Как найти молярный объем в химии. Газовые законы. Закон Авогадро. Молярный объем газа. Используя новые формулы, решим задачи

Наряду с массой и объемом в химических расчетах часто используется количество вещества, пропорциональное числу содержащихся в веществе структурных единиц. При этом в каждом случае должно быть указано, какие именно структурные единицы (молекулы, атомы, ионы и т. д.) имеются в виду. Единицей количества вещества является моль.

Моль - количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12 г изотопа углерода 12С.

Число структурных единиц, содержащихся в 1 моле вещества (постоянная Авогадро) определено с большой точностью; в практических расчетах его принимают равным 6,02 1024 моль -1 .

Нетрудно показать, что масса 1 моля вещества (мольная масса), - выраженная в граммах, численно равна относительной молекулярной массе этого вещества.

Так, относительная молекулярная масса (или, сокращенно молекулярная масса) свободного хлора С1г равна 70,90. Следовательно, мольная масса молекулярного хлора составляет 70,90 г/моль. Однако мольная масса атомов хлора вдвое меньше (45,45 г/моль), так как 1 моль молекул хлора Сl содержит 2 моля атомов хлора.

Согласно закону Авогадро, в равных объемах любых газов, взятых при одной и той же температуре и одинаковом давлении, содержится одинаковое число молекул. Иными словами, одно и то же число молекул любого газа занимает при одинаковых условиях один и тот же объем. Вместе с тем 1 моль любого газа содержит одинаковое число молекул. Следовательно, при одинаковых условиях 1 моль любого газа занимает один и тот же объем. Этот объем называется мольным объемом газа и при нормальных условиях (0°С, давление 101, 425 кПа) равен 22,4 л.

Например, утверждение «содержание диоксида углерода в воздухе составляет 0,04% (об.)» означает, что при парциальном давлении СО 2 , равном давлению воздуха, и при той же температуре диоксид углерода, содержащийся в воздухе, займет 0,04% общего объема, занимаемого воздухом.

Контрольное задание

1. Сопоставить числа молекул, содержащихся в 1 г NH 4 и в 1 г N 2 . В каком случае и во сколько раз число молекул больше?

2. Выразить в граммах массу одной молекулы диоксида серы.



4. Сколько молекул содержится в 5,00 мл хлора при нормальных условиях?

4. Какой объем при нормальных условиях занимают 27 10 21 молекул газа?

5. Выразить в граммах массу одной молекулы NО 2 -

6. Каково соотношение объемов, занимаемых 1 молем О 2 и 1 молем Оз (условия одинаковые)?

7. Взяты равные массы кислорода, водорода и метана при одинаковых условиях. Найти отношение объемов взятых газов.

8. На вопрос, какой объем займет 1 моль воды при нормальных условиях, получен ответ: 22,4 л. Правильный ли это ответ?

9. Выразить в граммах массу одной молекулы HCl.

Сколько молекул диоксида углерода находится в 1 л воздуха, если объемное содержание СО 2 составляет 0,04% (условия нормальные)?

10. Сколько молей содержится в 1 м 4 любого газа при нормальных условиях?

11. Выразить в граммах массу одной молекулы Н 2 О-

12. Сколько молей кислорода находится в 1 л воздуха, если объемное

14. Сколько молей азота находится в 1 л воздуха, если объемное содержание его составляет 78% (условия нормальные)?

14. Взяты равные массы кислорода, водорода и азота при одинаковых условиях. Найти отношение объемов взятых газов.

15. Сопоставить числа молекул, содержащихся в 1 г NО 2 и в 1 г N 2 . В каком случае и во сколько раз число молекул больше?

16. Сколько молекул содержится в 2,00 мл водорода при нормальных условиях?

17. Выразить в граммах массу одной молекулы Н 2 О-

18. Какой объем при нормальных условиях занимают 17 10 21 молекул газа?

СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

При определении понятия скорости химической реакции необходимо различать гомогенные и гетерогенные реакции. Если реакция протекает в гомогенной системе, например, в растворе или в смеси газов, то она идет во всем объеме системы. Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объема системы. Поскольку отношение числа молей вещества к объему, в котором оно распределено, есть молярная концентрация вещества, скорость гомогенной реакции можно также определить как изменение концентрации в единицу времени какого-либо из веществ: исходного реагента или продукта реакции . Чтобы результат расчета всегда был положительным, независимо, от того, производится он по реагенту или продукту, в формуле используется знак «±»:



В зависимости от характера реакции время может быть выражено не только в секундах, как требует система СИ, но также в минутах или часах. В ходе реакции величина ее скорости не постоянна, а непрерывно изменяется: уменьшается, так как уменьшаются концентрации исходных веществ. Вышеприведенный расчет дает среднее значение скорости реакции за некоторый интервал времени Δτ = τ 2 – τ 1 . Истинная (мгновенная) скорость определяется как предел к которому стремится отношение ΔС / Δτ при Δτ → 0, т. е. истинная скорость равна производной концентрации по времени.

Для реакции, в уравнении которой есть стехиометрические коэффициенты, отличающиеся от единицы, значения скорости, выраженные по разным веществам, неодинаковы. Например для реакции А + 4В = D + 2Е расход вещества А равен одному молю, вещества В – трем молям, приход вещества Е – двум молям. Поэтому υ (А) = ⅓υ (В) = υ (D) =½υ (Е) или υ (Е) . = ⅔υ (В) .

Если реакция протекает между веществами, находящимися в различных фазах гетерогенной системы, то она может идти только на поверхности раздела этих фаз. Например, взаимодействие раствора кислоты и куска металла происходит только на поверхности металла. Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени на единице поверхности раздела фаз:

.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению молярных концентраций реагирующих веществ, возведенных в степени, равные коэффициентам при формулах этих веществ в уравнении реакции . Тогда для реакции

2А + В → продукты

справедливо соотношение υ ~ ·С А 2 ·С В, а для перехода к равенству вводится коэффициент пропорциональности k , называемый константой скорости реакции :

υ = k ·С А 2 ·С В = k ·[А] 2 ·[В]

(молярные концентрации в формулах могут обозначаться как буквой С с со­ответствующим индексом, так и формулой вещества, заключенной в квадратные скобки). Физический смысл константы скорости реакции – скорость реакции при концентрациях всех реагирующих веществ, равных 1 моль/л. Размерность константы скорости реакции зависит от числа сомножителей в правой части уравнения и может быть с –1 ; с –1 ·(л/моль); с –1 ·(л 2 /моль 2) и т. п., то есть такой, чтобы в любом случае при вычислениях скорость реакции выражалась в моль·л –1 ·с –1 .

Для гетерогенных реакций в уравнение закона действия масс входят концентрации только тех веществ, которые находятся в газовой фазе или в растворе. Концентрация вещества, находящегося в твердой фазе, представ­ляет постоянную величину и входит в константу скорости, например, для процесса горения угля С + О 2 = СО 2 закон действия масс записывается:

υ = k I ·const··= k ·,

где k = k I ·const.

В системах, где одно или несколько веществ являются газами, скорость реакции зависит также и от давления. Например, при взаимодействии водорода с парами иода H 2 + I 2 =2HI скорость химической реакции будет определяться выражением:

υ = k ··.

Если увеличить давление, например, в 4 раза, то во столько же раз уменьшится объем, занимаемый системой, и, следовательно, во столько же раз увеличатся концентрации каждого из реагирующих веществ. Скорость реакции в этом случае возрастет в 9 раз

Зависимость скорости реакции от температуры описывается правилом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость реакции увеличивается в 2‑4 раза . Это означает, что при повышении температуры в арифметической прогрессии скорость химической реакции возрастает в геометрической прогрессии. Основанием в формуле прогрессии является температурный коэффициент скорости реакции γ, показывающий, во сколько раз увеличива­ется скорость данной реакции (или, что то же самое – константа скорости) при росте температуры на 10 градусов. Математически правило Вант-Гоффа выражается формулами:

или

где и – скорости реакции соответственно при начальной t 1 и конечной t 2 температурах. Правило Вант-Гоффа может быть также выражено следующими соотношениями:

; ; ; ,

где и – соответственно скорость и константа скорости реакции при тем­пературе t ; и – те же величины при температуре t +10n ; n – число «десятиградусных» интервалов (n =(t 2 –t 1)/10), на которые изменилась температура (может быть числом целым или дробным, положительным или отрицательным).

Контрольное задание

1. Найти значение константы скорости реакции А + В -> АВ, если при концентрациях веществ А и В, равных соответственно 0,05 и 0,01 моль/л, скорость реакции равна 5 10 -5 моль/(л-мин).

2. Во сколько раз изменится скорость реакции 2А + В -> А2В, если концентрацию вещества А увеличить в 2 раза, а концентрацию вещества В уменьшить в 2 раза?

4. Во сколько раз следует увеличить концентрацию вещества, В 2 в системе 2А 2 (г.) + В 2 (г.) = 2А 2 В(г.), чтобы при уменьшении концентрации вещества А в 4 раза скорость прямой реакции не изменилась?

4. Через некоторое время после начала реакции ЗА+В->2C+D концентрации веществ составляли: [А] =0,04 моль/л; [В] = 0,01 моль/л; [С] =0,008 моль/л. Каковы исходные концентрации веществ А и В?

5. В системе СО + С1 2 = СОС1 2 концентрацию увеличили от 0,04 до 0,12 моль/л, а концентрацию хлора - от 0,02 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

6. Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А] 0 = 0,04 моль/л, [В] о = 0,05 моль/л. Константа скорости реакции равна 0,4. Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

7. Как изменится скорость реакции 2СO + О2 = 2СО2 , протекающей в закрытом сосуде, если увеличить давление в 2 раза?

8. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 100 °С, приняв значение температурного коэффициента скорости реакции равным 4.

9. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если увеличить давление в системе в 4 раза;

10. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если уменьшить объем системы в 4 раза?

11. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если повысить концентрацию NO в 4 раза?

12. Чему равен температурный коэффициент скорости реакции, если при увеличении температуры на 40 градусов скорость реакции

возрастает в 15,6 раза?

14. . Найти значение константы скорости реакции А + В -> АВ, если при концентрациях веществ А и В, равных соответственно 0,07 и 0,09 моль/л, скорость реакции равна 2,7 10 -5 моль/(л-мин).

14. Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А] 0 = 0,01 моль/л, [В] о = 0,04 моль/л. Константа скорости реакции равна 0,5. Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

15. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если увеличить давление в системе в 2 раза;

16. В системе СО + С1 2 = СОС1 2 концентрацию увеличили от 0,05 до 0,1 моль/л, а концентрацию хлора - от 0,04 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

17. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 80 °С, приняв значение температурного коэффициента скорости реакции равным 2.

18. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 40 °С до 90 °С, приняв значение температурного коэффициента скорости реакции равным 4.

ХИМИЧЕСКАЯ СВЯЗЬ. ОБРАЗОВАНИЕ Й СТРУКТУРА МОЛЕКУЛ

1.Какие типы химической связи Вам известны? Приведите пример образования ионной связи по методу валентных связей.

2. Какую химическую связь называют ковалентной? Что характерно для ковалентного типа связи?

4. Какими свойствами характеризуется ковалентная связь? Покажите это на конкретных примерах.

4. Какой тип химической связи в молекулах Н 2; Cl 2 НС1?

5.Какой характер имеют связи в молекулах NCI 4 , CS 2 , СО 2 ? Укажите для каждой нз них направление смещения общей электронной пары.

6. Какую химическую связь называют ионной? Что характерно для ионного типа связи?

7. Какой тип связи в молекулах NaCl, N 2 , Cl 2 ?

8. Изобразите все возможные способы перекрывания s-орбитали с р-орбиталью;. Укажите направленность связи при этом.

9. Объясните донорно-акцепторный механизм ковалентной связи на примере образования иона фосфония [РН 4 ]+.

10.В молекулах СО, С0 2 , связь полярная или неполярная? Объясните. Опишите водородную связь.

11. Почему некоторые молекулы, имеющие полярные связи, в целом являются неполярными?

12.Ковалентный или ионный тип связи характерен для следующих соединений: Nal, S0 2 , KF? Почему ионная связь является предельным случаем ковалентной?

14. Что такое металлическая связь? Чем она отличается от ковалентной связи? Какие свойства металлов она обусловливает?

14. Каков характер связей между атомами в молекулах; KHF 2 , Н 2 0, HNO?

15. Чем объяснить высокую прочность связи между атомами в молекуле азота N 2 и значительно меньшую в молекуле фосфора Р 4 ?

16 . Какую связь называют водородной? Почему для молекул H2S и НС1 в отличие от Н2О и HF образование водородных связей не характерно?

17. Какую связь называют ионной? Обладает ли ионная связь свойствами насыщаемости и направленности? Почему она является предельным случаем ковалентной связи?

18. Какой тип связи в молекулах NaCl, N 2 , Cl 2 ?

Объем газа дозволено обнаружить с подмогой нескольких формул. Предпочесть подходящую необходимо, исходя из данных в условии задачи величин. Крупную роль при подборе нужной формулы играют данные среды, а в частности: давления и температура.

Инструкция

1. Особенно зачастую встречающаяся в задачах формула: V = n*Vm, где V – объем газа (л), n – число вещества (моль), Vm – молярный объем газа (л/моль), при типичных условиях(н.у.) является стандартной величиной и равен 22,4 л/моль. Бывает так, что в условии нет числа вещества, но есть масса определенного вещества, тогда поступаем так: n = m/M, где m – масса вещества (г), M – молярная масса вещества (г/моль). Молярную массу находим по таблице Д.И. Менделеева: под всяким элементом написана его ядерная масса, складываем все массы и получаем нужную нам. Но такие задачи встречаются достаточно редко, обыкновенно в задачи присутствует уравнение реакции. Решение таких задач по этом немножко изменяется. Разглядим на примере.

2. Какой объем водорода выделится при типичных условиях, если растворить алюминий массой 10,8 г в избытке соляной кислоты.Записываем уравнение реакции: 2Al + 6HCl(изб.) = 2AlCl3 + 3H2.Решаем задачу о этому уравнению. Находим число вещества алюминия, которое вступило в реакцию: n(Al) = m(Al)/M(Al). Дабы подставить данные в эту формулу, нам нужно подсчитать молярную массу алюминия: M(Al) = 27 г/моль. Подставляем: n(Al) = 10,8/27 = 0,4 моль.Из уравнения мы видим, что при растворении 2 моль алюминия образуется 3 моль водорода. Рассчитываем какое же число вещества водорода образуется из 0,4 моль алюминия: n(H2) = 3*0,4/2 = 0,6 моль. После этого подставляем данные в формулу по нахождению объема водорода: V = n*Vm = 0,6*22,4 = 13,44 л. Вот мы и получили результат.

3. Если мы имеем дело с газовой системой, то имеет место такая формула: q(x) = V(x)/V, где q(x)(фи) – объемная доля компонента, V(x) – объем компонента (л), V – объем системы (л). Для нахождения объема компонента получаем формулу: V(x) = q(x)*V. А если нужно обнаружить объем системы, то: V = V(x)/q(x).

Безупречным считают газ, в котором взаимодействие между молекулами пренебрежимо немного. Помимо давления, состояние газа характеризуется температурой и объемом. Соотношения между этими параметрами отображены в газовых законах.

Инструкция

1. Давление газа прямо пропорционально его температуре, числу вещества, и обратно пропорционально объему сосуда, занимаемого газом. Показателем пропорциональности служит универсальная газовая непрерывная R, примерно равная 8,314. Она измеряется в джоулях, поделенных на моль и на кельвин.

2. Это расположение формирует математическую связанность P=?RT/V, где? – число вещества (моль), R=8,314 – универсальная газовая непрерывная (Дж/моль К), T – температура газа, V – объем. Давление выражается в паскалях. Его дозволено выразить и в атмосферах, при этом 1 атм = 101,325 кПа.

3. Рассмотренная связанность – следствие из уравнения Менделеева-Клапейрона PV=(m/M) RT. Тут m – масса газа (г), M – его молярная масса (г/моль), а дробь m/M дает в результате число вещества?, либо число молей. Уравнение Менделеева-Клапейрона объективно для всех газов, которые возможно считать безукоризненными. Это капитальный физико-химический газовый закон.

4. Отслеживая за поведением безупречного газа, говорят о так называемых типичных условиях – условиях окружающей среды, с которыми особенно зачастую доводится иметь дело в реальности. Так, типичные данные (н.у.) полагают температуру в 0 градусов Цельсия (либо 273,15 градусов по шкале Кельвина) и давление в 101,325 кПа (1 атм). Обнаружено значение, чему равен объем одного моля безупречного газа при таких условиях: Vm=22,413 л/моль. Данный объем назван молярным. Молярный объем – одна из основных химических констант, применяемых в решении задач.

5. Главно понимать, что при непрерывном давлении и температуре объем газа также не меняется. Данный восхитительный постулат сформулирован в законе Авогадро, тот, что заявляет, что объем газа прямо пропорционален числу молей.

Видео по теме

Обратите внимание!
Существуют и другие формулы для нахождения объема, но если нужно обнаружить объем газа подойдут только формулы, приведенные в этой статье.

Молекулярная физика изучает свойства тел, руководствуясь поведением отдельных молекул. Все видимые процессы протекают на уровне взаимодействия мельчайших частиц, то, что мы видим невооруженным глазом - лишь следствие этих тонких глубинных связей.

Вконтакте

Основные понятия

Молекулярная физика иногда рассматривается как теоретическое дополнение термодинамики. Возникшая намного раньше, термодинамика занималась изучением перехода тепла в работу, преследуя чисто практические цели. Она не производила теоретического обоснования, описывая лишь результаты опытов. Основные понятия молекулярной физики возникли позже, в XIX веке.

Она изучает взаимодействие тел на молекулярном уровне, руководствуясь статистическим методом, который определяет закономерности в хаотических движениях минимальных частиц – молекул. Молекулярная физика и термодинамика дополняют друг друга, рассматривая процессы с разных точек зрения. При этом термодинамика не касается атомарных процессов, имея дело только с макроскопическими телами, а молекулярная физика, напротив, рассматривает любой процесс именно с точки зрения взаимодействия отдельных структурных единиц.

Все понятия и процессы имеют собственные обозначения и описываются специальными формулами, которые наиболее наглядно представляют взаимодействия и зависимости тех или иных параметров друг от друга. Процессы и явления пересекаются в своих проявлениях, разные формулы могут содержать одни и те же величины и быть выражены разными способами.

Количество вещества

Количество вещества определяет взаимосвязь между (массой) и количеством молекул, которые содержит эта масса. Дело в том, что разные вещества при одинаковой массе имеют разное число минимальных частиц. Процессы, проходящие на молекулярном уровне, могут быть поняты только при рассмотрении именно числа атомных единиц, участвующих во взаимодействиях. Единица измерения количества вещества, принятая в системе СИ, - моль.

Внимание! Один моль всегда содержит одинаковое количество минимальных частиц. Это число называется числом (или постоянной) Авогадро и равняется 6,02×1023.

Эта константа используется в случаях, когда для расчетов требуется учитывать микроскопическое строение данного вещества. Иметь дело с количеством молекул сложно, так как придется оперировать огромными числами, поэтому используется моль – число, определяющее количество частиц в единице массы.

Формула, определяющая количество вещества:

Расчет количества вещества производится в разных случаях, используется во многих формулах и является важным значением в молекулярной физике.

Давление газа

Давление газа - важная величина, имеющая не только теоретическое, но и практическое значение. Рассмотрим формулу давления газа, используемую в молекулярной физике, с пояснениями, необходимыми для лучшего понимания.

Для составления формулы придется сделать некоторые упрощения. Молекулы представляют собой сложные системы , имеющие многоступенчатое строение. Для простоты рассмотрим газовые частицы в определенном сосуде как упругие однородные шарики, не взаимодействующие друг с другом (идеальный газ).

Скорость движения минимальных частиц также будем считать одинаковой. Введя такие упрощения, не сильно меняющие истинное положение, можно вывести такое определение: давление газа - это сила, которую оказывают удары молекул газа на стенки сосудов.

При этом, учитывая трехмерность пространства и наличие двух направлений каждого измерения, можно ограничить количество структурных единиц, воздействующих на стенки, как 1/6 часть.

Таким образом, сведя воедино все эти условия и допущения, можем вывести формулу давления газа в идеальных условиях .

Формула выглядит так:

где P - давление газа;

n - концентрация молекул;

K - постоянная Больцмана (1,38×10-23);

Ek - молекул газа.

Существует еще один вариант формулы:

P = nkT,

где n - концентрация молекул;

T - абсолютная температура.

Формула объема газа

Объем газа - это пространство, которое занимает данное количество газа в определенных условиях. В отличие от твердых тел, имеющих постоянный объем, практически не зависящий от окружающих условий, газ может менять объем в зависимости от давления или температуры.

Формула объема газа – это уравнение Менделеева-Клапейрона, которое выглядит таким образом:

PV = nRT

где P - давление газа;

V - объем газа;

n - число молей газа;

R - универсальная газовая постоянная;

T - температура газа.

Путем простейших перестановок получаем формулу объема газа:

Важно! Согласно закону Авогадро равные объемы любых газов, помещенные в совершенно одинаковые условия - давление, температура - будут всегда содержать равное количество минимальных частиц.

Кристаллизация

Кристаллизация - это фазовый переход вещества из жидкого в твердое состояние, т.е. процесс, обратный плавлению. Процесс кристаллизации происходит с выделением теплоты , которую требуется отводить от вещества. Температура совпадает с точкой плавления, весь процесс описывается формулой:

Q = λm,

где Q - количество теплоты;

λ - теплота плавления;

Эта формула описывает как кристаллизацию, так и плавление, поскольку они, по сути, являются двумя сторонами одного процесса. Для того чтобы вещество кристаллизовалось, необходимо охладить его до температуры плавления , а затем отвести количество тепла, равное произведению массы на удельную теплоту плавления (λ). Во время кристаллизации температура не меняется.

Существует еще один вариант понимания этого термина - кристаллизация из перенасыщенных растворов. В этом случае причиной перехода становится не только достижение определенной температуры, но и степень насыщения раствора определенным веществом. На определенном этапе количество частиц растворенного вещества становится слишком большим, что вызывает образование мелких монокристалликов. Они присоединяют молекулы из раствора, производя послойный рост. В зависимости от условий роста кристаллы имеют различную форму.

Число молекул

Определить количество частиц, содержащееся в данной массе вещества, проще всего при помощи следующей формулы:

Отсюда выходит, что число молекул равняется:

То есть необходимо прежде всего определить количество вещества, приходящееся на определенную массу. Затем оно умножается на число Авогадро, в результате чего получаем количество структурных единиц. Для соединений подсчет ведется суммированием атомного веса компонентов. Рассмотрим простой пример:

Определим количество молекул воды в 3 граммах. Формула (H2O) содержит два атома и один . Общий атомный вес минимальной частицы воды составит: 1+1+16 = 18 г/моль.

Количество вещества в 3 граммах воды:

Число молекул:

1/6 × 6 × 1023 = 1023.

Формула массы молекулы

Один моль всегда содержит одинаковое количество минимальных частиц. Следовательно, зная массу моля, можно разделить ее на количество молекул (число Авогадро), получив в результате массу системной единицы.

Следует учесть, что эта формула относится лишь к неорганическим молекулам. Размеры органических молекул намного больше , их величина или вес имеют совсем другие значения.

Молярная масса газа

Молярная масса - это масса в килограммах одного моля вещества . Поскольку в одном моле содержится одинаковое количество структурных единиц, формула молярной массы имеет такой вид:

M = κ × Mr

где k - коэффициент пропорциональности;

Mr - атомная масса вещества.

Молярная масса газа может быть рассчитана по уравнению Менделеева-Клапейрона:

pV = mRT / M,

из которой можно вывести:

M = mRT / pV

Таким образом, молярная масса газа прямо пропорциональна произведению массы газа на температуру и универсальную газовую постоянную и обратно пропорциональна произведению давления газа и его объема.

Внимание! Следует учесть, что молярная масса газа как элемента может отличаться от газа как вещества, например, молярная масса элемента кислорода (О) равна 16 г/моль, а масса кислорода как вещества (О2) равна 32 г/моль.

Основные положения МКТ.

Физика за 5 минут — молекулярная физика

Вывод

Формулы, которые содержат молекулярная физика и термодинамика, позволяют вычислить количественные значения всех процессов, происходящих с твердыми веществами и газами. Такие расчеты необходимы как в теоретических изысканиях, так и на практике, поскольку они способствуют решению практических задач.

: V = n*Vm, где V – объем газа (л), n – количество вещества (моль), Vm - молярный объем газа (л/моль), при нормальных (н.у.) является стандартной величиной и равен 22,4 л/моль. Бывает так, что в условии нет количества вещества, но есть масса определенного вещества, тогда поступаем так: n = m/M, где m – масса вещества (г), M – молярная масса вещества (г/моль). Молярную массу находим по таблице Д.И. Менделеева: под каждым элементом его атомная масса, складываем все массы и получаем необходимую нам. Но такие задачи встречаются довольно редко, обычно в задачи присутствует . Решение таких задач по этом немного изменяется. Рассмотрим на примере.

Какой объем водорода выделится при нормальных условиях, если растворить алюминий массой 10,8 г в избытке соляной .

Если мы имеем дело с газовой системой, то имеет место такая формула: q(x) = V(x)/V, где q(x)(фи) – доля компонента, V(x) – объем компонента (л), V – объем системы (л). Для нахождения объема компонента получаем формулу: V(x) = q(x)*V. А если необходимо найти объем системы, то: V = V(x)/q(x).

Обратите внимание

Существуют и другие формулы для нахождения объема, но если необходимо найти объем газа подойдут только формулы, приведенные в этой статье.

Источники:

  • "Пособие по химии", Г.П. Хомченко, 2005.
  • как найти объем работ
  • Найти объем водорода при электролизе раствора ZnSO4

Идеальным считают газ, в котором взаимодействие между молекулами пренебрежимо мало. Помимо давления, состояние газа характеризуется температурой и объемом. Соотношения между этими параметрами отображены в газовых законах.

Инструкция

Давление газа прямо пропорционально его температуре, количеству вещества, и обратно пропорционально объему сосуда, занимаемого газом. Коэффициентом пропорциональности служит универсальная газовая постоянная R, приблизительно равная 8,314. Она измеряется в джоулях, разделенных на моль и на .

Это положение формирует математическую зависимость P=νRT/V, где ν – количество вещества (моль), R=8,314 – универсальная газовая постоянная (Дж/моль К), T – температура газа, V – объем. Давление выражается в . Его можно выразить и , при этом 1 атм = 101,325 кПа.

Рассмотренная зависимость – следствие из уравнения Менделеева-Клапейрона PV=(m/M) RT. Здесь m – масса газа (г), M – его молярная масса (г/моль), а дробь m/M дает в итоге количество вещества ν, или количество молей. Уравнение Менделеева-Клапейрона справедливо для всех газов, которые допустимо считать . Это физико-

^ Молярная масса и молярный объем вещества. Молярная масса – масса моля вещества. Она рассчитывается через массу и количество вещества по формуле:

Мв = К· Мr (1)

Где: К – коэффициент пропорциональности, равный 1г/моль.

В самом деле, для изотопа углерода 12 6 С Аr = 12, а молярная масса атомов (по определению понятия «моль») равна 12г/моль. Следовательно, численные значения двух масс совпадают, а значит, К = 1. Отсюда следует, что молярная масса вещества, выраженная в граммах на моль, имеет то же численное значение, что и его относительная молекулярная (атомная) масса. Так, молярная масса атомарного водорода равна 1,008г/моль, молекулярного водорода – 2,016г/моль, молекулярного кислорода – 31,999г/моль.

Согласно закону Авогадро одно и то же число молекул любого газа занимает при одинаковых условиях один и тот же объем. С другой стороны, 1 моль любого вещества содержит (по определению) одинаковое число частиц. Отсюда следует, что при определенных температуре и давлении 1 моль любого вещества в газообразном состоянии занимает один и тот же объем.

Отношение объема, занимаемого веществом, к его к его количеству называется молярным объемом вещества. При нормальных условиях (101,325 кПа; 273 К) молярный объем любого газа равен 22,4 л/моль (точнее, Vn = 22,4 л/моль). Это утверждение справедливо для такого газа, когда другими видами взаимодействия его молекул между собой, кроме их упругого столкновения, можно пренебречь. Такие газы называют идеальными. Для неидеальных газов, называемых реальными, молярные объемы различны и несколько отличаются от точного значения. Однако в большинстве случаев различие сказывается лишь в четвертой и последующих значащих цифрах.

Измерения объемов газа обычно проводят при условиях, отличных от нормальных. Для приведения объема газа к нормальным условиям можно пользоваться уравнением, объединяющим газовые законы Бойля – Мариотта и Гей – Люссака:

pV / T = p 0 V 0 / T 0

Где: V – объем газа при давлении p и температуре T;

V 0 – объем газа при нормальном давлении p 0 (101,325 кПа) и температуре T 0 (273,15 К).

Молярные массы газов можно вычислить также, пользуясь уравнением состояния идеального газа – уравнением Клапейрона – Менделеева:

pV = m B RT / M B ,

Где: p – давление газа, Па;

V – его объем, м 3 ;

M B - масса вещества, г;

M B – его молярная масса, г/моль;

Т – абсолютная температура, К;

R – универсальная газовая постоянная, равная 8,314 Дж / (моль·К).

Если объем и давление газа выражены в других единицах измерения, то значение газовой постоянной в уравнении Клапейрона – Менделеева примет другое значение. Оно может быть рассчитано по формуле, вытекающей из объединенного закона газового состояния для моля вещества при нормальных условиях для одного моля газа:

R = (p 0 · V 0 / T 0)

Пример 1. Выразите в молях: а) 6,0210 21 молекул СО 2 ; б) 1,2010 24 атомов кислорода; в) 2,0010 23 молекул воды. Чему равна молярная масса указанных веществ?

Решение. Моль – это количество вещества, в котором содержится число частиц любого определённого сорта, равное постоянной Авогадро. Отсюда, а) 6,0210 21 т.е. 0,01 моль; б) 1,2010 24 , т.е. 2 моль; в) 2,0010 23 , т.е. 1 / 3 моль. Масса моля вещества выражается в кг/моль или г/моль. Молярная масса вещества в граммах численно равна его относительной молекулярной (атомной) массе, выраженной в атомных единицах массы (а.е.м.)

Так как молекулярные массы СО 2 и Н 2 О и атомная масса кислорода соответственно равны 44; 18 и 16а.е.м.,то их молярные массы равны: а) 44г/моль; б) 18г/моль; в)16г/моль.

Пример 2. Вычислите абсолютную массу молекулы серной кислоты в граммах.

Решение. Моль любого вещества (см. пример 1) содержит постоянную Авогадро N A структурных единиц (в нашем примере молекул). Молярная масса H 2 SO 4 равна 98,0 г/моль. Следовательно, масса одной молекулы 98/(6,02 10 23) = 1,63 10 -22 г.

Моля́рный объём - объём одного моля вещества, величина, получающаяся от деления молярной массы на плотность. Характеризует плотность упаковки молекул.

Значение N A = 6,022…×10 23 называется числом Авогадро в честь итальянского химика Амедео Авогадро. Это универсальная постоянная для мельчайших частиц любого вещества.

Именно такое количество молекул содержит 1 моль кислорода О 2 , такое же количество атомов в 1 моле железа (Fe), молекул в 1 моле воды H 2 O и т. д.

Согласно закону Авогадро, 1 моль идеального газа при нормальных условиях имеет один и тот же объём V m = 22,413 996(39) л . При нормальных условиях большинство газов близки к идеальным, поэтому вся справочная информация о молярном объёме химических элементов относится к их конденсированным фазам, если не оговорено обратно