навстречу ему выехал велосипедист, который встретил пешехода через 40 мин. Сколько времени был в пути до встречи пешеход?

Теперь можно ознакомить детей с решением задач на встречное движение, причём целесообразно на одном уроке ввести все три вида, получая новые задачи путём преобразова­ния данной в обратные. Такой приём позволяет детям само­стоятельно найти решение, поскольку задача нового вида будет получена из задачи, уже решённой детьми. Раскроем это на конкретном примере.

Учитель читает задачу: «Из двух поселков выехали одновременно навстречу друг другу два велосипедиста и встрети­лись через 2 ч. Один ехал со скоростью 15 км в час, а второй со скоростью 18 км в час. Найти расстояние между поселками».

Что известно о движении велосипедистов? Что надо узнать? Пусть это будет посёлок, из которого выехал первый велосипе­дист. (Учитель вставляет в наборное полотно карточку с рим­ской цифрой «I»). А это посёлок, из которого выехал второй велосипедист. (Вставляет карточку.) Двое из вас будут вело­сипедистами. (Выходят два ученика.) С какой скоростью ехал первый? (15 км в час.) Это твоя скорость. (Даёт карточку, на которой написано число 15.) Это твоя скорость. (Даёт второму ученику карточку.) Сколько времени они будут двигаться до встречи? (2 ч.) Начинайте двигаться. Прошел час. (Дети встав­ляют одновременно свои карточки в наборное полотно.) Про­шёл второй час. (Дети вставляют карточки.) Встретились ли велосипедисты? (Да.) Почему? (Шли до встречи по 2 ч.) Обо­значу место встречи флажком. (Вставляет флажок.) Что надо узнать? (Всё расстояние.) Обозначу вопросительным знаком. Получается иллюстрация:

I
?
II

После такого разбора учащиеся сами находят два способа решения. Решения надо записать с пояснениями сначала от­дельными действиями, а позднее можно записать выражение или уравнение.

Первый способ:

1) 35 ∙ 2 = 30 (км) – проехал первый велосипедист;

2) 18 ∙ 2 = 36 (км) – проехал второй велосипедист;

3) 30 + 36 = 66 (км) – расстояние между поселками.

Второй способ:

1) 15 + 18 = 33 (км) – сближались велосипедисты в час;

2) 33 ∙ 2 = 66 (км) – расстояние между поселками.

Если дети затруднятся в решении вторым способом, надо вновь проиллюстрировать движение: прошел час – сблизились на 33км, ещё час – ещё сблизились на 33 км, т.е. велосипе­дисты проехали 2раза по 33 км.

Учитель на доске, а дети в тетрадях выполняют чертёж к решённой задаче:

15км/ч 2 ч 18 км/ч

I ├────────┼────────┤II


Выясняется, который из велосипедистов прошёл до встречи большее расстояние и почему.

Учитель изменяет условие задачи, используя тот же чертёж:

15км/ч? ч 18 км/ч

I ├────────┼────────┤II


Дети составляют задачу по этому чертежу, затем задача коллективно разбирается, после чего записывается решение с пояснениями:

1) 15+18=33 (км) – сближались велосипедисты в час;

2) 66:33=2 (ч) – время движения до встречи.

Условие задачи ещё раз изменяется:

Км/ч 2 ч 18 км/ч

I ├────────┼────────┤II


Ученики составляют задачу, после чего коллективно разби­раются два способа решения:

Первый способ:

1) 18 ∙ 2 = 36 (км) – проехал до встречи второй велосипедист;

2) 66 – 36 = 30 (км) – проехал до встречи первый велосипедист;

3) 30: 2 = 15 (км/ч) – скорость первого велосипедиста.

Ответ: 15 км в час.

Второй способ:

1) 66: 2 = 33 (км) – сближались велосипедисты в час;

2) 33 – 18 = 15 (км/ч) – скорость первого велосипедиста.

Ответ: 15 км в час.

На последующих уроках проводится работа по закрепле­нию умения решать задачи рассмотренных видов. С этой целью включаются готовые задачи на встречное движение, при этом учащиеся сами выполняют чертёж, выясняя предварительно, ближе к какому пункту произойдёт встреча. Как и при работе над другими задачами, следует выполнять различные упраж­нения творческого характера.

Аналогичным образом ведётся работа над задачами на дви­жение в противоположных направлениях.

1. Чтобы разделить некоторое число пропорционально данным числам (разделить в данном отношении), надо разделить это число на сумму данных чисел и результат умножить на каждое из них.

2. Чтобы разделить число на части, обратно пропорциональные данным числам, достаточно разделить это число на части, прямо пропорциональные числам, обратным данным.

УПРАЖНЕНИЯ С РЕШЕНИЯМИ

1. Отрезок длиной 15 см разделить в отношении Решение. см.

2. Число 27 разделить обратно пропорционально числам 4 и 5.

Решение. Числа, обратные данным, относятся как Получим

ДИДАКТИЧЕСКИЙ МАТЕРИАЛ

А. 1. Отрезок длиной разделили на четыре части, пропорциональные числам 2, 3, 4 и 5. Найдите длины этих частей.

2. Стороны треугольника, периметр которого пропорциональны числам 5, 7 и 8. Найдите стороны треугольника.

3. Число 196 разделите на части, пропорциональные числам:

4. Число 434 разделите на части, обратно пропорциональные числам: а) 15 и 16; б) 2, 3 и 5.

Б. 1. Площади полей, засеянных рожью, пшеницей и ячменем, пропорциональны числам 9, 5 и 3. Сколько гектаров засеяно рожью и сколько ячменем, если известно, что пшеницей засеяно

Методика обучения решению задач на нахождения четвертого пропорционального.

Задача на нахождение четвертого пропорционального – это задача, в которой даны три величины, связанные прямо или обратно пропорциональной зависимостью, из них две переменные и одна постоянная, при этом известны два значения одной переменной величины и одно из соответствующих значений другой переменной величины, а второе значение этой величины является искомым.

Особое внимание необходимо уделить классификации задач на нахождение четвертого пропорционального. Используя любые три величины, связанные пропорциональной зависимостью (третья равна произведению первой и второй), можно составить шесть видов задач на нахождение четвертого пропорционального. Среди этих задач первые четыре задачи с прямо пропорциональной зависимостью величин, а две последние с обратно пропорциональной.

Основным способом решения задач такого вида в начальной школе – арифметический (нахождение значения постоянной величины и нахождением отношения двух значений одной величины), также практикуется и алгебраический способ решения (уравнением).

Для решения задачи удобно записывать данные условия в виде таблицы.

Этапы обучения решению задач на нахождение четвертого пропорционального аналогичны как и в работе с другими задачами – подготовительный, ознакомительный, закрепление. В начале рассматривают преимущественно задачи с прямо пропорциональной зависимостью с такими группами величин:

Цена, количество, стоимость;

Масса одного предмета, число предметов, общая масса;

Емкость одного сосуда, число сосудов, общая емкость;

Выработка (производительность) в единицу времени, время работы, общая выработка;

Расход материи на одну вещь, число вещей, общий расход материи. Далее вводятся новые группы величин: скорость, время, расстояние; длина прямоугольника, его ширина и площадь; урожай с единицы площади, площадь и весь урожай. В это время уже рассматриваются задачи всех шести видов.

Задача на пропорциональное деление включает три величины, связанные пропорциональной зависимостью, из них две переменные и одна или больше постоянных, причем даны два или более значений одной переменной и сумма соответствующих значений другой переменной, слагаемые этой суммы являются искомыми.

В НШ решаются задачи только на пропорциональное деление только с прямо пропорциональной зависимостью величин, решаются только способом нахождения значения постоянной величины.

Подготовкой к решению задач на пропорциональное деление является твердое умение школьников решать задачи на нахождение четвертого пропорционального.



При ознакомлении с задачами на пропорциональное деление следует получить задачи этого вида путем совместной с учащимися работы по преобразованию задач на нахождение четвертого пропорционального в задачи нового вида. Или составление задачи по записанной таблице. Таким образом, необходимо отметить важность наличия у детей сформированного умения составлять и преобразовывать задачи.

Для решения задачи удобно записывать данные условия в виде таблицы. Следует обратить особое внимание на особенности работы с ознакомлением данного вида задач поэтапно.

В начале рассматривают преимущественно задачи на пропорциональное деление первого вида с такими группами величин: цена, количество, стоимость; масса одного предмета, число предметов, общая масса; емкость одного сосуда, число сосудов, общая емкость и др. После этого вводятся задачи второго вида, а несколько позднее третьего и четвертого видов. Следует отметить, что в начальной школе в основном решаются задачи с прямо пропорциональной зависимостью величин.

При первоначальном ознакомлении применять чертеж нецелесообразно, т.к. учащиеся усваивают формальные рассуждения, т.е. происходит преждевременное сокращение рассуждений. Разбор задачи изображать в виде графической схемы тоже нецелесообразно, т.к. она начнется с двух вопросов и вызывает затруднение учащихся.

Для закрепления решения задач на пропорциональное деление в дальнейшем включаются задачи с другими величинами и другие задачи из этой группы. Используются упражнения творческого характера на составление и преобразование задач.

§ 138. Деление числа на части прямо пропорционально данным числам.

Задача. В саду на двух участках посажено 224 штуки рассады клубники. Определить, сколько штук рассады посажено на каждом участке, если площадь первого участка 8 кв. м, а площадь второго 24 кв. м. (На каждом квадратном метре земли сажают рассаду в среднем поровну.)

Будем решать эту задачу так. Сначала определим площадь двух участков вместе:

8 + 24 = 32 (кв. м).

Итак, площадь двух участков вместе 32 кв. м. Определим теперь, сколько штук рассады приходится на 1 кв. м:

224: 32 = 7 (штук).

Зная сколько рассады приходится на 1 кв. м, мы легко вычислим число штук рассады на 8 кв. м и на 24 кв.. м, т. е. ответим на вопрос задачи:

7 8 = 56 (штук);

7 24 = 168 (штук).

Подумаем теперь, какие величины входят в нашу задачу и как они связаны между собой. В условие задачи входят две величины: 1) количество штук рассады, 2) площадь участка. Эти две величины прямо пропорциональны одна другой, потому что, чем больше площадь участка, тем больше на нём можно посадить рассады. Расположим числа, с которыми мы имели дело в задаче, так, чтобы их удобно было сравнивать:

8 кв. м - 56 штук
24 кв. м - 168 штук

Из этой таблички видно, что второй участок втрое больше первого и рассады на нём в три раза больше, чем на первом.

Итак, в этой задаче мы разделили число штук рассады пропорционально площадям двух участков. Это и есть одна из возможных задач на пропорциональное деление. Как же решаются такие задачи? В задаче требовалось число 224 разделить на две части, пропорциональные числам 8 и 24, т. е. разделить это число на такие две части, которые относились бы между собой так же, как 8: 24. Обозначим величину первой части буквой х , а второй части - у и напишем отношение этих частей:

Для нахождения этих частей были выполнены следующие действия. Число 224 разделили на сумму чисел 8 и 24 и затем найденное частное последовательно умножили сначала на 8, а потом на 24, т. е.

Словами эти равенства можно высказать так: чтобы разделить некоторое число на части пропорционально данным числам, надо разделить его на сумму этих чисел и полученное частное последовательно умножить на каждое из этих чисел.

Рассмотрим другую задачу: «За три куска мыла одного и того же сорта заплатили 40 руб, Сколько заплатили за каждый из них, если первый кусок весил 2 кг, второй 3 кг и третий 5 кг?»

В этой задаче требуется разделить 40 руб. на 3 части пропорционально весу отдельных кусков мыла. Обозначим стоимость первого куска буквой х , второго куска - у и третьего - z .

Воспользуемся правилом, выведенным при решении первой задачи. Согласно этому правилу для нахождения искомых чисел необходимо число, подлежащее делению, разделить на сумму данных чисел и полученное частное умножить последовательно на каждое из них. Следовательно:

Таким образом, первый кусок мыла стоит 8 руб., второй 12 руб. и третий 20 руб. Найденные числа рублей х, у, z находятся между собой в таких же отношениях, как и данные в задаче числа весовых единиц, т. е.

х: у: z = 8: 12: 20 = 2: 3: 5.

Рассмотрим теперь задачу с отвлечёнными числами. Разделить число 180 на три части пропорционально числам 3; 5; 7. Иными словами: в этой задаче требуется разложить число 180 на такие три слагаемых, чтобы первое относилось ко второму, как 3 к 5, второе относилось к третьему, как 5 к 7 и, наконец, первое к третьему, как 3 к 7. Сокращённо это можно написать так:

х: у: z = 3: 5: 7,

где х, у, z обозначают соответственно первое, второе и третье число.

Применяя указанное выше правило, можем написать:

Полученные три числа удовлетворяют условию задачи: они в сумме составляют 180, т. е.

36 + 60 + 84 = 180 и 3: 5: 7 = 36: 60: 84.

Мы решили три задачи на пропорциональное деление. Покажем теперь другие способы решения таких задач.

Задача 1. Определить квартирную плату за каждую из двух комнат (8 кв. м и 24 кв. м), если за обе вместе нужно заплатить 64 руб.

Обозначим плату за 1 кв. м буквой х ; тогда за первую комнату нужно будет заплатить 8x , а за вторую - 24x . Значит, за обе комнаты вместе надо заплатить 8х + 24х , что составляет 64 руб. Следовательно, можно записать равенство:

8х + 24х = 64.

32x = 64;

х = 64: 32 = 2 (руб.).

2 8 = 16 (руб.);

2 24 = 48 (руб.).

Задача 2. Найти стоимость каждого из трёх пакетов муки, если все три пакета стоят 40 руб., а вес первого 2 кг, второго 3 кг и третьего 5 кг.

Обозначим цену одного килограмма буквой х , тогда:

2 кг будут стоить 2х;

3 кг » » 3х ;

5 кг » » 5х ;

а вся мука будет стоить:

2х + 3х + 5х = 40.

10х = 40; х = 40: 10 = 4 (руб.).

После этого легко определить стоимость каждого пакета;

2х = 2 4 = 8 (руб.);

3х = 3 4 = 12 (руб.);

5х = 5 4 = 20 (руб.).

Задача 3. Разделить число 1 800 на три слагаемых пропорционально числам: 3, 5 и 7.

Рассуждаем так: в первом слагаемом 3 части, во втором 5 и в третьем 7.

Обозначая величину одной части буквой х , можно написать:

3х + 5х + 7х =1 800.

15х = 1 800; х = 1 800: 15 = 120.

Следовательно:

3х = 3 120 = 360;

5х = 5 120 = 600;

7х = 7 120=840.

Решим теперь задачу, в которой "некоторое число придётся разделить на четыре части пропорционально дробным числам.

Задача. Разделить 968 на четыре части пропорционально числам: 2 / 3 , 3 / 4 , 2 / 5 и 3 / 8 .Это значит, что надо найти четыре таких числа (х, у, z, t ), отношения которых были бы равны соответствующим отношениям данных чисел, т. е.

а сумма x + y + z + t = 968.

Заменим отношения дробных чисел отношениями целых чисел, для чего приведём эти дроби к общему знаменателю:

Отбрасывая общий знаменатель 40, получим: 60: 30: 16: 15. Вычислим последовательно каждое из искомых чисел:

§ 139. Деление числа на части обратно пропорционально данным числам.

Теперь перейдём к решению задач, в которых придётся некоторое число делить обратно пропорционально данным числам.

Задача. В двух полевых бригадах 70 колхозников. Каждой бригаде поручено обработать одинаковые участки. Сколько колхозников в каждой бригаде, если первая бригада выполнила работу в 6 дней, а вторая - в 8 дней? (Предполагается, что все колхозники работают с одинаковой производительностью труда.)

Очевидно, мы не имеем права делить число колхозников на две части пропорционально времени, которое каждая бригада употребила на работу, так как та бригада, которая быстрее окончила свою работу, была, по-видимому, более многочисленная, чем другая. Поэтому решать эту задачу так же, как мы решали предыдущие задачи, нельзя.

Будем рассуждать следующим образом. Первая бригада колхозников окончила свою работу в 6 дней; значит, в один день она выполняла 1 / 6 часть всей работы; вторая бригада окончила такую же работу в 8 дней, значит в один день она выполняла 1 / 8 всей работы.

Сравним теперь работу, которую выполняет в день первая бригаду с работой, выполняемой в день второй бригадой. Эти работы выражаются дробями 1 / 6 и 1 / 8 . Первая дробь больше второй. Значит, первая бригада в один день может делать больше, чем вторая. А так как все колхозники работают с одинаковой производительностью труда, то, значит, в первой бригаде больше колхозников, чем во второй. Таким образом, число колхозников в каждой бригаде пропорционально той работе, которую каждая бригада может выполнить. Значит, данное в задаче число 70 мы должны разделить на две части пропорционально числам: 1 / 6 и 1 / 8 . С задачами такого типа мы уже знакомы. Приведя дроби 1 / 6 и 1 / 8 к общему знаменателю, мы найдём числа, пропорционально которым следует разделить число 70:

т. е. число 70 нужно разделить на две части пропорционально числам 4 и 3. Обозначим число колхозников первой бригады буквой х , а второй - буквой у и вычислим:

Итак, в первой бригаде было 40 человек, а во второй 30. Рассмотрим теперь метод решения этой задачи. В условие задачи входят три числа: 70 (человек), 6 (дней) и 8 (дней). В процессе решения мы ввели еще два числа: 1 / 6 и 1 / 8 , и пропорционально этим дробям разделили число 70 на две части. Очевидно, что число 6 и число 1 / 6 взаимно обратны. Так же взаимно сбратны числа 8 и 1 / 8 .

Для решения задачи требуется разделить 70 рабочих на две неравные бригады, исходя из количества времени (дней), затраченного ими на работу. Это время выражается числами 6 (дней) и 8 (дней). Вместо этих двух чисел мы берём обратные им числа 1 / 6 и 1 / 8 и пропорционально им делим число 70.

Такая замена сделана нами потому, что число работников не прямо, а обратно пропорционально времени, затраченному на работу. О такой задаче принято говорить, что в ней число 70 разделено на две части обратно пропорционально числам 6 и 8, т. е. в ней первая часть относится ко второй не как 6 к 8, а как 8 к 6.

Итак, чтобы разделить число на части обратно пропорционально данным числам, нужно это число разделить прямо пропорционально обратным числам.

Задача. Разделить 65 на три части обратно пропорционально числам: 2, 3, 4.

Мы теперь знаем, что разделить число на части обратно пропорционально нескольким числам - это значит разделить его на столько же частей прямо пропорционально обратным числам.

Напишем числа, обратные данным в задаче:

данные числа 2, 3, 4;

обратные числа 1 / 2 , 1 / 3 , 1 / 4 .

Пропорционально этим последним и нужно разделить число 65. Приведём дроби к общему знаменателю:

а потом освободимся от него:

Значит, число 65 нужно разделить на три части пропорционально числам 6: 4: 3.

Обозначим первую часть буквой х , вторую часть буквой у , третью часть буквой z . Тогда