Где применяются постоянные магниты в быту. Использование магнитов. Где применяются магниты

В самом начале работы полезно будет дать несколькоопределений ипояснений.

Если, в каком то месте, на движущиеся тела, обладающиезарядом, действует сила, которая не действует на неподвижные или лишенныезаряда тела, то говорят, что в этом месте присутствует магнитное поле – одна из форм более общего электромагнитного поля .

Есть тела, способные создавать вокруг себя магнитноеполе (и на такое тело тоже действует сила магнитного поля), про них говорят,что эти тела намагничены и обладают магнитным моментом, который и определяетсвойство тела создавать магнитное поле. Такие тела называют магнитами .

Следует отметить, что разные материалы по разномуреагируют на внешнее магнитное поле.

Есть материалы ослабляющие действие внешнего поля внутрисебяпарамагнетики и усиливающие внешнее поле внутри себядиамагнетики .

Есть материалы с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя - железо,кобальт, никель, гадолиний, сплавы и соединения этих металлов, их называют– ферромагнетики.

Есть среди ферромагнетиков материалы которыепосле воздействия на них достаточно сильного внешнего магнитного поля самистановятся магнитами – это магнитотвердые материалы.

Есть материалы концентрирующие в себе внешнее магнитное поле и, пока онодействует, ведут себя как магниты; но если внешнее поле исчезает они нестановятся магнитами – это магнитомягкие материалы

ВВЕДЕНИЕ.

Мы привыкли к магниту иотносимся к нему чуточку снисходительно как к устаревшему атрибуту школьныхуроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В нашихквартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах,в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас,рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на котороймы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнитещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическоегенерирование электроэнергии, ускорение заряженных частиц в синхротронах,подъём затонувших судов – всё это области, где требуются грандиозные,невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных,ультрасильных и ещё более сильных магнитных полей стала одной из основных всовременной физике и технике.

Магнит известен человеку снезапамятных времён. До нас дошли упоминания

о магнитах и их свойствах втрудах Фалеса Милетского (прибл. 600 до н.э.) и Платона (427–347 дон.э.). Само слово «магнит» возникло в связи с тем, что природные магниты былиобнаружены греками в Магнесии (Фессалия).

Естественные (илиприродные) магниты встречаются в природе в виде залежей магнитных руд. ВТартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.

Искусственные магниты - это магниты созданные человеком на основе различных ферромагнетиков . Такназываемые «порошковые» магниты (из железа, кобальта и некоторых другихдобавок) могут удержать груз более чем 5000 раз превышающий их собственнуюмассу.

Существуютискусственные магниты двух разных видов:

Одни – так называемыепостоянныемагниты ,изготовляемые из «магнитно-твердых » материалов.Их магнитные свойства не связаны с использованием внешних источников или токов.

К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого » железа.Создаваемые ими магнитные поля обусловлены в основном тем, что по проводуобмотки, охватывающей сердечник, проходит электрический ток.

В 1600 году в Лондоне вышла книга королевского врачаВ. Гильберта “О магните, магнитных телах и большом магните - Земле”. Этосочинение явилось первой известной нам попыткой исследования магнитных явленийс позиций науки. В этом труде собраны имевшиеся тогда сведения об электричествеи магнетизме, а также результаты собственных экспериментов автора.

Из всего, с чемсталкивается человек, он прежде всего стремится извлечь практическую пользу. Неминовал этой судьбы и магнит

В моей работе я попытаюсь проследить, как используютсямагниты человеком не для войны, а в мирных целях, в том числе применениемагнитов в биологии, медицине, в быту.

КОМПАС, прибор для определения горизонтальных направлений на местности.Применяется для определения направления, в котором движется морское, воздушноесудно, наземное транспортное средство; направления, в котором идет пешеход;направления на некоторый объект или ориентир. Компасы подразделяются на дваосновных класса: магнитные компасы типа стрелочных, которыми пользуютсятопографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

К 11 в. относитсясообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природныхмагнитов и использовании их в навигации.Если

длинная игла из природногомагнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальнойплоскости, то она всегда обращена одним концом к северу, а другим – к югу.Пометив указывающий на север конец, можно пользоваться таким компасом дляопределения направлений.

Магнитные эффектыконцентрировались у концов такой иглы, и поэтому их назвали полюсами(соответственно северным и южным).

Основное применение магнитнаходит в электротехнике, радиотехнике, приборостроении, автоматике ителемеханике. Здесь ферромагнитные материалы идут на изготовлениемагнитопроводов, реле и т.д.

В 1820 Г.Эрстед (1777–1851) обнаружил, что проводник стоком воздействует на магнитную стрелку, поворачивая ее. Буквально неделейпозже Ампер показал, что два параллельных проводника с током одного направленияпритягиваются друг к другу. Позднее он высказал предположение, что всемагнитные явления обусловлены токами, причем магнитные свойства постоянныхмагнитов связаны с токами, постоянно циркулирующими внутри этих магнитов. Этопредположение полностью соответствует современным представлениям.

Электромашинныегенераторы и электродвигатели - машинывращательного типа, преобразующие либо механическую энергию в электрическую(генераторы), либо электрическую в механическую (двигатели). Действиегенераторов основано на принципе электромагнитной индукции: в проводе,движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действиеэлектродвигателей основано на том, что на провод с током, помещенный впоперечное магнитное поле, действует сила.

Магнитоэлектрическиеприборы. В таких приборахиспользуется сила взаимодействия магнитного поля с током в витках обмоткиподвижной части, стремящаяся повернуть последнюю

Индукционныесчетчики электроэнергии . Индукционныйсчетчик представляет собой не что иное, как маломощный электродвигательпеременного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящийдиск, помещенный между обмотками, вращается под действием крутящего момента,пропорционального потребляемой мощности. Этот момент уравновешивается токами,наводимыми в диске постоянным магнитом, так что частота вращения дискапропорциональна потребляемой мощности.

Электрические наручные часы питаются миниатюрной батарейкой. Для их работытребуется гораздо меньше деталей, чем в механических часах; так, в схемутипичных электрических портативных часов входят два магнита, две катушкииндуктивности и транзистор.

Замок- механическое, электрическое или электронное устройство,ограничивающее возможность несанкционированного пользования чем-либо. Замокможет приводиться в действие устройством (ключом), имеющимся в распоряженииопределенного лица, информацией (цифровым или буквенным кодом), вводимой этимлицом, или какой либо индивидуальной характеристикой (например, рисункомсетчатки глаза) этого лица. Замок обычно временно соединяет друг с другом два узлаили две детали в одном устройстве. Чаще всего замки бывают механическими, новсе более широкое применение находят электромагнитные замки.

Магнитные замки . Вцилиндровых замках некоторых моделей применяются магнитные элементы. Замок иключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочнуюскважину вставляется правильный ключ, он притягивает и устанавливает в нужноеположение внутренние магнитные элементы замка, что и позволяет открыть замок.

Динамометр - механический или электрический прибор для измерениясилы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различныхконструкций; к ним относятся, например, тормоз Прони, гидравлический иэлектромагнитный тормоза.

Электромагнитный динамометр может бытьвыполнен в виде миниатюрного прибора, пригодного для измерений характеристикмалогабаритных двигателей.

Гальванометр –чувствительный прибор для измерения слабых токов. В гальванометре используетсявращающий момент, возникающий при взаимодействии подковообразного постоянногомагнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешеннойв зазоре между полюсами магнита. Вращающий момент, а следовательно, иотклонение катушки пропорциональны току и полной магнитной индукции в воздушномзазоре, так что шкала прибора при небольших отклонениях катушки почти линейна.Приборы на его базе - самый распространенный вид приборов.

Спектр выпускаемых приборов широк иразнообразен: приборы щитовые постоянного и переменного тока(магнитоэлектрической, магнитоэлектри- ческой с выпрямителем и электромагнитнойсистем), комбинированные приборы ампервольтомметры, для диагностирования ирегулировки электрооборудования автомашин, измерения температуры плоскихповерхностей, приборы для оснащения школьных учебных кабинетов, тестеры иизмерители всевозможных электрических параметров

Производство абразивов- мелких, твердых, острых частиц, используемых в свободном или связанномвиде для механической обработки (в т.ч. для придания формы, обдирки,шлифования, полирования) разнообразных материалов и изделий из них (от большихстальных плит до листов фанеры, оптических стекол и компьютерных микросхем).Абразивы бывают естественные или искусственные. Действие абразивов сводится кудалению части материала с обрабатываемой поверхности. Впроцессе производства искусственных абразивов ферросилиций, присутствующий всмеси, оседает на дно печи, но небольшие его количества внедряются в абразив ипозже удаляются магнитом.

Магнитные свойства вещества находят широкое применение внауке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнетохимия (магнитохимия) - раздел физической химии, в которомизучается связь между магнитными и химическими свойствами веществ; кроме того,магнитохимия исследует влияние магнитных полей на химические процессы.магнитохимия опирается на современную физику магнитных явлений. Изучение связимежду магнитными и химическими свойствами позволяет выяснить особенностихимического строения вещества.

Магнитная дефектоскопия , методпоиска дефектов, основанный на исследовании искажений магнитного поля,возникающих в местах дефектов в изделиях из ферромагнитных материалов.

. Техника сверхвысокочастотного диапазона

Сверхвысокочастотный диапазон (СВЧ)- частотный диапазон электромагнитногоизлучения (100¸300 000 млн. герц), расположенный в спектре между ультравысокимителевизионными частотами и частотами дальней инфракрасной области

Связь. Радиоволны СВЧ-диапазона широкоприменяются в технике связи. Кроме различных радиосистем военного назначения,во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи.Поскольку такие радиоволны не следуют за кривизной земной поверхности, араспространяются по прямой, эти линии связи, как правило, состоят изретрансляционных станций, установленных на вершинах холмов или на радиобашнях синтервалами около 50 км.

Термообработка пищевых продуктов. СВЧ-излучениеприменяется для термообработки пищевых продуктов в домашних условиях и в пищевойпромышленности. Энергия, генерируемая мощными электронными лампами, может бытьсконцентрирована в малом объеме для высокоэффективной тепловой обработкипродуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой,бесшумностью и компактностью. Такие устройства применяются на самолетныхбортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, гдетребуются быстрые подготовка продуктов и приготовление блюд. Промышленностьвыпускает также СВЧ-печи бытового назначения.

Быстрый прогресс в области СВЧ-техники в значительной мересвязан с изобретением специальных электровакуумных приборов – магнетрона иклистрона, способных генерировать большие количества СВЧ-энергии. Генератор наобычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазонеоказывается весьма неэффективным.

Магнетрон. В магнетроне, изобретенном в Великобританииперед Второй мировой войной, эти недостатки отсутствуют, поскольку за основувзят совершенно иной подход к генерации СВЧ-излучения – принцип объемногорезонатора

В магнетроне предусмотрено несколько объемных резонаторов,симметрично расположенных вокруг катода, находящегося в центре. Прибор помещаютмежду полюсами сильного магнита.

Лампа бегущей волны (ЛБВ). Еще одинэлектровакуумный прибор для генерации и усиления электромагнитных волнСВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачаннуютрубку, вставляемую в фокусирующую магнитную катушку.

Ускоритель частиц , установка, в которой с помощью электрических и магнитных полейполучаются направленные пучки электронов, протонов, ионов и других заряженныхчастиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные иразнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинскойтерапии и диагностике у скорители играют важную практическую роль. Многиебольничные учреждения во всем мире сегодня имеют в своем распоряжении небольшиеэлектронные линейные ускорители, генерирующие интенсивное рентгеновскоеизлучение, применяемое для терапии опухолей. В меньшей мере используютсяциклотроны или синхротроны, генерирующие протонные пучки. Преимущество протоновв терапии опухолей перед рентгеновским излучением состоит в болеелокализованном энерговыделении. Поэтому протонная терапия особенно эффективнапри лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканейдолжно быть по возможности минимальным.

Представители различных наук учитывают магнитные поля всвоих исследованиях. Физик измеряет магнитные поля атомов и элементарныхчастиц, астроном изучает роль космических полей в процессе формирования новыхзвёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитныхруд, с недавнего времени биология тоже активно включилась в изучение ииспользование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе неучитывая существования каких-либо магнитных полей. Более того, некоторыебиологи считали нужным подчеркнуть, что даже сильное искусственное магнитноеполе не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влияниимагнитных полей на биологические процессы ничего не говорилось. В научнойлитературе всего мира ежегодно появлялись единичные позитивные соображения отом или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёкне мог растопить айсберг недоверия даже к постановке самой проблемы… И вдругручеёк превратился в бурный поток. Лавина магнитобиологических публикаций,словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанноувеличивается и заглушает скептические высказывания.

От алхимиков XVIвека и до наших дней биологическое действие магнита много раз находилопоклонников и критиков. Неоднократно в течение нескольких веков наблюдалисьвсплески и спады интереса к лечебному действию магнита. С его помощью пыталисьлечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли впечени и в желудке – сотни болезней.

Для лечебных целей магнитстал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружноесредство и в качестве амулета магнит пользовался большим успехом у китайцев,индусов, египтян, арабов. ГРЕКОВ, римлян и т.д. О его лечебных свойствахупоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XXвека широко распространились магнитные браслеты, благотворно влияющие набольных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитовиспользуются и электромагниты. Их также применяют для широкого спектра проблемв науке, технике, электронике, медицине (нервные заболевания, заболеваниясосудов конечностей, сердечно – сосудистые заболевания, раковыезаболевания).

Более всего учёныесклоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитныеизмерители скорости движения крови, миниатюрные капсулы, которые с помощью внешнихмагнитных полей можно перемещать по кровеносным сосудам чтобы расширять их,брать пробы на определённых участках пути или, наоборот, локально выводить изкапсул различные медикаменты.

Широко распространёнмагнитный метод удаления металлических частиц из глаза.

Большинству из нас известноисследование работы сердца с помощью электрических датчиков –электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создаютмагнитное поле сердца, которое в max значениях составляет 10-6 напряжённостимагнитного поля Земли. Ценность магнитокардиографии в том, что она позволяетполучить сведения об электрически “немых” областях сердца.

Надо отметить, что биологисейчас просят физиков дать теорию первичного механизма биологического действиямагнитного поля, а физики в ответ требуют от биологов побольше проверенныхбиологических фактов. Очевидно, что успешным будет тесное сотрудничестворазличных специалистов.

Важным звеном, объединяющиммагнитобиологические проблемы, является реакция нервной системы на магнитныеполя. Именно мозг первым реагирует на любые изменения во внешней среде. Именноизучение его реакций будет ключём к решению многих задач магнитобиологии.

Самый простой вывод, которыйможно сделать из выше сказанного – нет области прикладной деятельностичеловека, где бы не применялись магниты.

Использованная литература:

1) БСЭ, второе издание, Москва, 1957г.

2) Холодов Ю.А. “Человек в магнитнойпаутине”, “Знание”, Москва, 1972 г.

3) Материалы из интернет - энциклопедии

4) Путилов К.А. «Курс физики»,«Физматгиз», Москва, 1964г.

Что такое постоянный магнит

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом. Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же - как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит - это тело, обладающее своим собственным .

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита - магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.


Характеристики размагничивающего участка материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского - «удерживающая сила») - это , необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы - Ампер/метр. А , как известно, - это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов - порядка 1 Тесла.

Виды и свойства постоянных магнитов

Ферритовые

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне - от -30°C до +270°C.


Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в . В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Альнико (алюминий-никель-кобальт)

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий - от 7 до 10%, никель - от 12 до 15%, кобальт - от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы - до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств.

Самариевые

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом - то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла - кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая и мощными подъемными машинами.


Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов - хрупкость и низкая рабочая температура.

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.


Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля. Для примера проведем расчет силы взаимодействия двух постоянных магнитов.

Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную - перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы IΔl и просуммировать , действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера - это и будут силы взаимодействия между двумя магнитами.

Рано или поздно у каждой женщины появляется желание вить собственное гнездышко, украшать его стильными и функциональными аксессуарами, использовать дизайнерские решение декора.

Иногда мы даже не догадываемся, как еще можно использовать интересные вещи, предназначение которых, казалось бы, итак понятно. К примеру, знали ли вы, что сушеную тыкву можно залакировать, и она долговечно прослужит вам в роли вазы для канцелярии или полевых букетов? А акварельные краски с момента вырастания ребенка не стоит прятать в дальний ящик, ведь ими можно незамысловато украсить зеркало в ванной комнате.

Сегодня мы поговорим о таких милых и полезных вещицах декора, как магниты. Многие из них мы привозим из путешествий, стараясь сохранить кусочек воспоминаний о полюбившемся месте. Другие тематические безделушки нам могут подарить родственники или друзья, а третьи и вовсе достались от бабушки с незапамятных времен. Оказывается, у этих маленьких «друзей» интерьера есть аж 10 разных способов использования, с которыми мы и ознакомимся.

1. Элемент украшения. В большинстве случаев магнитами украшают бытовую технику вроде холодильника или стиральной машины. Иногда магнитами-буквами можно украсить даже шведскую стенку. Главное, хоть немного соблюдайте стиль. Однажды я пришла в гости к знакомой, а у нее по всему холодильнику развешано большое количество магнитов. Рядом с импровизированными бутербродами можно увидеть обнаженный торс девушки, сбоку идет несколько магнитов из Египта (где они и правда были), а потом с десяток штучек других стран – Вьетнам, Тбилиси, Гурзуф, Львов, Лондон и другие. Все бы ничего, но когда среди этого хаоса я увидела пару буковок-магнитов из йогурта «Растишки», окруженные магнитами в форме оружия, моему удивлению не было предела! Если вы считаете, что люди, находясь у вас в гостях, не обращают на такие мелочи, как магниты, вы ошибаетесь и рискуете навеки получить ярлык «безвкусной» семьи, выставляющей свои «поездки и достижения» напоказ.

2. Фотографии на магните. Немногие знают, что современная печатная индустрия изобрела очередное новшество – личные фотографии на плоском магните. Такое удовольствие готовится моментально, буквально за несколько часов, да и обойдется совсем недорого. Мало того, что вы нашли еще один способ сохранить воспоминания, так еще и изнашиваемость напечатанной фотографии на таком плотном материале куда меньше. Фотографии на магнитах можно просто убрать в шкаф для бережного хранения, а можно использовать их как элемент декора - семейное древо на железном стенде, к примеру.

3. Удобная «держалка» для записей, а также фиксация. Мало семей, которые не знают о таком функциональном использовании магнита. Даже у моего сына в школе на современных досках и стендах учителя закрепляют наглядный материал, таблицы и картинки, не перерисовывая их вручную, как раньше. В нашей же семье магниты неотъемлемые детали холодильника, ведь все задания на день, оперативные телефонные номера, памятные даты и распорядки дня фиксирует эти маленькие атрибуты.

Что касается фиксации – мой дедушка часто применял магниты для лучшего сцепления клеящего вещества при устранении поломок или рубцов на предметах. Он просто помещал деталь между двумя магнитами, и более быстрое склеивание не заставляло себя ждать.

Мама нашла другое применение фиксирующих свойств магнита в хозяйстве – купила красивую удлиненную магнитную полосу и цепляет на нее любые кухонные приборы (включая сковородки и кастрюли). Такие полосы можно использовать в качестве держателей ножей, мини-магнит можно вшить даже в ткань (прихватка, полотенце), чтоб ее также можно было удобно расположить (даже прицепить к духовке).


4. Развлечение для детей и взрослых. На основе магнитов уже давно было создано множество головоломок, увлекательных скульптур и приборов для релаксации в кабинете у психолога. Маленьких деток особенно радуют подвешенные в воздух предметы, а также магнитные кубы, шарики, диски и другие забавные вещицы. Также магнитами можно оформить доску «роста» для вашего малыша – просто отмечайте забавным магнитом уровни, на которые подрос ваш ребенок за определенное время.

5. Очистка автомобильного масла. Речь идет о трансмиссионном и моторном масляном наполнителе. Такую функцию магнита продемонстрировал мне брат-автомеханик, и она очень пришлась по вкусу мужу. Компактные магниты надежно «сажаются» на сливную пробку двигателя вашей машины, и все элементы износа деталей будут прилипать к ним. Мощные магниты будут вылавливать только те частицы, которые являются абразивом для материала деталей, и собирать их на своей поверхности, с которой все загрязнения будет легко удалить.

6. Поиск предметов. Если ваш ребенок насмотрелся американских фильмов и хочет искать потерянные золотые кольца на курорте – не стоит ему мешать. Однажды я купила сыну металлоискатель, когда он проявил навыки археологического исследователя. Каково было мое удивление, когда забава сына начала приносить доход. За все две недели курорта сыночек принес 2 золотых кольца, один кулон и серебряную серьгу для пирсинга, просто проводя нитью с кольцевым магнитом по пляжу. Мужу понравилась эта затея, но он ее использует для ремонта, ведь с помощью магнитного «щупа» можно быстро отыскать расположение шурупов, гвоздей и арматуры в стенах.


Интересно, что в продаже есть магниты, способные подымать предметы даже со дна моря весом до 300 кг. Сразу разыгралась фантазия о подводном пиратском кладе… А вдруг?!

7. Ремонт музыкальных инструментов. Дочка моей подруги уже давно посещает музыкальную школу по классу духовых инструментов, и ее мама уже сбилась с ног, пытаясь найти быстрый способ избавить ее саксофон и трубу от характерных вмятин. Добраться до них невозможно по тонкой изогнутой трубке, а найти нужного специалиста по починке не так просто (да и удовольствие это не из дешевых). И вот она вычитала где-то информацию, что магнит может помочь в этом нелегком деле. Берем железный шар (лучше из стали), подходящий по диаметру трубки, и ведем его с помощью внешнего магнита до места вмятины. Затем просто проводите магнитом по периметру вмятины, шар изнутри будет сильно притягиваться к магниту, идеально выравнивая поверхность. Такой ремонт вам обойдется очень недорого и всего за пару минут!

8. Крепление железных брошей или бейджиков без следов на одежде. Такой интересный способ я подсмотрела у одной нашей сотрудницы. Она регулярно ходит в изящных шелковых, атласных и шифоновых блузках, при этом именная табличка является обязательным элементом дресс-кода. Девушка додумалась прикрепить мини магнит на изнанке одежды, а спереди просто прислоняет к нему булавку бейджика или железную брошь. Удивительно, но табличка держится надежно, при этом даже на самой тонкой одежде не остается ни следа.

9. Элемент украшения. Многие девушки слышали про так званные магнитные браслеты, выполненные из шариков, кубиков и других геометрических фигур. Такие украшения очень быстро собрать, можно их сделать индивидуальными, добавив в вашу сборку основы несколько тематических кулонов или именных значков. Также можно чередовать магнитные детали с другими элементами декора – кожаными вставками, пайетками, мехом, тканью и т. п. Кроме того, украшения из магнитов считаются полезными для организма!

Однажды я смотрела передачу, где девочка очень хотела сделать модный пирсинг на вечеринку, но родители не разрешали. Догадливая девушка и сама не захотела «дырявить» тело, просто прикрепила маленький магнит с одной стороны мочки уха, а с другой добавила 3 серебряных треугольника. Это украшение можно получить безболезненно, гигиенично, быстро и только на те дни, когда у тебя есть настроение носить такой «узор».

10. Ускоряет брожение домашних настоек. Напоследок расскажу об удивительном способе, с помощью которого мой друг готовит ликеры и вина у себя на даче. Как он говорит, помещая несколько магнитов на дно бутылки, он создает мощное поле, идеальное для брожения любых спиртных напитков. Друг утверждает, что созревание происходит в несколько раз быстрее (буквально за месяц), а напиток получает те же вкусовые свойства и ароматические букеты, которые обычно созревают у настоек за пару лет выдержки!

Сегодня мы рассмотрели поистине удивительные способы использования магнитов в быту. Так что, если у вас дома залежалось пару магнитов, самое время дать им вторую жизнь, используя их по назначению.

Каждый держал в руках магнит и забавлялся им в детстве. Магниты могут быть самыми разными по форме, размерам, но все магниты имеют общее свойство - они притягивают железо. Похоже, что они и сами сделаны из железа, во всяком случае, из какого-то металла точно. Есть, однако, и «черные магниты» или «камни», они тоже сильно притягивают железки, и особенно друг друга.

Но на металл они не похожи, легко бьются, как стеклянные. В хозяйстве магнитам находится множество полезных дел, например, удобно с их помощью «пришпиливать» бумажные листы к железным поверхностям. Магнитом удобно собирать потерянные иголки, так что, как мы видим, это совсем небесполезная вещь.

Наука 2.0 - Большой скачок - Магниты

Магнит в прошлом

Ещё древние китайцы более 2000 лет назад знали о магнитах, по крайней мере то, что это явление можно использовать для выбора направления при путешествиях. То есть придумали компас. Философы в древней Греции, люди любопытные, собирая различные удивительные факты, столкнулись с магнитами в окрестностях города Магнесса в Малой Азии. Там и обнаружили странные камни, которые могли притягивать железо. По тем временам, это было не менее удивительным, чем могли бы стать в наше время инопланетяне.

Еще более удивительным казалось, что магниты притягивают далеко не все металлы, а только железо, и само железо способно становиться магнитом, хотя и не таким сильным. Можно сказать, что магнит притягивал не только железо, но и любопытство ученых, и сильно двигал вперед такую науку, как физика. Фалес из Милета писал о «душе магнита», а римлянин Тит Лукреций Кар – о «бушующем движении железных опилок и колец», в своем сочинении «О природе вещей». Уже он мог заметить наличие двух полюсов у магнита, которые потом, когда компасом начали пользоваться моряки, получили названия в честь сторон света.

Что такое магнит. Простыми словами. Магнитное поле

За магнит взялись всерьез

Природу магнитов долгое время не могли объяснить. С помощью магнитов открывали новые континенты (моряки до сих пор относятся к компасу с огромным уважением), но о самой природе магнетизма по прежнему никто ничего не знал. Работы велись только по усовершенствованию компаса, чем занимался еще географ и мореплаватель Христофор Колумб.

В 1820 году датский ученый Ганс Христиан Эрстед сделал важнейшее открытие. Он установил действие провода с электрическим током на магнитную стрелку, и как ученый, выяснил опытами как это происходит в разных условиях. В том же году французский физик Анри Ампер выступил с гипотезой об элементарных круговых токах, протекающих в молекулах магнитного вещества. В 1831-ом году англичанин Майкл Фарадей с помощью катушки из изолированного провода и магнита проводит опыты, показывающие, что механическую работу можно превратить в электрический ток. Он же устанавливает закон электромагнитной индукции и вводит в обращение понятие «магнитное поле».

Закон Фарадея устанавливает правило: для замкнутого контура электродвижущая сила равна скорости изменения магнитного потока, проходящего через этот контур. На этом принципе работают все электрические машины - генераторы, электродвигатели, трансформаторы.

В 1873 году шотландский ученый Джеймс К. Максвелл сводит магнитные и электрические явления в одну теорию, классическую электродинамику.

Вещества, способные намагничиваться, получили название ферромагнетиков. Это название связывает магниты с железом, но кроме него, способность к намагничиванию обнаруживается еще у никеля, кобальта, и некоторых других металлов. Поскольку магнитное поле уже перешло в область практического использования, то и магнитные материалы стали предметом большого внимания.

Начались эксперименты со сплавами из магнитных металлов и различными добавками в них. Стоили получаемые материалы очень дорого, и если бы Вернеру Сименсу не пришла в голову идея заменить магнит сталью, намагничиваемой сравнительно небольшим током, то мир так бы и не увидел электрического трамвая и компании Siemens. Сименс занимался еще телеграфными аппаратами, но тут у него было много конкурентов, а электрический трамвай дал фирме много денег, и в конечном счете, потянул за собой все остальное.

Электромагнитная индукция

Основные величины, связанные с магнитами в технике

Мы будем интересоваться в основном магнитами, то есть ферромагнетиками, и оставим немного в стороне остальную, очень обширную область магнитных (лучше сказать, электромагнитных, в память о Максвелле) явлений. Единицами измерений у нас будут те, которые приняты в СИ (килограмм, метр, секунда, ампер) и их производные:

l Напряженность поля , H, А/м (ампер на метр).

Эта величина характеризует напряженность поля между параллельными проводниками, расстояние между которыми 1 м, и протекающий по ним ток 1 А. Напряженность поля является векторной величиной.

l Магнитная индукция , B, Тесла, плотность магнитного потока (Вебер/м.кв.)

Эта отношение тока через проводник к длине окружности, на том радиусе, на котором нас интересует величина индукции. Окружность лежит в плоскости, которую провод пересекает перпендикулярно. Сюда входит еще множитель, называемый магнитной проницаемостью. Это векторная величина. Если мысленно смотреть в торец провода и считать, что ток течет в направлении от нас, то магнитные силовые окружности «вращаются» по часовой стрелке, а вектор индукции приложен к касательной и совпадает с ними по направлению.

l Магнитная проницаемость , μ (относительная величина)

Если принять магнитную проницаемость вакуума за 1, то для остальных материалов мы получим соответствующие величины. Так, например, для воздуха мы получим величину, практически такую же как и для вакуума. Для железа мы получим существенно большие величины, так что можно образно (и весьма точно) говорить, что железо «втягивает» в себя силовые магнитные линии. Если напряженность поля в катушке без сердечника будет равняться H, то с сердечником мы получаем μH.

l Коэрцитивная сила , А/м.

Коэрцитивная сила показывает, насколько магнитный материал сопротивляется размагничиванию и перемагничиванию. Если ток в катушке совсем убрать, то в сердечнике будет остаточная индукция. Чтобы сделать ее равной нулю, нужно создать поле некоторой напряженности, но обратной, то есть пустить ток в обратном направлении. Эта напряженность и называется коэрцитивной силой.

Поскольку магниты на практике всегда используются в какой-то связи с электричеством, то не стоит удивляться тому, что для описания их свойств используется такая электрическая величина, как ампер.

Из сказанного следует возможность, например, гвоздю, на который подействовали магнитом, самому стать магнитом, хотя и более слабым. На практике выходит, что даже дети, забавляющиеся магнитами, об этом знают.

К магнитам в технике предъявляют разные требования, в зависимости от того, куда идут эти материалы. Ферромагнитные материалы делятся на «мягкие» и «жесткие». Первые идут на изготовление сердечников для приборов, где магнитный поток постоянный или переменный. Хорошего самостоятельного магнита из мягких материалов не сделаешь. Они слишком легко размагничиваются и здесь это как раз их ценное свойство, поскольку реле должно «отпустить» если ток выключен, а электрический мотор не должен греться - на перемагничивание расходуется лишняя энергия, которая выделяется в форме тепла.

КАК ВЫГЛЯДИТ МАГНИТНОЕ ПОЛЕ НА САМОМ ДЕЛЕ? Игорь Белецкий

Постоянные магниты, то есть те, которые магнитами и называют, требуют для своего изготовления жестких материалов. Жесткость имеется в виду магнитная, то есть большая остаточная индукция и большая коэрцитивная сила, поскольку, как мы видели, эти величины тесно связаны между собой. На такие магниты идут углеродистые, вольфрамовые, хромистые и кобальтовые стали. Их коэрцитивная сила достигает значений около 6500 А/м.

Есть особые сплавы, которые называются альни, альниси, альнико и множество других, как можно догадаться в них входят алюминий, никель, кремний, кобальт в разных сочетаниях, которые обладают большей коэрцитивной силой - до 20000…60000 А/м. Такой магнит не так-то просто оторвать от железа.

Есть магниты, специально предназначенные для работы на повышенной частоте. Это многим известный «круглый магнит». Его «добывают» из негодного динамика из колонки музыкального центра, или автомагнитолы или даже телевизора прошлых лет. Этот магнит изготовлен путем спекания окислов железа и специальных добавок. Такой материал называется ферритом, но не каждый феррит специально так намагничивается. А в динамиках его применяют из соображений уменьшения бесполезных потерь.

Магниты. Discovery. Как это работает?

Что происходит внутри магнита?

Благодаря тому, что атомы вещества являются своеобразными «сгустками» электричества, они могут создавать свое магнитное поле, но только у некоторых металлов, имеющих сходное атомное строение, эта способность выражена очень сильно. И железо, и кобальт, и никель стоят в периодической системе Менделеева рядом, и имеют похожие строения электронных оболочек, которое превращает атомы этих элементов в микроскопические магниты.

Поскольку металлы можно назвать застывшей смесью различных кристаллов очень маленького размера, то понятно, что магнитных свойств у таких сплавов может быть очень много. Многие группы атомов могут «разворачивать» свои собственные магниты под влиянием соседей и внешних полей. Такие «сообщества» называются магнитными доменами, и образуют весьма причудливые структуры, которые до сих пор с интересом изучаются физиками. Это имеет большое практическое значение.

Как уже говорилось, магниты могут иметь почти атомные размеры, поэтому наименьший размер магнитного домена ограничивается размером кристалла, в который встроены атомы магнитного металла. Этим объясняется, например, почти фантастическая плотность записи на современные жесткие диски компьютеров, которая, видимо, еще будет расти, пока у дисков не появятся конкуренты посерьезнее.

Гравитация, магнетизм и электричество

Где применяются магниты?

Сердечники которых являются магнитами из магнитов, хотя обычно их называют просто сердечниками, магниты находят еще множество применений. Есть канцелярские магниты, магниты для защелкивания мебельных дверей, магниты в шахматах для путешественников. Это известные всем магниты.

К более редким видам относятся магниты для ускорителей заряженных частиц, это очень внушительные сооружения, которые могут весить десятки тонн и больше. Хотя сейчас экспериментальная физика поросла травой, за исключением той части, которая тут же приносит сверхприбыли на рынке, а сама почти ничего не стоит.

Еще один любопытный магнит установлен в медицинском навороченном приборе, который называется магнитно-резонансным томографом. (Вообще-то метод называется ЯМР, ядерный магнитный резонанс, но чтобы не пугать народ, который в массе не силен в физике, его переименовали.) Для прибора требуется помещение наблюдаемого объекта (пациента) в сильное магнитное поле, и соответствующий магнит имеет устрашающие размеры и форму дьявольского гроба.

Человека кладут на кушетку, и прокатывают через тоннель в этом магните, пока датчики сканируют место, интересующее врачей. В общем, ничего страшного, но у некоторых клаустрофобия доходит до степени паники. Такие охотно дадут себя резать живьем, но не согласятся на обследование МРТ. Впрочем, кто знает, как человек чувствует себя в необычно сильном магнитном поле с индукцией до 3 Тесла, после того, как заплатил за это хорошие деньги.

Чтобы получить такое сильное поле, часто используют сверхпроводимость, охлаждая катушку магнита жидким водородом. Это дает возможность «накачивать» поле без опасений, что нагрев проводов сильным током ограничит возможности магнита. Это совсем недешевая установка. Но магниты из специальных сплавов, которые не требуют подмагничивания током, стоят значительно дороже.

Наша Земля тоже является большим, хотя и не очень сильным магнитом. Он помогает не только владельцам магнитного компаса, но и спасает нас от гибели. Без него мы были бы убиты солнечной радиацией. Картина магнитного поля Земли, смоделированная компьютерами по данным наблюдений из космоса выглядит очень внушительно.

Вот небольшой ответ на вопрос, о том, что такое магнит в физике и технике.