Атомное строение стронция. Как получают металлический стронций

Природный стронций состоит из четырех стабильных изотопов 88 Sr (82,56%), 86 Sr (9,86%), 87 Sr (7,02%) и 84 Sr (0,56%). Распространенность изотопов стронция варьируетcя в связи с образованием 87 Sr за счет распада природного 87 Rb. По этой причине точный изотопный состав стронция в породе или минерале, которые содержат рубидий, зависит от возраста и отношения Rb/Sr в данной породе или минерале.

Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в том числе 90 Sr (Т 1/2 = 29,12 года), образующийся при делении урана. Степень окисления +2, очень редко +1.

История открытия элемента.

Свое название стронций получил от минерала стронцианита, найденного в 1787 в свинцовом руднике около Стронциана (Шотландия). В 1790 английским химиком Адером Кроуфордом (Crawford Ader) (1748–1795) было показано, что стронцианит содержит новую, еще неизвестную «землю». Эту особенность стронцианита установил также и немецкий химик Мартин Генрих Клапрот (Klaproth Martin Heinrich) (1743–1817). Английский химик Т.Хоп (Hope T.) в 1791 доказал, что в стронцианите содержится новый элемент. Он четко разграничил соединения бария, стронция и кальция, используя, помимо других методов, характерную окраску пламени: желто-зеленую для бария, ярко-красную для стронция и оранжево-красную для кальция.

Независимо от западных ученых, петербургский академик Тобиаш (Товий Егорович) Ловиц (1757–1804) в 1792, исследуя минерал барит, пришел к заключению, что в нем, помимо оксида бария, в качестве примеси находится и «стронцианова земля». Он сумел извлечь из тяжелого шпата более 100 г новой «земли» и исследовал ее свойства. Результаты этой работы были опубликованы в 1795. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление... Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей... Мне оставалось только проверить... замечательное свойство стронциановой земли – окрашивать спиртовое пламя в карминово-красный цвет, и, действительно, моя соль... обладала в полной мере этим свойством».

В свободном виде стронций первым выделил английский химик и физик Гемфри Дэви в 1808. Металлический стронций был получен при электролизе его увлажненного гидроксида. Выделявшийся на катоде стронций соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Распространенность стронция в природе и его промышленное получение. Содержание стронция в земной коре составляет 0,0384%. Он является пятнадцатым по распространенности и следует сразу за барием, немного уступая фтору. В свободном виде стронций не встречается. Он образует около 40 минералов. Наиболее важный из них – целестин SrSO 4 . Добывают также стронцианит SrCO 3 . Стронций присутствует в качестве изоморфной примеси в различных магниевых, кальциевых и бариевых минералах.

Стронций содержится и в природных водах. В морской воде его концентрация составляет 0,1 мг/л. Это означает, что в водах Мирового океана содержатся миллиарды тонн стронция. Минеральные воды, содержащие стронций, считают перспективным сырьем для выделения этого элемента. В океане часть стронция концентрируется в железомарганцевых конкрециях (4900 т в год). Стронций накапливается также простейшими морскими организмами – радиоляриями, скелет которых построен из SrSO 4 .

Доскональная оценка мировых промышленных ресурсов стронция не проводилась, но полагают, что они превышают 1 млрд. т.

Наиболее крупные залежи целестина – в Мексике, Испании и Турции. В России подобные месторождения есть в Хакассии, Пермской и Тульской области. Однако потребности в стронции в нашей стране удовлетворяются, в основном, за счет импорта, а также переработки апатитового концентрата, где карбонат стронция составляет 2,4%. Специалисты считают, что добыча стронция в недавно открытом Кишертском месторождении (Пермская область) может повлиять на ситуацию на мировом рынке этого продукта. Цена на пермский стронций может оказаться примерно в 1,5 раза ниже, чем на американский, стоимость которого сейчас составляет около 1200 долл. за тонну.

Характеристика простого вещества и промышленное получение металлического стронция.

Металлический стронций имеет серебристо-белую окраску. В неочищенном состоянии он окрашен в бледно-желтый цвет. Это сравнительно мягкий металл, легко режется ножом. При комнатной температуре стронций имеет кубическую гранецентрированную решетку (a -Sr); при температуре выше 231° С превращается в гексагональную модификацию (b -Sr); при 623° С переходит в кубическую объёмноцентрированную модификацию (g -Sr). Стронций относится к легким металлам, плотность его a -формы 2,63г/см3 (20° С). Температура плавления стронция равна 768° С, температура кипения составляет 1390° С.

Являясь щелочноземельным металлом, стронций активно реагирует с неметаллами. При комнатной температуре металлический стронций покрывается пленкой из оксида и пероксида. При нагревании на воздухе воспламеняется. Стронций легко образует нитрид, гидрид и карбид. При повышенных температурах стронций реагирует с диоксидом углерода:

5Sr + 2CO 2 = SrC 2 + 4SrO

Металлический стронций взаимодействует с водой и кислотами, выделяя из них водород:

Sr + 2H 3 O + = Sr 2+ + H 2 ­ + 2H 2 O

Реакция не идет в тех случаях, когда образуются малорастворимые соли.

Стронций растворяется в жидком аммиаке с образованием темно-синих растворов, из которых при выпаривании можно получить блестящий аммиакат медного цвета Sr(NH 3) 6 , постепенно разлагающийся до амида Sr(NH 2) 2 .

Для получения металлического стронция из природного сырья целестиновый концентрат сначала восстанавливают при нагревании углем до сульфида стронция. Затем сульфид стронция обрабатывают соляной кислотой, а полученный хлорид стронция обезвоживают. Стронцианитовый концентрат разлагают обжигом при 1200° С, а затем растворяют образовавшийся оксид стронция в воде или кислотах. Нередко стронцианит сразу растворяют в азотной или соляной кислоте.

Металлический стронций получают электролизом смеси расплавленных хлорида стронция (85%) и хлорида калия или аммония (15%) на никелевом или железном катоде при 800° С. Полученный этим методом стронций обычно содержит 0,3–0,4% калия.

Используют также высокотемпературное восстановление оксида стронция алюминием:

4SrO + 2Al = 3Sr + SrO·Al 2 O 3

Для металлотермического восстановления оксида стронция применяют также кремний или ферросилиций. Процесс ведут при 1000° С в вакууме в стальной трубке. Хлорид стронция восстанавливают металлическим магнием в атмосфере водорода.

Крупнейшими производителями стронция являются Мексика, Испания, Турция и Великобритания.

Несмотря на довольно большое содержание в земной коре, широкого применения металлический стронций еще не нашел. Как и другие щелочноземельные металлы, он способен очищать черный металл от вредных газов и примесей. Это свойство дает стронцию перспективу применения в металлургии. Кроме того, стронций является легирующей добавкой к сплавам магния, алюминия, свинца, никеля и меди.

Металлический стронций поглощает многие газы и поэтому используется в качестве геттера в электровакуумной технике.

Соединения стронция.

Преобладающая степень окисления (+2) для стронция обусловлена, в первую очередь, его электронной конфигурацией. Он образует многочисленные бинарные соединения и соли. В воде хорошо растворимы хлорид, бромид, иодид, ацетат и некоторые другие соли стронция. Большинство солей стронция мало растворимы; среди них сульфат, фторид, карбонат, оксалат. Малорастворимые соли стронция легко получаются обменными реакциями в водном растворе.

Многие соединения стронция имеют необычное строение. Например, изолированные молекулы галогенидов стронция заметно изогнуты. Валентный угол составляет ~120° для SrF 2 и ~115° – для SrCl 2 . Это явление можно объяснить с помощью sd- (а не sp-) гибридизации.

Оксид стронция SrO получают прокаливанием карбоната или дегидратацией гидроксида при температуре красного каления. Энергия решетки и температура плавления этого соединения (2665° С) очень высоки.

При прокаливании оксида стронция в кислородной среде при высоком давлении образуется пероксид SrO 2 . Получен также желтый надпероксид Sr(O 2) 2 . При взаимодействии с водой оксид стронция образует гидроксид Sr(OH) 2 .

Оксид стронция – компонент оксидных катодов (эмиттеров электронов в электровакуумных приборах). Он входит в состав стекла кинескопов цветных телевизоров (поглощает рентгеновское излучение), высокотемпературных сверхпроводников, пиротехнических смесей. Его применяют как исходное вещество для получения металлического стронция.

В 1920 американец Хилл впервые применил матовую глазурь, в состав которой входили оксиды стронция, кальция и цинка, однако этот факт остался незамеченным, и новая глазурь не стала конкурентом традиционных свинцовых глазурей. Лишь в годы Второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. Это вызвало лавину исследований: в разных странах появились десятки рецептур стронциевых глазурей. Стронциевые глазури не только менее вредны по сравнению со свинцовыми, но и более доступны (карбонат стронция в 3,5 раза дешевле свинцового сурика). При этом им свойственны все положительные качества свинцовых глазурей. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе оксидов кремния и стронция готовят также эмали – непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка. Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» – разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280–1300° C, затем температуру снижают до 150–220° C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта, если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800–850° C – соли плавятся в трещинах и герметизируют их.

Гидроксид стронция Sr(OH)2 считают умеренно сильным основанием. Он не очень хорошо растворим в воде, поэтому его можно осадить при действии концентрированного раствора щелочи:

SrCl 2 + 2KOH(конц) = Sr(OH) 2 Ї + 2KCl

При обработке кристаллического гидроксида стронция пероксидом водорода образуется SrO 2 ·8H 2 O.

Гидроксид стронция может применяться для выделения сахара из патоки, однако обычно используют более дешевый гидроксид кальция.

Карбонат стронция SrCO 3 мало растворим в воде (2·10 –3 г в 100 г при 25° С). В присутствии избытка диоксида углерода в растворе он превращается в гидрокарбонат Sr(HCO 3) 2 .

При нагревании карбонат стронция разлагается на оксид стронция и диоксид углерода. Он взаимодействует с кислотами с выделением диоксида углерода и образованием соответствующих солей:

SrCO 2 + 3HNO 3 = Sr(NO 3) 2 + CO 2 ­ + H 2 O

Основные сферы карбоната стронция в современном мире – производство кинескопов для цветных телевизоров и компьютеров, керамических ферритовых магнитов, керамических глазурей, зубной пасты, антикоррозионных и фосфоресцирующих красок, высокотехнологичной керамики, в пиротехнике. Наиболее емкими направлениями потребления являются первые два. При этом спрос на карбонат стронция в производстве телевизионного стекла повышается с ростом популярности телеэкранов более крупных размеров. Возможно, развитие технологии производства плоских телеэкранов снизит спрос на карбонат стронция для телевизионных дисплеев, однако эксперты в промышленности считают, что в ближайшие 10 лет плоские телеэкраны не станут значительными конкурентами традиционных.

Европа потребляет львиную долю карбоната стронция для производства ферритовых стронциевых магнитов, которые используются в автомобильной промышленности, где они применяются для магнитных задвижек в дверцах автомобилей и тормозных системах. В США и Японии карбонат стронция используют преимущественно в производстве телевизионного стекла.

В течение многих лет крупнейшими в мире производителями карбоната стронция являлись Мексика и Германия, производственные мощности по выпуску этого товара в которых сейчас составляют соответственно 103 тыс. и 95 тыс. т в год. В Германии используют в качестве сырья импортный целестин, а мексиканские заводы работают на местном сырье. В последнее время годовые мощности по производству карбоната стронция расширились в Китае (примерно до 140 тыс. т). Китайский карбонат стронция активно продается в Азии и Европе.

Нитрат стронция Sr(NO 3) 2 хорошо растворим в воде (70,5 г в 100 г при 20° С). Его получают взаимодействием металлического стронция, оксида, гидроксида или карбоната стронция с азотной кислотой.

Нитрат стронция – компонент пиротехнических составов для сигнальных, осветительных и зажигательных ракет. Он окрашивает пламя в карминово-красный цвет. Хотя другие соединения стронция придают пламени такую же окраску, в пиротехнике предпочитают использовать именно нитрат: он не только окрашивает пламя, но одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород. При этом сначала образуется нитрит стронция, который затем превращается в оксиды стронция и азота.

В России соединения стронция широко использовались в пиротехнических составах. Во времена Петра Первого (1672–1725) их применяли для получения «потешных огней», устраивавшихся при проведении различных торжеств и празднеств. Академик А.Е.Ферсман назвал стронций «металлом красных огней».

Сульфат стронция SrSO 4 мало растворим в воде (0,0113 г в 100 г при 0° С). При нагревании выше 1580° С он разлагается. Его получат осаждением из растворов солей стронция сульфатом натрия.

Сульфат стронция используется как наполнитель при изготовлении красок и резины и утяжелитель в буровых растворах.

Хромат стронция SrCrO 4 осаждается в виде желтых кристаллов при смешивании растворов хромовой кислоты и гидроксида бария.

Дихромат стронция, образующийся при действии кислот на хромат, хорошо растворим в воде. Для перевода хромата стронция в дихромат достаточно такой слабой кислоты, как уксусная:

2SrCrO 4 + 2CH 3 COOH = 2Sr 2+ + Cr 2 O 7 2– + 2CH 3 COO – + H 2 O

Так его можно отделить от менее растворимого хромата бария, который удается превратить в дихромат только действием сильных кислот.

Хромат стронция обладает высокой светостойкостью, он очень устойчив к воздействию высоких температур (до 1000° С), обладает хорошими пассивирующими свойствами по отношению к стали, магнию и алюминию. Хромат стронция применяется как желтый пигмент в производстве лаков и художественных красок. Его называют «стронциановый желтый». Он входит в состав грунтовок на основе водорастворимых смол и особенно грунтовок на основе синтетических смол для легких металлов и сплавов (авиагрунтовок).

Титанат стронция SrTiO 3 не растворяется в воде, однако переходит в раствор под действием горячей концентрированной серной кислоты. Его получают спеканием оксидов стронция и титана при 1200–1300° С или соосажденных труднорастворимых соединений стронция и титана выше 1000° С. Титанат стронция применяют как сегнетоэлектрик, он входит в состав пьезокерамики. В технике сверхвысоких частот он служит в качестве материала для диэлектрических антенн, фазовращателей и других устройств. Пленки из титаната стронция используют при изготовлении нелинейных конденсаторов и датчиков инфракрасного излучения. С их помощью создают слоистые структуры диэлектрик – полупроводник – диэлектрик – металл, которые применяются в фотоприемниках, запоминающих устройствах и других приборах.

Гексаферрит стронция SrO·6Fe 2 O 3 получают спеканием смеси оксида железа (III) и оксида стронция. Это соединение используют в качестве магнитного материала.

Фторид стронция SrF 2 мало растворим в воде (чуть более 0,1 г в 1 л раствора при комнатной температуре). Он не взаимодействует с разбавленными кислотами, но переходит в раствор под действием горячей соляной кислоты. В криолитовых копях Гренландии найден минерал, содержащий фторид стронция – ярлит NaF·3SrF 2 ·3AlF 3 .

Фторид стронция используется в качестве оптического и ядерного материла, компонента специальных стекол и люминофоров.

Хлорид стронция SrCl 2 хорошо растворим в воде (34,6% по массе при 20° С). Из водных растворов ниже 60,34° С кристаллизуется гексагидрат SrCl 2 ·6H 2 O, расплывающийся на воздухе. При более высоких температурах он теряет сначала 4 молекулы воды, затем еще одну, а при 250° С полностью обезвоживается. В отличие от гексагидрата хлорида кальция гексагидрат хлорида стронция мало растворим в этаноле (3,64% по массе при 6° С), что используется для их разделения.

Хлорид стронция используется в пиротехнических составах. Его применяют также в холодильной технике, медицине, косметике.

Бромид стронция SrBr 2 гигроскопичен. В насыщенном водном растворе его массовая доля составляет 50,6% при 20° С. Ниже 88,62° С из водных растворов кристаллизуется гексагидрат SrBr 2 ·6H 2 O, выше этой температуры – моногидрат SrBr 3 ·H 2 O. Гидраты полностью обезвоживаются при 345° С.

Бромид стронция получают реакцией стронция с бромом или оксида (либо карбоната) стронция с бромоводородной кислотой. Он используется в качестве оптического материала.

Иодид стронция SrI 2 хорошо растворим в воде (64,0% по массе при 20° С), хуже – в этаноле (4,3% по массе при 39° С). Ниже 83,9° С из водных растворов кристаллизуется гексагидрат SrI 2 ·6H 2 O, выше этой температуры – дигидрат SrI 2 ·2H 2 O.

Иодид стронция служит в качестве люминесцентного материала в сцинтилляционных счетчиках.

Сульфид стронция SrS получают при нагревании стронция с серой или восстановлением сульфата стронция углем, водородом и другими восстановителями. Его бесцветные кристаллы разлагаются водой. Сульфид стронция применяется как компонент люминофоров, фосфоресцирующих составов, средств для удаления волос в кожевенной промышленности.

Карбоксилаты стронция можно получить при взаимодействии гидроксида стронция с соответствующими карбоновыми кислотами. Стронциевые соли жирных кислот («стронциевые мыла») используют для изготовления специальных консистентных смазок.

Стронциеорганические соединения . Чрезвычайно активные соединения состава SrR 2 (R = Me, Et, Ph, PhCH 2 и т.д.) могут быть получены при использовании HgR 2 (часто лишь при низкой температуре).

Бис(циклопентадиенил)стронций является продуктом прямой реакции металла с или с самим циклопентадиеном

Биологическая роль стронция.

Стронций – составная часть микроорганизмов, растений и животных. У морских радиолярий скелет состоит из сульфата стронция – целестина. Морские водоросли содержат 26–140 мг стронция на 100 г сухого вещества, наземные растения – около 2,6, морские животные – 2–50, наземные животные – около 1,4, бактерии – 0,27–30. Накопление стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения содержания стронция и других элементов, главным образом кальция и фосфора, в окружающей среде.

Животные получают стронций с водой и пищей. Некоторые вещества, например полисахариды водорослей, препятствует усвоению стронция. Стронций накапливается в костной ткани, в золе которой содержится около 0,02% стронция (в других тканях – около 0,0005%).

Соли и соединения стронция относятся к малотоксичным веществам, однако при избытке стронция поражаются костная ткань, печень и мозг. Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает «уровскую болезнь» у человека и животных (по названию реки Уров в Восточном Забайкалье) – поражение и деформацию суставов, задержку роста и другие нарушения.

Особенно опасны радиоактивные изотопы стронция.

В результате ядерных испытаний и аварий на АЭС в окружающую среду поступило большое количество радиоактивного стронция-90, период полураспада которого составляет 29,12 года. До тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от радиоактивного стронция росло из года в год.

В течение года после завершения атмосферных ядерных взрывов в результате самоочищения атмосферы большая часть радиоактивных продуктов, в том числе стронция-90, выпала из атмосферы на поверхность земли. Загрязнение природной среды за счет выведения из стратосферы радиоактивных продуктов ядерных взрывов, проводившихся на полигонах планеты в 1954–1980, сейчас играет второстепенную роль, вклад этого процесса в загрязнение атмосферного воздуха 90 Sr на два порядка меньше, чем от ветрового подъема пыли с почвы, загрязненной при ядерных испытаниях и в результате радиационных аварий.

Стронций-90, наряду с цезием-137, являются основными загрязняющими радионуклидами на территории России. На радиационную обстановку существенно влияет наличие загрязненных зон, появившихся вследствие аварий на Чернобыльской АЭС в 1986 и на ПО «Маяк» в Челябинской области в 1957 («Кыштымская авария»), а также в окрестностях некоторых предприятий ядерно-топливного цикла.

Сейчас время средние концентрации 90 Sr в воздухе за пределами территорий, загрязненных в результате Чернобыльской и Кыштымской аварий, вышли на уровни, наблюдавшиеся до аварии на Чернобыльской АЭС. В гидрологических системах, связанных с зонами, загрязненными при этих авариях, существенно сказывается смыв стронция-90 с поверхности почвы.

Попадая в почву, стронций вместе с растворимыми соединениями кальция поступает в растения. Больше других накапливают 90 Sr бобовые растения, корне- и клубнеплоды, меньше – злаки, в том числе зерновые, и лён. В семенах и плодах накапливается значительно меньше 90 Sr, чем в других органах (например, в листьях и стеблях пшеницы 90 Sr в 10 раз больше, чем в зерне).

Из растений стронций-90 может непосредственно или через животных перейти в организм человека. У мужчин стронций-90 накапливается в большей степени, чем у женщин. В первые месяцы жизни ребенка отложение стронция-90 на порядок выше, чем у взрослого человека, он поступает в организм с молоком и накапливается в быстро растущей костной ткани.

Радиоактивный стронций сосредотачивается в скелете и, таким образом, подвергает организм длительному радиоактивному воздействию. Биологическое действие 90 Sr связано с характером его распределения в организме и зависит от дозы b -облучения, создаваемого им и его дочерним радиоизотопом 90 Y. При длительном поступлении 90 Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет.

Применение стронция-90.

Радиоизотоп стронция применяется в производстве атомных электрических батарей. Принцип действия таких батарей основан на способности стронция-90 излучать электроны, обладающие большой энергией, преобразуемой затем в электрическую. Элементы из радиоактивного стронция, соединенные в миниатюрную батарейку (размером со спичечную коробку), способны безотказно служить без перезарядки 15–25 лет, такие батареи незаменимы для космических ракет и искусственных спутников Земли. А швейцарские часовщики с успехом используют крохотные стронциевые батарейки для питания электрочасов.

Отечественными учеными создан изотопный генератор электрической энергии для питания автоматических метеостанций на основе стронция-90. Гарантийный срок службы такого генератора – 10 лет, в течение которых он способен снабжать электрическим током нуждающиеся в нем приборы. Все обслуживание его заключается лишь в профилактических осмотрах – раз в два года. Первые образцы генератора установлены в Забайкалье и в верховьях таежной речки Кручины.

В Таллинне работает атомный маяк. Главная его особенность – радиоизотопные термоэлектрические генераторы, в которых в результате распада стронция-90 возникает тепловая энергия, преобразуемая затем в световую.

Устройства, в которых используется радиоактивный стронций, применяются для измерения толщины. Это необходимо для контроля и управления процессом производства бумаги, тканей, тонких металлических лент, пластмассовых пленок, лакокрасочных покрытий. Изотоп стронция используется в приборах для измерения плотности, вязкости и других характеристик вещества, в дефектоскопах, дозиметрах, сигнализаторах. На машиностроительных предприятиях часто можно встретить так называемые b -реле, они контролируют подачу заготовок на обработку, проверяют исправности инструмента, правильность положения детали.

При производстве материалов, являющихся изоляторами (бумага, ткани, искусственное волокно, пластмассы и т. д.), вследствие трения возникает статическое электричество. Чтобы избежать этого, пользуются ионизирующими стронциевыми источниками.

Елена Савинкина

Стронций

СТРО́НЦИЙ -я; м. [лат. strontium] Химический элемент (Sr), лёгкий серебристо-белый металл, радиоактивные изотопы которого применяются в ядерных испытаниях и в технике.

Стро́нциевый, -ая, -ое.

стро́нций

(лат. Strontium), химический элемент II группы периодической системы, относится к щёлочноземельным металлам. Назван по минералу стронцианиту, найденному около деревни Строншиан (Strontian) в Шотландии. Серебристо-белый металл; плотность 2,63 г/см 3 , t пл 768°C. Химически очень активен, поэтому сам металл применяют мало (при выплавке меди и бронз для их очистки, в электровакуумной технике как геттер), соли - в производстве красок, светящихся составов, глазурей и эмалей. SrTiO 3 - сегнетоэлектрик. При ядерных взрывах, в ядерных реакторах образуется радиоактивный изотоп 90 Sr (период полураспада 29,1 года), представляющий большую опасность для человека при попадании его в природную среду.

СТРОНЦИЙ

СТРО́НЦИЙ (лат. Strontium, от деревни Srtrontian в Шотландии, близ которой был найден), химический элемент с атомным номером 38, атомная масса 87,62. Химический символ Sr, читается «стронций». Расположен в 5 периоде в группе IIА периодической системы элементов. Щелочноземельный металл. Природный стронций состоит из четырех стабильных изотопов с массовыми числами 84 (0,56% по массе), 86 (9,86%), 87 (7,02%) и 88 (82,56%).
Конфигурация внешнего электронного слоя 5s 2 . Степень окисления +2 (валентность II). Радиус атома 0,215 нм, радиус иона Sr 2+ 0,132 нм (координационное число 6). Энергии последовательной ионизации 5,6941 и 11,0302 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,0.
Стронций - мягкий серебристо-белый сравнительно легкий металл.
История открытия
В 1764 в свинцовом руднике был обнаружен новый минерал - стронцианит. В 1890 англичанин А. Кроуфорд и, одновременно с ним, англичанин Т. Хоп, немецкий химик М. Клапрот (см. КЛАПРОТ Мартин Генрих) и российский академик Т. Е. Ловиц (см. ЛОВИЦ Товий Егорович) выделили из стронцианита оксид нового элемента. В 1808 амальгаму стронция получил английский химик Г. Дэви (см. ДЭВИ Гемфри) .
Распространенность в природе
Содержание в земной коре 0,034% по массе. В свободном виде не встречается. Важнейшие минералы: стронцианит (см. СТРОНЦИАНИТ) и целестин (см. ЦЕЛЕСТИН) SrSO 4 . Как примесь, содержится в минералах кальция, например, во фторапатите 3Са 3 (РО 4) 2 · СаF 2 .
Получение
Основной источник сырья при получении стронция и его соединений - целестин SrSO 4 - сначала восстанавливают углем при сильном нагревании:
SrSO 4 + 4С = SrS + 4СО
Затем сульфид стронция SrS соляной кислотой (см. СОЛЯНАЯ КИСЛОТА) переводят в SrCl 2 и обезвоживают его. Для получения Sr его хлорид восстанавливают магнием (см. МАГНИЙ) в атмосфере водорода:
SrCl 2 + Mg = MgCl 2 + Sr
Стронций получают также восстановлением SrO алюминием (см. АЛЮМИНИЙ) , кремнием (см. КРЕМНИЙ) или ферросилицием:
4SrO + 2Al = 3Sr + SrAl 2 O 4
Физические и химические свойства
Стронций - мягкий серебристо-белый металл, существующий в трех модификациях. До 231°C устойчива a-модификация с кубической гранецентрированной решеткой типа Cu, а = 0,6085 нм. При 231-623°C - b-модификация с гексагональной решеткой, при 623°C до температуры плавления (768°C) - g-модификация с кубической объемно центрированной решеткой. Температура кипения 1390°C, плотность 2,63 кг/дм 3 . Стронций ковкий, пластичный металл.
Стронций химически высокоактивен. Стандартный электродный потенциал Sr 2+ /Sr - 2,89 В.
При комнатной температуре на воздухе стронций покрывается пленкой из оксида SrO и пероксида SrO 2 . При нагревании на воздухе воспламеняется. Взаимодействуя с галогенами, (см. ГАЛОГЕНЫ) образует галогениды SrCl 2 и SrBr 2 . При нагревании до 300-400°C реагирует с водородом (см. ВОДОРОД) , образуя гидрид SrH 2 . Нагревая стронций в атмосфере CO 2 , получают:
5Sr + 2CO 2 = SrC 2 + 4SrO
Стронций активно реагирует с водой:
Sr + 2Н 2 О = Sr(ОН) 2 + Н 2
При нагревании стронций взаимодействует с азотом, серой, селеном и другими неметаллами с образованием нитрида Sr 3 N 2 , сульфида SrS, селенида SrSe и так далее.
Оксид стронция - основной, взаимодействует с водой, образуя гидроксид:
SrО + Н 2 О = Sr(ОН) 2
При взаимодействии с кислотными оксидами SrO образует соли:
SrО +СО 2 = SrСО 3
Ионы Sr 2+ бесцветны. Хлорид SrCl 2 , бромид SrBr 2 , иодид SrI 2 , нитрат Sr(NO 3) 2 хорошо растворимы в воде и окрашивают пламя в карминово-красный цвет. Нерастворимы карбонат SrCO 3 , сульфат SrSO 4 , средний ортофосфат Sr 3 (PO 4) 2 .
Применение
Стронций используется, как легирующая добавка к сплавам на основе магния, алюминия, свинца, никеля и меди. Cтронций входит в состав геттеров. Соединения стронция используются в пиротехнике, входят в состав люминесцентных материалов, эмиссионных покрытий радиоламп, используются при изготовлении стекол.
Титанат стронция SrTiO 3 используется при изготовлении диэлектрических антенн, пьезоэлементов, малогабаритных нелинейных конденсаторов, в качестве датчиков инфракрасного излучения. Препараты 90 Sr используются при лучевой терапии кожных и некоторых глазных болезней.
Физиологическое действие
Соединения стронция токсичны. При попадании в организм возможно поражение костной ткани и печени. ПДК стронция в воде 8 мг/л, в воздухе для гидроксида, нитрата и оксида 1 мг/м 3 , для сульфата и фосфата 6 мг/м 3 .
Проблемы 90 Sr
При взрывах ядерных зарядов или из-за утечки радиоактивных отходов в окружающую среду поступает радиоактивный изотоп 90 Sr. Образуя хорошо растворимый в воде гидрокарбонат Sr(HCO 3) 2 , 90 Sr мигрирует в воду, почву, растения и организмы животных.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "стронций" в других словарях:

    - (ново лат.). Легкий металл желтого цвета, названный так по имени деревни в Шотландии, в окрестностях которой открыт впервые; в соединении с углекислотою образует минерал стронцианит. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

    Таблица нуклидов Общие сведения Название, символ Стронций 90, 90Sr Альтернативные названия Радиостронций Нейтронов 52 Протонов 38 Свойства нуклида Атомная масса 8 … Википедия

    СТРОНЦИЙ - хим. элемент, символ Sr (лат. Strontium), ат. н. 38, ат. м. 87,62; относится к щёлочноземельным металлам, имеет серебристо белый цвет, плотность 2630 кг/м3, tпл = 768 °С. Химически очень активен, поэтому в чистом виде применяется мало. Используют … Большая политехническая энциклопедия

    Хим. элемент II гр. периодической системы, порядковый номер 38, ат. в. 87, 63; состоит из 4 стабильных изотопов. Средний изотопный состав обычного С. следующий: Sr84 0,56%, Si86 9,86%, Sr87 7,02%, Sr88 82,56%. Один из изотопов С. Sr87… … Геологическая энциклопедия

    Целестин Словарь русских синонимов. стронций сущ., кол во синонимов: 5 иностранец (23) метал … Словарь синонимов

    - (Strontium), Sr, химический элемент II группы периодической системы, атомный номер 38, атомная масса 87,62; мягкий щелочноземельный металл. В результате ядерных испытаний, аварий на АЭС и с радиоактивными отходами в окружающую среду попадает… … Современная энциклопедия

    - (лат. Strontium) Sr, химический элемент II группы периодической системы, атомный номер 38, атомная масса 87,62, относится к щелочноземельным металлам. Назван по минералу стронцианиту, найденному около д. Строншиан (Strontian) в Шотландии.… … Большой Энциклопедический словарь - (Strontium), Sr, хим. элемент II группы периодич. системы элементов, ат. номер 38, ат. масса 87,62, щёлочно земельный металл. Природный С. смесь стабильных 84Sr, 86Sr 88Sr, в к рой преобладает 88Sr (82,58%), а меньше всего 84Sr (0,56%).… … Физическая энциклопедия

Стронций

Атомный номер
Внешний вид простого вещества
ковкий, серебристо-белый металл
Свойства атома
Атомная масса
(молярная масса)

87,62 а. е. м. (г/моль)

Радиус атома
Энергия ионизации
(первый электрон)

549,0 (5,69) кДж/моль (эВ)

Электронная конфигурация
Химические свойства
Ковалентный радиус
Радиус иона
Электроотрицательность
(по Полингу)
Электродный потенциал
Степени окисления
Термодинамические свойства простого вещества
Плотность
Молярная теплоёмкость

26,79 Дж/(K·моль)

Теплопроводность

(35,4) Вт/(м·K)

Температура плавления
Теплота плавления

9,20 кДж/моль

Температура кипения
Теплота испарения

144 кДж/моль

Молярный объём

33,7 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Параметры решётки
Отношение c/a
Температура Дебая
Sr 38
87,62
5s 2
Стронций

Стронций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций (CAS-номер: 7440-24-6) — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

История и происхождение названия

Новый элемент обнаружили в минерале стронцианите, найденном в 1764 году в свинцовом руднике близ шотландской деревни Строншиан, давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено почти через 30 лет Уильямом Крюйкшенком и Адером Кроуфордом. Выделен в чистом виде сэром Хемфри Дэви в 1808 году.

Присутствие в природе

Стронций содержится в морской воде (0,1 мг/л), в почвах (0,035 масс%).

В природе стронций встречается в виде смеси 4 стабильных изотопов 84 Sr (0,56 %), 86 Sr (9,86 %), 87 Sr (7,02 %), 88 Sr (82,56 %).

Получение Стронция

Три способа получения металлического стронция:

— термическое разложение некоторых соединений
— электролиз
— восстановление оксида или хлорида

Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.

Электролитическое получение стронция электролизом расплава смеси SrCl 2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.

При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.

Физические свойства

Стронций — мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.

Полиморфен — известны три его модификации. До 215 о С устойчива кубическая гранецентрированная модификация (α-Sr), между 215 и 605 о С — гексагональная (β-Sr), выше 605 о С — кубическая объемно-центрированная модификация (γ-Sr).

Температура плавления — 768 о С, Температура кипения — 1390 о С.

Химические свойства

Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.

В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В. Энергично реагирует с водой, образуя гидроксид:

Sr + 2H 2 O = Sr(OH) 2 + H 2

Взаимодействует с кислотами, вытесняет тяжелые металлы из их солей. С концентрированными кислотами (H 2 SO 4 , HNO 3) реагирует слабо.

Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO 2 и нитрид Sr 3 N 2 . При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.

Энергично реагирует с неметаллами — серой, фосфором, галогенами. Взаимодействует с водородом (выше 200 о С), азотом (выше 400 о С). Практически не реагирует с щелочами.

При высоких температурах реагирует с CO 2 , образуя карбид:

5Sr + 2CO 2 = SrC 2 + 4SrO

Легкорастворимы соли стронция с анионами Cl - , I - , NO 3 - . Соли с анионами F - , SO 4 2- , CO 3 2- , PO 4 3- малорастворимы.

Применение

Основные области применения стронция и его химических соединений — это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.

Металлургия

Стронций применяется для легирования меди и некоторых ее сплавов, для введения в аккумуляторные свинцовые сплавы, для обессеривания чугуна, меди и сталей.

Металлотермия

Стронций чистотой 99,99—99,999 % применяется для восстановления урана.

Магнитные материалы

Магнитотвердые ферриты стронция — широкоупотребительные материалы для производства постоянных магнитов.

Пиротехника

В пиротехнике применяются карбонат, нитрат, перхлорат стронция для окрашивания пламени в кирпично-красный цвет. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.

Изотопы

Радиоактивный 90 Sr (период полураспада 28,9 лет) применяется в производстве радиоизотопных источников тока в виде титаната стронция (плотность 4,8 г/см³, а энерговыделение около 0,54 Вт/см³).

Атомноводородная энергетика

Уранат стронция играет важную роль при получении водорода (стронций-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и в частности разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.

Высокотемпературная сверхпроводимость

Оксид стронция применяется в качестве компонента сверхпроводящих керамик.

Химические источники тока

Фторид стронция используется в качестве компонента твердотельных фторионных аккумуляторных батарей с громадной энергоемкостью и энергоплотностью.

Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий для анодов гальванических элементов.

Биологическая роль

Влияние на организм человека

Не следует путать действие на организм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция. Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28.9 лет. 90 Sr претерпевает β-распад, переходя в радиоактивный 90 Y (период полураспада 64 ч.) Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет. 90 Sr образуется при ядерных взрывах и выбросах с АЭС. По химическим реакциям радиоактивный и нерадиоактивные изотопы стронция практически не отличаются. Стронций природный — составная часть микроорганизмов, растений и животных. Независимо от пути и ритма поступления в организм растворимые соединения стронция накапливаются в скелете. В мягких тканях задерживается менее 1 %. Путь поступления влияет на величину отложения стронция в скелете. На поведение стронция в организме оказывает влияние вид, пол, возраст, а также беременность, и другие факторы. Например, в скелете мужчин отложения выше, чем в скелете женщин. Стронций является аналогом кальция. Стронций с большой скоростью накапливается в организме детей до четырехлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы. Пути попадания:

  1. вода (предельно допустимая концентрация стронция в воде в РФ — 8 мг/л, а в США — 4 мг/л)
  2. пища (томаты, свёкла, укроп, петрушка, редька, редис, лук, капуста, ячмень, рожь, пшеница)
  3. интратрахеальное поступление
  4. через кожу (накожное)
  5. ингаляционное (через воздух)
  6. из растений или через животных стронций-90 может непосредственно перейти в организм человека.
  7. люди работа которых связана со стронцием (в медицине радиоактивный стронций используют в качестве аппликаторов при лечении кожных и глазных болезней. Основные области применения природного стронция — это радиоэлектронная промышленность, пиротехника, металлургия, металлотермия, пищевая промышленность, пр-во магнитных материалов, радиоактивного — пр-во атомных электрических батарей. атомно-водородная энергетика, радиоизотопные термоэлектрические генераторы и др.)

Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина Д, неполноценное питание, нарушения соотношения микроэлементов таких как барий, молибден, селен и др.). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» — поражение и деформация суставов, задержка роста и другие нарушения Напротив, радиоактивный стронций практически всегда негативно воздействует на организм человека:

  1. откладывается в скелете (костях), поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.
  2. вызывает лейкемию и злокачественные опухоли (рак) костей, а также поражение печени и мозга

Изотопы

Стронций-90

Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28,79 лет. 90 Sr претерпевает β-распад, переходя в радиоактивный иттрий 90 Y (период полураспада 64 часа). 90 Sr образуется при ядерных взрывах и выбросах с АЭС.

Стронций является аналогом кальция и способен прочно откладываться в костях. Длительное радиационное воздействие 90 Sr и 90 Y поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.

Стронций – металл щелочногоземельного характера. Представляет собой вещество серебристо-белого цвета (см. фото), очень мягкое и пластичное, легко разрезается даже обычным ножом. Обладает высокой активностью, горит в присутствии воздуха, вступает в химические взаимодействия с водой. В природных условиях в чистом виде не обнаружен. В основном его находят в составе ископаемых минералов, обычно в комплексе с кальцием.

Впервые он был найден в Шотландии в конце 18 века в селении с названием Строншиан, которое и дало название найденному минералу – стронцианиту. Но только спустя 30 лет после находки английский ученый Х. Дэви смог выделить его в чистом виде.

Соединения элемента используют в металлургическом производстве, медицине, пищевой промышленности. Очень интересно его свойство при горении выделять огни красного оттенка, что взяли на вооружение пиротехники в начале 20 века.

Действие стронция и его биологическая роль

Действие макроэлемента многие связывают с высокой токсичностью и радиоактивностью. Но такое мнение довольно ошибочно, т.к. природный элемент практически не обладает этими качествами и даже присутствует в тканях биологических организмов, выполняя важную биологическую роль и некоторые функции в качестве спутника кальция. Благодаря свойствам вещества, его используют в медицинских целях.

Основное скопления стронция в организме человека приходится на костные ткани. Это происходит благодаря тому, что элемент схож с кальцием по химическому действию, а тот в свою очередь является основным компонентом «строительства» скелета. А вот в мышцах содержится всего 1% от всей массы элемента в организме.

Также стронций присутствует в отложениях желчных и мочевых камней, опять же в присутствии кальция.

К слову, о вредности стронция – разрушительное для здоровья действие оказывают лишь радиоактивные изотопы, которые по своим химическим свойствам практически не отличаются от природного элемента. Возможно, по этой причине и возникла эта путаница.

Суточная норма

Суточная норма макроэлемента составляет примерно 1 мг. Это количество довольно легко восполняется с пищей и питьевой водой. Всего в организме распределено приблизительно 320 мг стронция.

Но стоит учитывать, что наш организм способен усваивать лишь 10% поступающего элемента, а получаем мы до 5 мг в сутки.

Недостаток стронция

Недостаток макроэлемента лишь теоретически может вызывать некоторые патологии, но пока это показано лишь в опытах на животных. Пока еще ученые не выявили негативного воздействия дефицита стронция на организм человека.

На данный момент выявлены только некоторые зависимости усвоения этого макроэлемента при воздействии других веществ, находящихся в организме. Например, этому процессу способствуют некоторые аминокислоты, прием витамины D и лактозы. А противное действие оказывают препараты, на основе сульфатов бария или натрия, а также продукты с большим содержанием пищевых грубых волокон.

Существует еще одна неприятная особенность – при возникновении дефицита кальция организм начинает накапливать радиоактивный стронций даже из воздуха (часто загрязненного промышленными предприятиями).

Чем опасен стронций для человека и в чем заключается его вред?

Стронций, все-таки способен оказывать вредное радиоактивное воздействие. Сам элемент по себе оказывает мало вреда, до сих пор не установлена критическая доза. А вот его изотопы могут вызвать болезни и разнообразные нарушения. Как и натуральный стронций, он скапливается в самом скелете, но его действие вызывает поражение костного мозга и разрушение самой структуры костей. Он может поражать клетки головного мозга и печени, и таким образом вызывать возникновения новообразований и опухолей.

Но одно из самых страшных последствий воздействия изотопа – это лучевая болезнь. В нашей стране до сих пор чувствуются последствия катастрофы в Чернобыле и накопленные запасы радиоактивного стронция дают о себе знать в почве, воде и самой атмосфере. Также получить большую дозу, можно работая на предприятиях, использующих элемент – там самый высокий уровень заболеваний саркомой костей и лейкемией.

Но и природный стронций способен вызывать неприятные последствия. Из-за довольно редкого стечения обстоятельств вроде неполноценного рациона, нехватки кальция, витамина D и дисбаланса в организме элементов, вроде селена и молибдена, получают развитие специфические заболевания – стронциевый рахит и уровская болезнь. Последняя получила имя от местности, где ими еще в 19 веке страдали местные жители. Они становились инвалидами из-за искривления структуры скелета, костей и суставов. Причем страдали по большей части те люди, которые с самого детства росли в этих местах. Только в 20 веке выяснили, что воды местной реки содержали повышенное количество элемента. А в период роста именно костно-суставная система подвергается наибольшему влиянию.

Попадания оксида стронция на слизистые оболочки рта или глаз, способны вызывать ожоги и глубокие повреждения. А вдыхание его с воздухом может способствовать развитию патологических болезней в легких – фиброз, бронхит, а также возможна сердечная недостаточность.

В качестве лечения обычно применяют препараты на основе кальция, магния, сульфатов натрия или бария. Также возможно использование комплексообразователей, которые связывают и выводят радиоактивные токсины из клеток.

Попадая в почву, токсичный изотоп стронция способен таким образом накапливаться в волокнах растений, а затем и в организмах животных. Таким образом человеческий организм медленно, но верно накапливает токсины, употребляя отравленные продукты. Немного спасти положение может термическая обработка продуктов, которая способствует довольно значительному снижению содержания вредного токсина в них.

Этот радионуклеид очень сложно выводится из организма, ведь почти полгода ему может потребоваться, чтобы избавиться хотя бы от половины накопленного запаса.

В каких продуктах питания содержится?

Показания к лечению препаратами на основе этого элемента

Показания к назначению макроэлемента, несмотря на его возможную токсичность все же есть. И даже радиоактивный изотоп применяется в медицинских целях. Его излучение в позволенных дозах может оказывать лечебное воздействие на эрозии, опухоли на коже и слизистых оболочках. При более глубоких очагах этот способ уже используется.

Также его соединения служат препаратами для лечения эпилепсии, нефритов и исправления деформации в детском возрасте ортопедами. В некоторой мере может служить противоглистным средством.

Стронций (Sr) - химический элемент, щелочноземельный металл 2-й группы периодической таблицы. Используется в красных сигнальных огнях и люминофорах, представляет основную угрозу здоровью при радиоактивном заражении.

История открытия

Минерал из свинцового рудника близ деревни Стронтиан в Шотландии. Первоначально он был распознан, как разновидность карбоната бария, но Адэр Кроуфорд и Уильям Крюйкшэнк в 1789 году предположили, что это другое вещество. Химик Томас Чарльз Хоуп назвал новый минерал стронтитом по имени деревни, а соответствующий оксид стронция SrO - стронцией. Металл был выделен в 1808 г. сэром Хэмфри Дэви, который подверг электролизу смесь влажного гидроксида или хлорида с оксидом ртути, используя ртутный катод, а затем из полученной амальгамы испарил ртуть. Новый элемент он назвал, воспользовавшись корнем слова «стронция».

Нахождение в природе

Относительная распространенность стронция, тридцать восьмого элемента таблицы Менделеева, в космосе оценивается, как 18,9 атомов на каждые 10 6 атомов кремния. Он составляет около 0,04% массы земной коры. Средняя концентрация элемента в морской воде равна 8 мг/л.

Химический элемент стронций широко встречается в природе, и, по оценкам специалистов, является 15-м наиболее распространенным веществом на Земле, достигая концентрации 360 частей на миллион. Учитывая его экстремальную реактивность, существует только в форме соединений. Его главными минералами являются целестин (сульфат SrSO 4) и стронцианит (карбонат SrCO 3). Из них в достаточных для рентабельной добычи количествах встречается целестит, более 2/3 мирового предложения которого поступает из Китая, а Испания и Мексика поставляют большую часть остатка. Однако выгоднее добывать стронцианит, потому что стронций чаще используется в карбонатной форме, но известных его месторождений относительно мало.

Свойства

Стронций является мягким металлом, подобным свинцу, который в месте разреза блестит как серебро. На воздухе он быстро вступает в реакцию с кислородом и присутствующей в атмосфере влагой, приобретая желтоватый оттенок. Поэтому хранить его нужно в изоляции от воздушных масс. Чаще всего его хранят в керосине. В свободном состоянии в природе не встречается. Сопутствуя кальцию, стронций входит в состав только 2 основных руд: целестина (SrSO 4) и стронцианита (SrCO 3).

В ряду химических элементов магний-кальций-стронций (щелочноземельных металлов) Sr находится в группе 2 (бывшей 2А) периодической таблицы между Ca и Ba. Кроме того, он расположен в 5-м периоде между рубидием и иттрием. Поскольку атомный радиус стронция аналогичен радиусу кальция, он легко заменяет последний в минералах. Но он мягче и более реактивный в воде. При контакте с ней образует гидроксид и газообразный водород. Известны 3 аллотропа стронция с точками перехода 235°C и 540°C.

Щелочноземельный металл обычно не реагирует с азотом ниже 380°С и при комнатной температуре образует только оксид. Однако в виде порошка стронций самопроизвольно воспламеняется с образованием оксида и нитрида.

Химические и физические свойства

Характеристика химического элемента стронция по плану:

  • Название, символ, атомный номер: стронций, Sr, 38.
  • Группа, период, блок: 2, 5, s.
  • Атомная масса: 87,62 г/моль.
  • Электронная конфигурация: 5s 2 .
  • Распределение электронов по оболочкам: 2, 8, 18, 8, 2.
  • Плотность: 2,64 г/см 3 .
  • Температуры плавления и кипения: 777 °C, 1382°C.
  • Степень окисления: 2.

Изотопы

Естественный стронций представляет собой смесь 4-х стабильных изотопов: 88 Sr (82,6%), 86 Sr (9,9%), 87 Sr (7,0%) и 84 Sr (0,56%). Из них только 87 Sr является радиогенным - он образуется при распаде радиоактивного изотопа рубидия 87 Rb с периодом полураспада 4,88 × 10 10 лет. Считается, что 87 Sr продуцировался во время «первичного нуклеосинтеза» (ранней стадии Большого взрыва) наряду с изотопами 84 Sr, 86 Sr и 88 Sr. В зависимости от местоположения, соотношение 87 Sr и 86 Sr могут отличаться более чем в 5 раз. Это используется в датировании геологических проб и в определении происхождения скелетов и глиняных артефактов.

В результате ядерных реакций были получены около 16 синтетических радиоактивных изотопов стронция, из которых наиболее долговечным является 90 Sr (период полураспада 28,9 года). Этот изотоп, образующийся при ядерном взрыве, считается наиболее опасным продуктом распада. Из-за его химического сходства с кальцием он усваивается в костях и зубах, где продолжает выталкивать электроны, вызывая радиационное поражение, повреждая костный мозг, нарушая процесс образования новых клеток крови и вызывая рак.

Однако в контролируемых медиками условиях стронций используется для лечения некоторых поверхностных злокачественных новообразований и рака костной ткани. Он также применяется в форме фторида стронция в и в радиоизотопных термоэлектрических генераторах, в которых тепло его радиоактивного распада преобразуется в электричество, служащих долгоживущими, легкими источниками энергии в навигационных буях, удаленных метеостанциях и космических аппаратах.

89 Sr используется для лечения рака, поскольку атакует костные ткани, производит бета-облучение и через несколько месяцев распадается (период полураспада 51 день).

Химический элемент стронций не является необходимым для высших форм жизни, его соли обычно нетоксичны. То, что делает 90 Sr опасным, используется для увеличения плотности костей и их роста.

Соединения

Свойства химического элемента стронция очень похожи на В соединениях Sr имеет исключительное состояние окисления +2 в виде иона Sr 2+ . Металл является активным восстановителем и легко реагирует с галогенами, кислородом и серой с получением галогенидов, окиси и сульфида.

Соединения стронция имеют довольно ограниченную коммерческую ценность, поскольку соответствующие соединения кальция и бария, как правило, выполняют то же, но более дешевы. Однако некоторые из них нашли применение в промышленности. Пока еще не придумали, с помощью каких веществ добиться малинового цвета в фейерверках и сигнальных огнях. В настоящее время с целью получения этого цвета используются лишь соли стронция, такие как нитрат Sr(NO 3) 2 и хлорат Sr(ClO 3) 2 . Около 5-10% всего производства данного химического элемента потребляет пиротехника. Гидроксид стронция Sr(OH) 2 иногда используется для извлечения сахара из мелассы, потому что он образует растворимый сахарид, из которого сахар может быть легко регенерирован под действием двуокиси углерода. Моносульфид SrS применяется как депилятор и ингредиент в люминофорах электролюминесцентных устройств и светящихся красок.

Ферриты стронция образуют семейство соединений с общей формулой SrFe х O у, получаемых в результате высокотемпературной (1000-1300 °C) реакции SrCO 3 и Fe 2 O 3 . Из них изготавливают керамические магниты, которые находят широкое применение в динамиках, двигателях автомобильных стеклоочистителей и детских игрушках.

Производство

Большая часть минерализованного целестина SrSO 4 превращается в карбонат двумя способами: либо целестин непосредственно выщелачивается раствором карбоната натрия, либо нагревается с углем, образуя сульфид. На второй стадии получается вещество темного цвета, содержащее, в основном, сульфид стронция. Эта «черная зола» растворяется в воде и фильтруется. Карбонат стронция осаждается из раствора сульфида путем введения диоксида углерода. Сульфат восстанавливается до сульфида путем карботермического восстановления SrSO 4 + 2C → SrS + 2CO 2 . Элемент может быть получен методом катодного электрохимического контакта, в котором охлажденный железный стержень, действующий как катод, касается поверхности смеси хлоридов калия и стронция, и поднимается, когда стронций затвердевает на нем. Реакции на электродах могут быть представлены следующим образом: Sr 2+ + 2e - → Sr (катод); 2Cl - → Cl 2 + 2e - (анод).

Металлический Sr также можно восстановить из его оксида алюминием. Он ковкий и пластичный, хороший проводник электричества, но используется относительно мало. Одно из его применений - легирующий агент для алюминия или магния при литье блоков цилиндров. Стронций улучшает обрабатываемость и устойчивость к ползучести металла. Альтернативным способом получения стронция является восстановление его оксида с алюминием в вакууме при температуре перегонки.

Коммерческое применение

Химический элемент стронций широко используется в стекле электронно-лучевых трубок цветных телевизоров для предотвращения проникновения рентгеновского излучения. Также он может входить в состав аэрозольных красок. Это, по-видимому, является одним из наиболее вероятных источников воздействия стронция на население. Кроме того, элемент используется для производства ферритовых магнитов и очистки цинка.

Соли стронция применяются в пиротехнике, поскольку при сгорании окрашивают пламя в красный свет. А сплав солей стронция с магнием применяется в составе зажигательных и сигнальных смесей.

Титанат обладает чрезвычайно высоким показателем преломления и оптической дисперсией, что делает его полезным в оптике. Он может использоваться, как замена бриллиантов, но редко используется с этой целью из-за крайней мягкости и уязвимости к царапинам.

Алюминат стронция является ярким люминофором с длительной устойчивостью фосфоресценции. Оксид иногда применяется для улучшения качества керамических глазурей. Изотоп 90 Sr является одним из лучших долгоживущих высокоэнергетических бета-излучателей. Он используется в качестве источника питания для радиоизотопных термоэлектрических генераторов (РИТЭГ), преобразующих в электричество тепло, выделяемое при распаде радиоактивных элементов. Эти устройства применяются в космических аппаратах, удаленных метеостанциях, навигационных буях и т. д. - там, где требуется легкий и долгоживущий ядерно-электрический источник энергии.

Медицинское использование стронция: лечение препаратами

Изотоп 89 Sr является активным ингредиентом радиоактивного препарата Metastron, применяемого для лечения болей в костях, вызванных метастатическим раком предстательной железы. Химический элемент стронций действует, как кальций, преимущественно включается в кость в местах с повышенным остеогенезом. Эта локализация фокусирует радиационное воздействие на раковое поражение.

Радиоизотоп 90 Sr также используется в терапии рака. Его бета-излучение и длительный идеально подходят для поверхностной лучевой терапии.

Экспериментальный препарат, полученный путем объединения стронция с ранелиновой кислотой, способствует росту кости, увеличению плотности костной ткани и уменьшению переломов. Stronium ranelate зарегистрирован в Европе, как средство лечения остеопороза.

Хлорид стронция иногда используется в зубных пастах для чувствительных зубов. Его содержание достигает 10%.

Меры предосторожности

У чистого стронция высокая химическая активность, а в измельченном состоянии металл спонтанно загорается. Поэтому этот химический элемент считается пожароопасным.

Воздействие на организм человека

Человеческое тело поглощает стронций так же, как кальций. Эти два элемента химически настолько похожи, что устойчивые формы Sr не представляют значительную угрозу для здоровья. В отличии от этого, радиоактивный изотоп 90 Sr может привести к различным костным нарушениям и заболеваниям, в том числе к раку костной ткани. Для измерения излучения поглощенного 90 Sr используется стронциевая единица.